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Abstract
Scientific discoveries do not occur in vacuum but rather by connecting existing
pieces of knowledge in new and creative ways. Mapping the relation and structure of
scientific knowledge is therefore central to our understanding of the dynamics of
scientific production. Here we introduce a new approach to generate scientific
knowledge maps based on a machine learning approach that, starting from the
observed publication patterns of authors, generates an N-dimensional space where it
is possible to measure the similarity or distance between different research topics and
knowledge domains. We provide an implementation of the proposed approach that
considers the American Physical Society publications database and generates a map
of the research space in Physics that characterizes the relation among research topics
over time. We use this map to measure two indicators, the research capacity fingerprint
and the knowledge density, to profile the research activity in physical sciences of more
than 400 urban areas across the world. We show that these indicators can be used to
analyze and predict the evolution over time of the research capacity and
specialization of specific geographical areas. Furthermore we provide an extensive
analysis of the relation between socio-economic development indicators and the
ability to produce new knowledge for 67 countries, as measured by our approach,
highlighting some key correlates of scientific production capacity. The proposed
approach is scalable to very large datasets and can be extended to study other
disciplines and research areas without having to rely on ad-hoc science classification
schemes.

Keywords: Embeddings; Research space; Principle of relatedness; Fingerprinting
scientific production; Revealed comparative advantage; Predicting research
specialization

1 Main text
The definition of meaningful maps of the research space is a fundamental step in the study
of the emergence of scientific areas and the characterization of the drivers of knowledge
production and consumption. Mapping the relation and structure of scientific knowledge
is indeed one of the key elements towards the understanding of the dynamics of science
and has practical applications in the information retrieval and classification of the ever
growing output of the research community. The recent abundance of large scale biblio-
graphic datasets has provided momentum to the study of the dynamics and structure of
science [1, 2]. Studies have shown that it is possible to characterize the evolution of entire
disciplinary areas [3, 4], identify general trends in science [5–7], characterize the effect
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of memory and attention [8–10], and measure the emergence and relevance of interdis-
ciplinary efforts [11–14]. Considerable progress has been made also in the study of the
mobility of researchers both in space and among research topics [15–22] and in the char-
acterization and explanation of collaboration dynamics between individual researchers,
institutions, and countries [23–34]. Remarkably, the advances in the field have opened
the path to the understanding and prediction of scientific productivity and individual re-
searchers’ careers [35–41]. In this context, the visualization and mapping of the research
space is a major tool in the study of the scientific portfolio of authors, institutions, and
countries, the co-production of bibliographic items, and the quantitative characterization
of similarity between scientific topics [3, 4, 42–47].

One of the hurdles in defining large-scale knowledge maps is that the approaches pro-
posed in the literature typically rely on well defined scientific taxonomies. Indeed, it has
been shown that it takes a non-trivial effort to analyze the evolution of trending topics in
science when only keywords are used rather than well established classification schemes
[5]. Here, we propose a new methodology that uses recent developments stemming from
the Natural Language Processing (NLP) machine learning literature on word embeddings
[48–54] to create a spatial mapping of the research space of scientific disciplines. In this
space, scientific topics are represented using N-dimensional vectors, and the similarity
among topics can be organically computed as their spatial closeness in this N-dimension
space. We apply our methodology to articles published in American Physical Society’s
(APS) journals in the period 1986–2009 to generate a map of the physics research space,
and show that our method correctly reproduces the scientific structure encoded within the
Physics and Astronomy Classification Scheme (PACS). Indeed, while the research topics
are labeled according to the latter, our method does not use the hierarchical structure
embedded into the PACS scheme to learn the physics research space. Rather, we use the
structure of the classification scheme as a ground truth to validate our findings, showing
that our methodology does not require the a-priori existence of a well-defined scientific
or technical taxonomy to produce a meaningful knowledge space.

In order to show the potential of our approach, we project the physical sciences research
activity of different geographical units (urban areas and countries) in the research space
obtained with our methodology, fingerprinting the scientific expertise of entire geograph-
ical areas. The scientific fingerprint encodes the scientific production and allows to vi-
sually characterize the specialization into topical areas of each geographical entity. Using
the scientific expertise fingerprint, we can appropriately define and measure a knowledge
density indicator that characterizes the research capacity of each specific geographical
unit. We show that the knowledge density is a good predictor of the future probability of
an urban area to become a specialized scientific producer in a specific research topic in
Physics. The countries’ knowledge density is also significantly related to the overall level
of economic and technical development of nations, as shown by its association with the
development indicators of 67 countries, hinting to the possibility of using the research
space to explain the patterns of socio-economic and technical development of countries.
In other words, the present work shows that machine learning techniques can be used not
only to advance the study of the structure and dynamics of scientific knowledge but also
to systematically generate new indicators that can measure the overall level of scientific
capabilities of nations. While a specific physics literature database is used to exemplify
our approach, the presented methodology can be applied and generalized to other schol-
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arly/bibliometric databases, thus opening the path to the definition of knowledge maps
not relying on pre-defined taxonomies or classification schemes.

2 Results
The core assumption behind our approach is that research topics can be simply char-
acterized by sets of keywords extracted from individual publications, patents, and other
scientific artifacts. The relations among scientific areas are generally provided by mea-
sures of similarity among the research topics, inferred from co-occurrences of keywords
in papers, citations, or other bibliographic indicators. Common approaches range from
co-word similarity, to citation linkages, or more sophisticated vector space models [42,
55, 56].

In our case, to extract the labels that we are going to use to identify the research top-
ics, we consider all the articles published in American Physical Society’s (APS) journals
in the period 1986–2009 and we associate to each article: (a) a set of authors; and (b) a
set of research topics identified using the Physics and Astronomy Classification Scheme
(PACS) codes reported in each publication. Given this data, we select the scientific output
of each author by keeping track of all the research topics, identified by the PACS codes, in
which she/he has published on in a given time window. Then, we represent each scientist
as a bag-of-topics and we use this information to train our embedding model and recover
the vector embeddings for each PACS code (as shown in Fig. 1). In the machine learning
literature, supervised and unsupervised vector space models have been used to perform
exactly this task: embed words in a high dimensional space in which semantically similar
words are mapped into neighboring points. Here, we use the general-purpose embedding
approach proposed by [54] to map research topics (i.e. PACS codes) into a research space
in which scientifically similar topics are placed close to each other. The motivation behind
this methodology lies in the principle of relatedness [57, 58]: i.e. it is easier to specialize
and work in related research areas requiring a set of common skills/knowledge. Each in-
dividual is thus assumed to have a given set of skills/knowledge which allow her/him to
successfully publish in a specific set of topics. The embedding vector space model is then
trained to learn the similarity of topics by analyzing the bag-of-topics of all the authors in
our dataset.

From a technical standpoint, the model embeds each research topic into a N-dimen-
sional space where related research topics are going to be placed close to each other. Each
PACS code is thus identified by a vector vect

j defined by the N-dimensional embedding for
topic i, learned with the StarSpace model [54] by observing scientists publication patterns
in time window t. In this model, entity embeddings are learned using discrete feature rep-
resentations describing the relations between the selected entities (in our case, authors and
PACS codes). In practice, the model is used in its collaborative filtering-based recommen-
dation training mode where collections of labels—the bag-of-topics for each author—are
used to predict/suggest other PACS codes in which an author might be active on. This is
achieved by first defining a dictionary of D features as a D × N matrix where the ith row
represents the N-dimensional PACS code/research topic embedding. In our case, D is set
equal to 854 and it corresponds to the number of PACS codes considered in our analysis;
while N is set equal to 200 (this choice is discussed in the Methods section). The em-
beddings are learned by minimizing a loss function that depends on the pairwise cosine
similarities between the different topics. Further details are provided in the Methods sec-
tion, but the basic intuition behind this approach is that research topics co-occurrences



Chinazzi et al. EPJ Data Science            (2019) 8:33 Page 4 of 18

Figure 1 Embedding of research topics. We consider the articles published in American Physical Society’s (APS)
journals and we associate to each manuscript: a set of authors and a set of research topics (PACS codes). Then,
we represent each scientist as a bag-of-topics and we use this information to train our embedding model and
recover the vector embeddings for each topic

(at the author level) are exploited to tune the embeddings so that frequently occurring
pairs-of-topics are also close in the N-dimensional embedding space.

2.1 From the embedding space to the research space network
The embedding of topics into a high dimensional research space allows us to use their
spatial positions to infer the value of their pairwise similarities by measuring the topics
relative closeness. In particular, the topic vector space can be used to compute the similarity
between two research topics as the cosine similarity between their vectors:

φt
i,j =

vect
i · vect

j

‖vect
i‖‖vect

j‖
, (1)

where vect
i and vect

j are the 200-dimensional embeddings for topics i and j, respectively.
The similarity measure can be used to generate the research space network (RSN) that

considers the similarity as the weight of the connections and preserves only the most im-
portant links by removing the ones associated to negative or small values of the cosine
similarity. The resulting RSN is visualized in Fig. 2, where we show that our methodol-
ogy successfully groups together research topics belonging to the same section as taxon-
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Figure 2 Research space network. Each node represents a research topic in Physics, identified by a PACS code,
and each edge is weighted by the level of similarity between research topics. Nodes are colored according to
their membership to the ten macro-sections of the PACS 2010 classification scheme. Only the most relevant
connections are shown

omized in the PACS 2010 Regular Edition of the Physics and Astronomy Classification
Scheme [59]. Although our methodology is completely general and does not make use of
the PACS hierarchical classification, we can use the latter as an external validation of the
quality of the obtained embedding and classification. Indeed, our approach treats each
6-digits PACS code as a mere keyword and the information regarding the hierarchical
structure of the classification scheme is not used to train the vector embeddings. In other
words, our algorithm is unaware of the existence of the ten Sections of the PACS classi-
fication. However, when we do look at the resulting research space by coloring the nodes
according to their PACS Section we notice that the General section is correctly placed
at the center of the research space network, along with the Interdisciplinary Physics sec-
tion, as one would expect. On the other hand, we note that Physics of Gases, Plasmas, and
Electric Discharges, Condensed Matter, and Nuclear Physics seem to be populating three
different boundary areas of the research space (as also observed in previous studies [3]).
Overall, the position of the topics is consistent with the information codified in the PACS
codes but—in addition—our approach also allows us to understand the relative position
of each topic and PACS section with respect to each other, therefore enabling us to quan-
titavely measure their degree of relatedness.
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Figure 3 Data representation. Papers are geo-localized using authors’ affiliation information, while research
topics correspond to the PACS codes reported in each article. For each geographical unit and location pair,
the revealed comparative advantage (RCA) is computed to generate location-specific specialization profiles
that allow us to fingerprint the structure of the scientific production system of each urban area

2.2 Fingerprinting scientific expertise
Research activities in the context of the research space can be analyzed at different ge-
ographical scales. More precisely, we can fingerprint scientific production at the level of
individual authors, institutions, cities, or countries by geolocating scientific publications
(Fig. 3). This can be achieved by considering all the articles published in American Physical
Society’s (APS) journals in the period 1986–2009 and by associating to each publication:
(a) the information contained in the authors’ affiliation; and (b) the set of research topics
(i.e. the PACS codes) used in the paper. In the following, we focus on geographical units
constructed by first parsing the city names from the affiliation strings for each article, and
then clustering together neighboring cities to obtain distinct urban areas. More specifi-
cally, we follow the same procedure used in [60]: first, we infer the country in which each
affiliation-city pair is located; second, for each country, we compute a geographic distance
matrix (using Vicenty’s formula) connecting each pair of cities; and lastly we use hierar-
chical clustering to define the different urban areas with the additional constraint that the
maximum distance within each cluster has to be less than 50 km. Once we have the ge-
ographical units defined, we count how many publications have been produced in each
PACS code by each distinct urban area.

In order to provide a specific fingerprinting for the degree of specialization of each geo-
graphical unit we extend to scientific production [47] the concept of Revealed Compara-
tive Advantage (RCA, [61]). RCA has a long history in the economic literature where it has
been used to study the level of specialization of nations and regions in terms of industrial
production, technological production, and trade exports (see for example [62–75]). The
RCA [61] is defined as:

RCAt
c,k =

Xt
c,k/

∑
k Xt

c,k∑
c Xt

c,k/
∑

c,k Xt
c,k

, (2)

where Xt
c,k denotes the number of publications produced in urban area c in PACS code

k in the time window t. In practice, the numerator represents the percentage share of
papers published in PACS code k by location c; while the denominator represents the
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Figure 4 Fingerprinting knowledge production profiles. Each row represents an urban area, each column a PACS
code, and each colored dot indicates that a given location has a revealed comparative advantages in the
production of papers in a given PACS code in the time window 2007–2009. Colors identify the ten different
PACS Sections. Separate bar charts are reported for three cities showing the fraction of PACS codes in which
the city has a revealed comparative advantage over the total number of PACS codes in that section

percentage share of papers published in PACS code k across the world. By comparing these
two figures, we can assess whether a given geographical unit is relatively more specialized
in a certain research topic.

By using the above definition, we consider a geographical unit to be a specialized sci-
entific producer in PACS code k at time t if RCAt

c,k > 1. Using the RCA, we can generate
location-specific specialization profiles that allow us to fingerprint the structure of the sci-
entific production system of each geographical area. In particular, we can create a (time
varying) fingerprint matrix Fck , where c is a geographical unit and k is a topic, and as-
sign non-zero entries only if RCAt

c,k > 1. We can visualize the matrix Fck to have a gen-
eral understanding of the different specialization patterns, a sort of research DNAs, that
characterize the knowledge production of geographical units, as shown in Fig. 4. As an ex-
ample, we also show the scientific fingerprints of three different urban areas: Darmstadt
(Germany), Cambridge (MA, USA), and Pittsburgh (PA, USA). This let us appreciate how
different locations might specialize into different parts of the research space. For instance,
Darmstadt has a relative comparative advantage on ∼70% of all the PACS code in Nu-
clear Physics (PACS section 20). On the other hand, Pittsburgh is specialized in Physics
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of Elementary Particles and Fields (PACS section 10) while its specialization in Nuclear
Physics is particularly low. Lastly, we observe that Cambridge is the only city among the
three considered with a more homogenous pattern of specialization (with the exception
of Nuclear Physics). Overall, by looking at Fig. 4, we can start to appreciate how different
cities might cluster their scientific expertise around distinct areas of the research space,
even though exceptions—as in the case of Cambridge—do exist.

2.3 Knowledge density and the prediction of scientific specialization
The RCA in the context of the research space has been introduced by Guevara et al. [47]
to explore the principle of relatedness [57, 58, 76] in the process of scientific production:
i.e. it is easier to specialize and work in related research areas requiring a set of com-
mon skills/knowledge. Indeed, relatedness has been found to play an important role in
explaining the patterns of future development of industries and research production at
the level of cities, regions, and nations [47, 57, 77–83]. This is due to the fact that different
sets of capabilities and skills might be needed to grasp the depth and complexity of dif-
ferent research topics, therefore affecting the ability of researchers to move and develop a
competitive edge across different disciplines. This observation builds upon the idea that
congnitive proximity [84, 85] is required to successfully absorb and use new knowledge
[86].

Our analysis provides support to the principle of relatedness and the fingerprint matrix
shows patterns of specialization that are indeed not random. Some of these patterns can
be appreciated in Fig. 5 where we plot each PACS code in which a city has a compara-
tive advantage using the spatial coordinates identified using the research space mapping.
Also in this case, we can appreciate how spatial ontologically consistent clusters of com-
petences emerge. In other words, it appears that urban areas tend to develop around their
current domain of expertise implying that scientific relatedness does play a role in explain-
ing the structure of knowledge production of a city. In order to quantify the relatedness of
a specific PACS code to the overall domain of expertise of a given geographical unit, we
use the knowledge density (as proposed in [57]). The knowledge density ωt

i,c around PACS
code i in urban area c at time t is defined as:

ωt
i,c =

∑
{k s.t. RCAt

c,k >1 and φt
i,k >0} φ

t
i,k

∑
{j s.t. φt

i,j>0} φ
t
i,j

, (3)

where φi,j is the level of knowledge similarity between PACS codes i and j. In our case,
we use cosine similarity to measure the similarity between two research topics. Given this
definition, for a location c and time window t, the closer topic i is to other topics in which
c has a relative comparative advantage, the higher its knowledge density. To understand
how this metric works, let us consider what happens when the index—which varies be-
tween zero and one—takes its extreme values. For a given PACS code i and urban area c
combination, the value of ωt

i,c is equal to zero if c has no comparative advantages in topics
related to i; while it has a knowledge density equal to one if it has an advantage in all the
topics related to i. In other words, the closer is i to the current domain of expertise of c,
the denser the knowledge space will be around PACS code i.

For each geographical unit, we can associate the knowledge density ωt
i,c with four differ-

ent types of transitions that characterize the time evolution of the comparative advantage



Chinazzi et al. EPJ Data Science            (2019) 8:33 Page 9 of 18

Figure 5 Fingerprints and research space. Specialization in the Physics research space networks of four
different cities showing only the PACS codes in which the urban areas exhibit a revealed comparative
advantage in the period 2007–2009. Colors identify the ten different PACS sections as in Fig. 4

of a PACS code. We look at the distributions of ωt
i,c when: (1) a PACS code that is inactive

(i.e. RCA = 0) at time t – 1, remains inactive at time t; (2) a PACS code that is inactive at
time t – 1 becomes active but with no comparative advantage (i.e. 0 < RCA ≤ 1) by the
city at time t (i.e. inactive to active but not specialized); (3) a PACS code remains active
but with no comparative advantage by the city at both t – 1 and t (i.e. remained not spe-
cialized); and lastly (4) a PACS code that is active but with no comparative advantage by
the city at time t – 1, while a comparative advantage (i.e. RCA > 1) emerges at time t (i.e.
from not specialized to specialized). Looking at these distributions we observe that PACS
codes that normally remain inactive are the ones in which the knowledge density at the
previous time step was the lowest, while the opposite holds for the codes in which ur-
ban areas become specialized (a visualization of the results is reported in the swarm plot
in Fig. 6). In other words, it is easier to develop a stronger comparative advantage in re-
search topics that are related—in the research space—to the ones in which a location is
already specialized in.

It is interesting to explore the possibility of using the knowledge density as a predictor of
the emergence of a comparative advantage of a city in a specific PACS code in the future.
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Figure 6 Predicting specialization. Top panel: In the swarm plot every dot represents a PACS code-city pair
where the time period is reported on x-axis, the observed level of knowledge density on the y-axis, and the
transition type is identified the color of the dot. From this representation we observe that urban areas tend to
develop quicker in activities around which their knowledge density was higher. Bottom panel: The boxplot
represents the distribution of the values of the area under the ROC curve when knowledge density is used to
predict urban scientific specialization. Values of accuracy greater than 50% imply a better predictive power
than a model assuming random specialization patterns

Operationally, we follow the same methodology proposed in [47] and postulate that the
order in which each urban area will become specialized should closely follow the list of
PACS codes ranked according to their associated value of knowledge density. We can test
this hypothesis against a null one assuming that, instead, specialization occurs indepen-
dently of the current level of knowledge density. In other words, the alternative hypothesis
would suggest that an urban area develops a comparative advantage at random, regard-
less of its previous level of expertise and specialization. The predictive performance of
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the knowledge density ωt
i,c can be evaluated using a statistic which is normally used in

the machine-learning community to measure the accuracy of a model: the area under the
so-called Receiver Operating Characteristic (ROC) curve. The ROC curve is used to plot
the true negative rate of a model (for example of a classifier) against its true positive rate.
That is, the share of correctly classified negative values against the share of correctly clas-
sified positive values. If the value of the area under the ROC curve is greater than 50%,
then the accuracy of our prediction using the knowledge density is greater than the one we
would have from a random prediction where PACS would not have been ranked by their
knowledge density. In our case, we actually have a distribution of such values since—for
a given time period—we can compute the accuracy of our model for each geographical
unit. In other words, we test our ability to predict the research trajectories of each city in
each distinct time window. The results, reported in Fig. 6, show that the accuracy is higher
than 50%, confirming that the structure of the research space can be used to predict how
research trajectories evolve over time. While beyond the scope of the presented work, it
is possible to envision the use of current estimate of the knowledge density to forecast
the physics research areas in which specific urban areas will be able to specialize in future
years.

3 Discussion
The construction of the physics research space by embedding topics in a high-dimensional
space allows the fingerprinting of the patterns of specialization of urban areas, and the pre-
diction of the evolution of cities’ patterns of specialization across different research topics,
providing additional support to the principle of relatedness [57, 58, 76]. However, the ob-
served level of scientific capacity, as characterized by the value of the knowledge density,
varies considerably in relation to the socio-economic status of each specific geographical
areas. To highlight this aspect, we zoom-out and repeat the same exercise we performed
for urban areas at the level of countries and we compute the overall average knowledge
density of each nation across all PACS sections and for each PACS section. Then, we use
the measured average knowledge density to study the association of this measure of na-
tional scientific competence with several World Development Indicators (WDI) [87] that
quantify the socio-economic status of the countries under analysis. In Fig. 7 we report an
example of the associations found for 67 countries. This set of countries represents ap-
proximately 99% of the total publications in our dataset. In Table 1 we show a summary
of the results for all WDI considered, and in Fig. 8 we report the average correlation for
each indicator category broken down by PACS section. This correlation analysis suggests
that the most advanced countries—in terms of scientific expertise in Physics—are also
the ones with the higher share of production and export of high-tech goods, the higher
levels of investment in R&D, the higher levels of production of measurable innovation
outcomes (e.g. patent, industrial design, and trademark applications), the higher levels
of educational attainment and—at the same time—the lower levels of unemployment of
skilled labor. Overall, this picture shows that economic development goes hand in hand
with a high value of (average) knowledge density, thus supporting the key role of scientific
production in the economic growth of nations.

It is worth remarking that the study presented here is considering only the Physics liter-
ature published in APS journals, thus missing out on more complex dynamics that could
explain the (co)evolution of scientific expertise in different scientific domains in both time
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Figure 7 Knowledge density, R&D, and exports. Relation between the average knowledge density of a country
in the last time window of our sample (2007–2009) with its level of expenditure in research and development
reported as a fraction of the gross domestic product (GDP) and with its level of trade in medium and
high-tech products reported as a fraction of its manufactured exports

and space. Furthermore we relied on the Physics and Astronomy Classification Scheme to
assign topics to articles, thus constraining the research space to a pre-defined taxonomy.
The PACS scheme was however used for the sake of comparing with previous results in the
literature, and the proposed approach does not have to be limited to research in Physics,
but it can be extended to other disciplines. In order to overcome the above limitations
the embeddings can be produced by simply analyzing the text of paper titles and abstracts
without any a-priori knowledge of a scientific topic classification and extending the anal-
ysis to databases including a wider range of scientific disciplines, ranging from Physics
and Engineering to Economics and Philosophy. The proposed approach might also help
address the problem of dealing with the bursty behavior [5] of author-defined keywords.
Indeed, even short-lived labels can be put in relation to more stable scientific topics since
both sets of keywords will live in the same N-dimensional embedding.

Another potential application of the framework presented in this paper concerns the
study of how scientific concepts change and move over time across the embedding space.
This could provide us with a methodology to study “where science is going”, i.e. to un-
derstand how scientists or research topics move over time. Indeed, in the NLP literature,
some approaches have been proposed to study how word analogies and semantic mean-
ing change over time (see for example [90, 91]). Similar techniques could be used in our
context to study the temporal evolution of science.
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Table 1 Knowledge density and world development indicators

World development indicator Correlation Pvalue Logs

Economic Development
Economic Fitness Metric [88, 89] 0.76∗∗∗ 0.00
GDP per capita 0.47∗∗∗ 0.00 x

Research and Development
Research and development expenditure (% of GDP) 0.67∗∗∗ 0.00 x
Researchers in R&D (per million people) 0.52∗∗∗ 0.00 x
Technicians in R&D (per million people) 0.55∗∗∗ 0.00 x
Industrial design applications by residents 0.72∗∗∗ 0.00 x
Industrial design applications by nonresidents 0.49∗∗∗ 0.00 x
Patent applications by residents 0.82∗∗∗ 0.00 x
Patent applications by nonresidents 0.43∗∗∗ 0.00 x
Trademark applications by residents 0.71∗∗∗ 0.00 x
Trademark applications by nonresidents 0.58∗∗∗ 0.00 x

Production and Exports
Medium and high-tech Industry
(% manufacturing value added)

0.55∗∗∗ 0.00

Medium and high-tech exports
(% manufactured exports)

0.60∗∗∗ 0.00

High-technology exports 0.77∗∗∗ 0.00 x

Education Attainment
At least completed lower secondary
(% 25+ population)

0.41∗∗ 0.00

At least completed upper secondary
(% 25+ population)

0.34∗ 0.02

At least completed post-secondary
(% 25+ population)

0.25 0.08

At least completed short-cycle tertiary
(% 25+ population)

0.32∗ 0.02

Unemployment of Educated Labor Force
Unemployment with advanced education
(% of total labor force with advanced education)

–0.34∗ 0.01

Unemployment with intermediate education
(% of total labor force with intermediate education)

–0.22 0.10

NEET
Share of youth not in education, employment or
training, female (% of female youth population)

–0.36∗∗ 0.00 x

Share of youth not in education, employment or
training, total (% of youth population)

–0.32∗ 0.01 x

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
Description: Correlation analysis between the average knowledge density aggregated at the country level and a selection of
World Development Indicators (WDI) [87].

The generality and scalability of the proposed approach is potentially valuable in the
study of the temporal evolution and dynamic of the research space in very large datasets,
as well as developing new methodologies for the evaluation of policies, organizations and
individuals in the context of consumption and production of knowledge. Furthermore,
it has also been shown that word embeddings can be used in machine translation tasks
even in absence of multi-language parallel corpora. In other words, monolingual word
embeddings can be used to relate words and concepts expressed in different languages
without the use of bilingual dictionaries [92, 93]. This result opens the way to study sci-
entific publications produced in any language, without restricting the analysis to English
contributions. As a consequence, the impact of scientists and of the role that cities and
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Figure 8 Knowledge density and development indicators. Correlation between the average knowledge density
of a country in the period 2007–2009 computed for each one of the ten PACS sections and each
development indicator category as introduced in Table 1

countries have in the production of science could be analyzed in a Science Space which
could include topics and keywords in any language.

4 Methods
4.1 Data
In our analysis, we use the APS Data for Research (2010 release) data collection which
comprises information about more than 400,000 articles published by the American Phys-
ical Society. In particular, in this work, we limit our attention to the years 1986–2009 and
we perform our analysis dividing our sample in 3-years non-overlapping time windows.
However, the results we provide are robust with respect to the exact choice of the time
window size and on whether or not overlapping intervals are considered. Papers are geo-
located parsing the information contained in the authors affiliations following the proce-
dure detailed in [60], authors are disambiguated following the procedure detailed in [94],
while research topics are assigned considering the first 6 digits of the PACS classification
scheme [59]. Overall, our dataset includes 2307 urban areas and 5800+ PACS codes. How-
ever, in our analysis, we restrict our attention to cities that have at least 6 publications in
each time window. This restricts our original sample to 402 urban areas and 854 PACS
codes.

4.2 Embedding model
In order to produce the PACS code embeddings, we employ the StarSpace model proposed
by [54]. Starspace is a general-purpose embedding model that aims at creating embeddings
for a variety of entity types (e.g. words, sentences, documents, images, etc.) by associating
to each entity an N-dimensional vector. In our case, the vector size is set to N = 200 and
the vectors are obtained by minimizing a loss function that simultaneously maximizes the
(cosine) similarity between embeddings of PACS that are used by the same author, and
by minimizing the (cosine) similarity between embeddings of PACS that do not appear
together when looking at the career of scientists. In other words, once PACS codes are
mapped into this new 200-dimensional space, PACS that frequently appear together in
the list of publications of a scientist will tend to be close, while PACS that rarely appear
together will belong to different areas of the embedding space. More specifically, the model
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Figure 9 Embeddingmodel performance. Values of the performance metric hits@k [96] for k = 50. This shows
how the performance of the embedding model varies with the size of the embedding dimension N

minimizes the following loss function:

∑

(a,b)∈E+
b–∈E–

Lbatch(sim(a, b), sim
(
a, b–

1
)
, . . . , sim

(
a, b–

k
))

, (4)

where E+ denotes the set of positive entity pairs (i.e. PACS that often appear together),
E– denotes the set of negative entity pairs (i.e. PACS that rarely appear together), κ = 50
is the number of negative pairs used for each batch update (i.e., this model uses a K-
negative sampling strategy as in [50]), sim(·) denotes the cosine similarity between two
embeddings, and Lbatch denotes the batch specific loss function that compares the pos-
itive pair (a, b) with the negative pairs (a, b–

i ) using a margin ranking loss of the form
max(0,μ – sim(a, b) +

∑
i∈[1,κ](a, b–

i )). The loss function is then minimized using stochas-
tic gradient descent [95]. The value of N has been chosen after examining the prediction
performance of our model when trying to reconstruct the bag-of-topics of the authors. In
particular, we computed the percentage of correctly predicted PACS codes in the top k
predictions made by the algorithm. This metric is commonly denoted by hit@k [96] and
it is the same performance metric used also in [54]. In Fig. 9 we show how its value varies
with the size of the embedding dimension N and k = 50. In light of this analysis, we de-
cided to set N equal to 200 since it provided a good compromise between the training
time required to fit the model and its overall prediction quality.
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