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ABSTRACT

We present MaNIACS, a sampling-based randomized algorithm
for computing high-quality approximations of the collection of
the subgraph patterns that are frequent in a single, large, vertex-
labeled graph, according to the Minimum Node Image-based (MNI)
frequency measure. The output of MaNIACS comes with strong
probabilistic guarantees, obtained by using the empirical Vapnik-
Chervonenkis (VC) dimension, a key concept from statistical learn-
ing theory, together with strong probabilistic tail bounds on the
difference between the frequency of a pattern in the sample and
its exact frequency. MaNIACS leverages properties of the MNI-
frequency to aggressively prune the pattern search space, and thus
to reduce the time spent in exploring subspaces containing no fre-
quent patterns. In turn, this pruning leads to better bounds to the
maximum frequency estimation error, which leads to increased
pruning, resulting in a beneficial feedback effect. The results of our
experimental evaluation of MaNIACS on real graphs show that it
returns high-quality collections of frequent patterns in large graphs
up to two orders of magnitude faster than the exact algorithm.

CCS CONCEPTS

•Mathematics of computing→Graph enumeration;Approx-
imation algorithms; • Information systems→ Data mining;
• Theory of computation→ Sketching and sampling.
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1 INTRODUCTION

A subgraph pattern (sometimes called “graphlet”) is a small graph,
possibly with labeled vertices. Frequent Subgraph Pattern Mining
(FSPM), i.e., finding the patterns that appear frequently in a single
graph, has many applications, from the discovery of protein func-
tionality in computational biology [36, 51], to the development of
recommender systems for video games [2], to social media mar-
keting [19], to software engineering [24]. It is also a primitive for
graph mining tasks such as classification [17] and clustering [22].

The FSPM task is computationally challenging, for two main
reasons: (i) the number of possible patterns experiences a com-
binatorial explosion with the maximum number of vertices in a
pattern and with the number of possible vertex labels; and (ii) the
subgraph isomorphism operation needed to find a pattern in the
graph is in general NP-complete. Ingenious exact algorithms exist,
but they tend to scale poorly with the size of the graph and with
the maximum size of a pattern.

The use of random sampling is a common solution to speed up
time-consuming data analytics tasks, from approximate database
query processing [16], to itemset mining [47], to other tasks on
graphs [48]. It however comes at the price of obtaining an approx-

imate solution to the task at hand. Such solutions are acceptable
when they come with stringent theoretical guarantees on their qual-

ity. A typical approach for sampling algorithms relies on evaluating
the function of interest only on a randomly chosen subset of the
input domain. In FSPM, one can, e.g., create a small random sample
of vertices, and evaluate the presence of subgraph isomorphisms be-
tween patterns and only those subgraphs of the graph that include
at least one of the sampled vertices.

Random sampling and approximate solutions are necessary when
access to the graph is restricted, as in online networks, where one
cannot inspect the whole graph, but only query a vertex and its
neighborhood through anAPI. By using vertex sampling schemes [14,
15], an approximation algorithm enables FSPM in this scenario.

The key challenge in using random sampling is understanding
the trade-off between the sample size, the time needed to analyze
the sample (which depends on the sample size, but also on the
analytics task at hand), and the quality that can be obtained from a
sample of the specific size. Large deviation bounds can be applied
when there is only one function to be estimated, but in FSPM, like
in most data analytics tasks, we need to accurately estimate the
frequencies of many patterns from the same sample. Classic simul-
taneous deviation bounds tools such as the union bound, if applied
naïvely, are inherently loose, so more sophisticated techniques must
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be employed. For FSPM, having tight bounds to the maximum esti-
mation error is particularly important, as they are used not only to 
decide what patterns to include in the approximate solution, but 
also to prune the search space via an apriori-like argument, thus 
avoiding the expensive step of evaluating the frequency of patterns 
that are not sufficiently frequent to be included in the output. 
Contributions. We present MaNIACS (for “MNI Approximate 
Computation through Sampling”), an algorithm to compute high-
quality approximations of the collection of frequent subgraph pat-
terns from a single, large, vertex-labeled graph, according to the 
MNI-frequency measure [10] (see (3)).
• MaNIACS relies on uniform random sampling of vertices and on
computing the patterns to which these vertices belong. MaNI-
ACS is scalable w.r.t. the size of the graph and is the first FSPM
algorithm on graphs with restricted access. Sampling allows
MaNIACS to be easily parallelized on, e.g., Arabesque [55].
• MaNIACS is the first sampling-based algorithm for the task of
FSPM that comes with strong probabilistic guarantees on the
quality of its output. These guarantees are obtained by leverag-
ing sample-dependent quantities: MaNIACS extracts information
from the sample to determine the quality of the approximation
in terms of the maximum frequency estimation error, which
is used to avoid false negatives. The estimated quality is out-
put with the approximate collection of frequent patterns. To
upper bound the maximum estimation error, MaNIACS relies
on the empirical Vapnik-Chervonenkis (eVC) dimension [58], a
fundamental concept from statistical learning theory [53]. The
eVC-dimension leads to much better quality guarantees than
could be obtained by using classic approaches such as the union
bound. We show that the eVC-dimension of the task at hand is
independent from the number of vertex labels, and we show how
to efficiently compute a tight upper bound to this quantity.
• MaNIACS aggressively leverages the anti-monotonicity of the
MNI-frequency measure (Facts 2 and 3), to prune parts of the
search space that provably do not contain any frequent pattern,
and to focus the exploration only on the “promising” subspaces,
therefore avoiding expensive-but-useless computations. Prun-
ing also leads to better bounds to the maximum frequency
estimation error, which enables additional pruning, thus creat-
ing a virtuous cycle that improves both the computational and
statistical properties of MaNIACS.
• The results of our experimental evaluation of MaNIACS on real
datasets show that it returns a high-quality output very fast,
with even better error than guaranteed by the theory.

2 RELATED WORK

There is a vast body of work on subgraph extraction and counting.
Due to space constraints, we focus on the single, static graph setting,
and we omit others (e.g., transactional, dynamic, or stream). For a
discussion of these many others areas, we refer the reader to the
tutorial by Seshadhri and Tirthapura [52].

The patterns we consider are connected, unweighted, undirected,
vertex-labeled graphs with up to 𝑘 vertices. The assignment of the
labels to the vertices of the pattern is important, and different

assignments (up to automorphisms of the patterns) generate dif-
ferent patterns (see formal definitions in Sect. 3.1). The collection
of patterns is therefore different from the collections of colored
graphlets [45] and heterogeneous graphlets [50], which respectively
only consider the set or the multiset of vertex labels. Graphlets [42]
are a special case of patterns with a single label.

FSPM requires finding patterns with a global frequency, for in-
stance as quantified by the popular Minimum Node Image (MNI)

frequency measure [10] (see (3)), at least as large as a user-specified
minimum threshold (see (4)). MaNIACS can be adapted to many
other frequency measures [20, 29, 34, 35, 57], but due to space
limitations, we postpone this discussion to an extended version.

The presence of a minimum frequency threshold and the use of
the MNI measure distinguish this task from the well-studied task
of counting graphlets or motifs, which require to compute the global
number of vertex- or edge-induced instances of a pattern [4, 8, 9,
23, 25, 38, 41, 44, 59–61]. FSPM is also different from computing the
local counts i.e., the number of instances of each pattern in which
an edge/vertex participates [39, 50]. The techniques used in these
tasks cannot be easily adapted to FSPM.
Algorithms. Elseidy et al. [18] present GraMi, an exact algorithm
for FSPM. GraMi transforms the subgraph isomorphism problem
into a constraint-satisfaction problem, and uses ingenious compu-
tation organization to speed up finding the edge-induced frequent
patterns, although not their frequencies. Frequencies are impor-
tant in pattern mining: since the minimum threshold is often set
somewhat arbitrarily, it is important to be able to distinguish be-
tween patterns with frequency much greater than the threshold
and those that are “barely” frequent. We define the FSPM task to
include their exact frequencies (see (4)), which is inherently more
difficult. GraMi requires complete access to the whole graph. This
assumption is often unrealistic when dealing with online social
networks, in addition to being extremely time consuming. In this
setting, approximations of the collection of frequent patterns are
necessary, and sufficient when they come with stringent quality
guarantees, such as the ones provided by MaNIACS (see Thm. 4.5).

Parallel and distributed systems for FSPM try to address the
scalability issue of mining frequent patterns from very large graphs
or when the pattern search space is huge [1, 12, 26, 54, 55, 62]. Ma-
NIACS can be used as a primitive inside these systems, similarly to
how sampling-based approximation algorithms for frequent itemset
mining [47] have been integrated in MapReduce [46].

Early works in approximate FSPM include the use of graph sum-
maries [21] or heuristics for space pruning [28], but they offer
no guarantees. Other works tackled the problem via graph sam-
pling [1, 5, 43], but they also come with no quality guarantees.

Our algorithm samples a set of vertices, but it does not use them
to build a graph from the sample. Neither does it subgraphs, which
is the approach taken by other works on subgraph counting [3, 6–
9, 37] or focusing on output sampling [11]. To the best of our knowl-
edge, our work is the first to use concepts from statistical learning
theory [58] for FPSM. Other works used VC-dimension or other
concepts from statistical learning theory for centrality computa-
tions [48], for subgraph counting [37], or for itemsets mining [49],
but these approaches cannot be easily adapted to FSPM, because
this problem is clearly very different from centrality computation,
and because the itemsets space is less complex and much easier to
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“navigate” than the subgraph space that we consider. In particular, 
the evaluation of the frequency of an itemset is straightforward and 
much cheaper than computing the frequency of a subgraph pattern 
(see Sect. 4). Thus, approaches relying on Rademacher averages for 
generic pattern families [40] do not perform well for FPSM.

3 PRELIMINARIES

Let us now formally define the important concepts used throughout 
this work, and the task we are interested in.

3.1 Graph theory concepts
Any graph 𝐺 we consider is simple (no self loops, no multi-edges), 
unweighted, undirected, and vertex-labeled, i.e., 𝐺 = (𝑉 , 𝐸, L) 
where L is a function that assigns labels from a fixed s et 𝐿  = 
{𝜆1, . . . , 𝜆𝑚} to vertices (unlabeled graphs can be seen as labeled 
graphs with a single label). For brevity, we usually drop L from 
the notation, and do not repeat “labeled”, but all the graphs we 
consider are labeled, unless otherwise specified. A graph 𝐺  is con-
nected iff, for each pair of vertices 𝑣  ≠  𝑢  ∈  𝑉 ,  there exists a  se-
quence of vertices 𝑢, 𝑤1, . . . , 𝑤𝑛, 𝑣 ∈ 𝑉 and a sequence of edges 
(𝑢, 𝑤1), . . . , (𝑤𝑖 , 𝑤𝑖+1), (𝑤𝑛, 𝑣) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑛 − 1.

For a fixed 𝑘  ∈  N, let P be the set of all possible connected graphs 
with up to 𝑘 vertices and whose vertices have labels in 𝐿. We call 
patterns the elements of P. Let 𝑆 ⊆ 𝑉 be a subset of vertices of a 
graph 𝐺 = (𝑉 , 𝐸), and let 𝐸 (𝑆) � {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆}. We say 
that 𝐺𝑆 � (𝑆, 𝐸 (𝑆)) is the subgraph of 𝐺 induced by 𝑆 .1 For 𝑘 > 0, 
we define C  to be the set of all connected induced subgraphs with 
up to 𝑘 vertices in 𝐺 .2 All subgraphs we consider are connected 
induced subgraphs, unless stated otherwise.

Two graphs 𝐺 ′ = (𝑉 ′, 𝐸 ′, L′) and 𝐺 ′′ = (𝑉 ′′, 𝐸 ′′, L′′) are isomor-

phic if there exists a bijection 𝜇 : 𝑉 ′ → 𝑉 ′′ such that (𝑢, 𝑣) ∈ 𝐸 ′ iff 
(𝜇 (𝑢), 𝜇 (𝑣)) ∈ 𝐸 ′′ and the mapping 𝜇 preserves the vertex labels, i.e., 
L
′(𝑢) = L′′(𝜇 (𝑢)), for all 𝑢 ∈ 𝑉 ′. Isomorphisms from a graph 𝐺 ′ to 

itself are called automorphisms and their set is denoted as Aut(𝐺 ′).
Given a pattern 𝑃 = (𝑉𝑃 , 𝐸𝑃 ) in P and a vertex 𝑣 ∈ 𝑉𝑃 , the 

orbit 𝐵𝑃 (𝑣) of 𝑣 in 𝑃 is the subset of 𝑉𝑃 that is mapped to 𝑣 by any 
automorphism of 𝑃 , i.e.,

𝐵𝑃 (𝑣) � {𝑢 ∈ 𝑉𝑃 : ∃𝜇 ∈ Aut(𝑃) s.t. 𝜇 (𝑢) = 𝑣} .

The orbits of 𝑃 form a partitioning of 𝑉𝑃 , for each 𝑢 ∈ 𝐵𝑃 (𝑣), it 
holds 𝐵𝑃 (𝑢) = 𝐵𝑃 (𝑣), and all vertices in 𝐵𝑃 (𝑣) have the same label.

3.2 Frequent patterns
Among the many measures of frequency for subgraphs [20, 34, 35], 
we adopt the minimum node image-based (MNI) support [10] metric 
to count the occurrences of the patterns. MNI is anti-monotonic: 
any pattern (e.g., a triangle) has MNI support no larger than any of 
its subgraphs (e.g., an edge) (see Sect. 4.1), which avoids counter-
intuitive results. Computationally, anti-monotonicity enables apriori-
like algorithms [56] to prune the pattern space.

Let 𝐺 = (𝑉 , 𝐸) be a graph, and let 𝑆 ⊆ 𝑉 be a subset of vertices. 
For any orbit 𝐴 of any pattern 𝑃 ∈ P, let the image set Z𝑆 (𝐴) of 𝐴 
on 𝑆 be the subset of 𝑆 containing all and only the vertices 𝑣 ∈ 𝑆

1Our algorithm can also handle edge-induced subgraphs, with minor modifications,but we do not discuss them here due to space limitations.
2 C depends on 𝑘 and 𝐺 but we do not use them in the notation to keep it light.

for which there exists an isomorphism 𝜇 from an induced subgraph
𝐺 ′ = (𝑉 ′, 𝐸 ′) ∈ C with 𝑣 ∈ 𝑉 ′ to 𝑃 such that 𝜇 (𝑣) ∈ 𝐴. Formally,

Z𝑆 (𝐴) � { 𝑣 ∈ 𝑆 : ∃ isomorphism 𝜇 : (𝑉 ′, 𝐸 ′) → 𝑃 s.t.

(𝑉 ′, 𝐸 ′) ∈ C ∧ 𝑣 ∈ 𝑉 ′ ∧ 𝜇 (𝑣) ∈ 𝐴
}

. (1)

The orbit frequency c𝑆 (𝐴) of 𝐴 on 𝑆 is the ratio between the size
of its image set Z𝑆 (𝐴) and the size of 𝑆 , i.e.,

c𝑆 (𝐴) �
|Z𝑆 (𝐴) |
|𝑆 | . (2)

The (relative) MNI-frequency f𝑆 (𝑃) of 𝑃 ∈ P on 𝑆 is the minimum
orbit frequency on 𝑆 for any orbit of 𝑃 , i.e.,

f𝑆 (𝑃) � min{c𝑆 (𝐴) : 𝐴 is an orbit of 𝑃} . (3)

When dealing with approximations, it is more straightforward to
reason about this quantity than about the (absolute) MNI-support
(i.e., the minimum size of the image set of any orbit of 𝑃 ).3 Given
a (large) graph 𝐺 = (𝑉 , 𝐸), and a minimum frequency threshold

𝜏 ∈ (0, 1), for any 𝑆 ⊆ 𝑉 , the set FP𝑆 (𝜏) of 𝜏-frequent patterns on 𝑆
contains all and only the patterns with frequency on 𝑆 greater than
or equal to 𝜏 , together with their frequencies, i.e.,

FP𝑆 (𝜏) � {(𝑃, f𝑆 (𝑃)) : 𝑃 ∈ P ∧ f𝑆 (𝑃) ≥ 𝜏} . (4)

The task we are interested in requires finding FP𝑉 (𝜏). Due to the
exponential number of candidate patterns, and to the hardness of
evaluating the subgraph isomorphisms, finding this collection is
challenging. An approximate solution Q is sufficient, in many cases,
provided it comes with stringent quality guarantees, such as (i) the
lack of false negatives, i.e., every pattern in FP𝑉 (𝜏) also appears in
Q, and (ii) guarantees on the frequency estimation error. MaNIACS,
outputs a set Q with such guarantees (see Thm. 4.5), by sampling
a subset of vertices from 𝑉 , which are then used to approximate
the frequency of patterns of increasing size, while exploiting the
anti-monotonicity of the frequency measure to prune the search
space. To understand the trade-off between the sample size and the
accuracy 𝜀 of the approximation, we use concepts and results from
statistical learning theory [58], described next.

3.3 Empirical VC-dimension and 𝜂-samples

We give here the main definitions and results about empirical VC-
dimension, tailored to our setting. For a general discussion, see the
textbook by Shalev-Shwartz and Ben-David [53, Ch. 6].

A range space is a pair (D,R) where D is a finite ground set
of elements called points and R is a family of subsets of D called
ranges. For any 𝐴 ⊆ D, let the projection PR (𝐴) of R on 𝐴 be the
set PR (𝐴) � {𝑟 ∩𝐴 : 𝑟 ∈ R} ⊆ 2𝐴 . When PR (𝐴) = 2𝐴 , i.e., when
the projection contains all the proper and improper subsets of 𝐴,
then we say that 𝐴 is shattered by R. Given a subset 𝑌 ⊆ D, the
empirical Vapnik-Chervonenkis (eVC) dimension E𝑌 (R) of R on 𝑌 is
the size of the largest shattered subset of 𝑌 [58]. The VC-dimension

of R is the empirical VC-dimension of R on D.
The concept of 𝜂-sample for (D,R) is crucial for our work. For

0 < 𝜂 < 1, a subset 𝐴 ⊆ D is an 𝜂-sample for (D,R) if it holds���� |𝑅 ||D| − |𝐴 ∩ 𝑅 ||𝐴|

���� ≤ 𝜂, for every 𝑅 ∈ R . (5)

3Henceforth, we use “frequency” to refer to the MNI-frequency.
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Given an 𝜂-sample 𝐴, we can estimate the relative sizes of any range 
𝑅 ∈ R w.r.t. the domain (i.e., the first term on the l.h.s.) with its 
relative size w.r.t. 𝐴 (the second term on the l.h.s.), and the estimate 
is guaranteed to be no more than 𝜂-far from its exact value.

Given a sample size 𝑠 , let T be a collection of 𝑠 points sampled 
from D independently and uniformly at random (with or without 
replacement). Knowing an upper bound 𝑑 to the empirical VC-
dimension of (D, R) on T allows the computation of an 𝜂 such 
that, probabilistically, T is an 𝜂-sample for (D, R).

Theorem 3.1 (31). Let 𝜙 ∈ (0, 1) be an acceptable failure proba-
bility. For (D, R), 𝑠 , T , and 𝑑 as above, it holds that, with probability 
at least 1 − 𝜙 (over the choice of T ), T is an 𝜂-sample for (D, R) for

𝜂 =

√√
𝑐

(
𝑑 + ln 1

𝜙

)
𝑠

, (6)

where 𝑐 is a universal constant.4

When the upper bound 𝑑 to ET (R) is computed from T , the
value 𝜂 from (6) depends only on T and on 𝜙 , i.e., it is a sample-

dependent upper bound to the maximum difference, over all ranges,
between the relative sizes of the ranges w.r.t. the sample and the
relative sizes w.r.t. the domain, i.e., to the l.h.s. of (5).

4 APPROXIMATE FSPM

We now present MaNIACS, our algorithm for mining high-quality
approximations to FP𝑉 (𝜏) through sampling.5 At a very high level,
MaNIACS draws a sample 𝑆 from 𝑉 and uses the orbit frequen-
cies, the frequency of the patterns on 𝑆 , and the eVC-dimension of
appropriately-designed range spaces, to derive the output quality
guarantees. MaNIACS does not consider the subgraph of𝐺 induced
by 𝑆 . Rather, it always considers the whole graph𝐺 when checking
the existence of isomorphisms from patterns to induced subgraphs
of𝐺 . The sample is instead used to compute f𝑆 (𝑃) as an estimation
of f𝑉 (𝑃), as obtaining the former is faster given that |𝑆 | ≪ |𝑉 |.

The following fact is at the basis of MaNIACS, and it is immediate
from the definition of MNI-frequency (see (3)).

Fact 1. Given 𝑃 ∈ P and 𝑆 ⊆ 𝑉 , let 𝜀 be such that it holds

|c𝑆 (𝐴) − c𝑉 (𝐴) | ≤ 𝜀, for every orbit 𝐴 of 𝑃 . (7)

Then it must be |f𝑆 (𝑃) − f𝑉 (𝑃) | ≤ 𝜀. .

This corollary suggests how to identify patterns that cannot be
frequent, and that can therefore be pruned.

Corollary 4.1. Let 𝑃 , 𝑆 , and 𝜀 as in Fact 1. If it holds f𝑆 (𝑃) < 𝜏−𝜀,
then it must be f𝑉 (𝑃) < 𝜏 , i.e., 𝑃 ∉ FP𝑉 (𝜏).

Statistical learning theory gives us the tools to compute values 𝜀
which satisfy the condition from (7). Given the exponential number
of patterns, it would be unfeasible to compute f𝑆 (𝑃) for every
𝑃 ∈ P. Thus, we rely on properties of the orbit frequency and
of the MNI-frequency functions (see Sect. 4.1) to prune the space of

patterns, in an apriori-like way, and therefore to avoid computing
the frequencies of orbits whose pattern is not in FP𝑉 (𝜏).

4In our experiments, we follow Löffler and Phillips [32] and use 𝑐 = 0.5.
5Due to space constraints, all the proofs are in Appendix A.2.

Figure 1: Examples of parent-child relations for orbits (la-

bels represented as colors). We represent each orbit using

its pattern with the vertices of the orbit in a thicker border.

4.1 Search space and frequency properties

We now define a partial order between patterns in P: we say that
𝑃 ′′ is a child of 𝑃 ′ if (i) 𝑃 ′′ has exactly one more vertex than 𝑃 ′;
and (ii) there exists an isomorphism between 𝑃 ′ and some induced
subgraph of 𝑃 ′′. When 𝑃 ′′ is a child of 𝑃 ′ we say that 𝑃 ′ is a parent
of 𝑃 ′′. A pattern may have multiple parents, while patterns with a
single vertex have no parent. The anti-monotone property of the
MNI-frequency gives the following fact:

Fact 2 ([10]). For any pattern 𝑃 ∈ P, any pattern 𝑄 ∈ P that is

a child of 𝑃 , and any 𝑆 ⊆ 𝑉 , it holds that f𝑆 (𝑄) ≤ f𝑆 (𝑃).

We define a similar parent-child relation between pairs of orbits.
Given two distinct patterns 𝑃,𝑄 ∈ P and two orbits 𝐵𝑃 and 𝐵𝑄 of
each respectively, we say that 𝐵𝑄 is the child of 𝐵𝑃 iff 𝑄 is a child
of 𝑃 and there is a subgraph isomorphism from 𝑃 to𝑄 that maps at
least one vertex of 𝐵𝑃 to a vertex of 𝐵𝑄 . When 𝐵𝑄 is the child of
𝐵𝑃 , we say that 𝐵𝑃 is the parent of 𝐵𝑄 , and denote all the children
of 𝐵𝑃 as C(𝐵𝑃 ). Figure 1 shows some examples of the parent-child
relationships. An orbit can have multiple parents, and the orbits of
patterns containing a single vertex have no parent. Our algorithm
leverages the following important property of this relationship,
which is immediate from the definition, to quickly prune the search
space of patterns.

Fact 3. Let𝐴 and𝐷 be two orbits such that𝐷 is a child of𝐴. Then,

for any 𝑆 ⊆ 𝑉 , it holds Z𝑆 (𝐷) ⊆ Z𝑆 (𝐴).

4.2 The frequent patterns range spaces

We now define an appropriate set of range spaces and show how
to compute bounds to their eVC-dimensions. Given 𝜏 ∈ (0, 1], let
F𝑖 for 𝑖 = 1, . . . , 𝑘 be the set of patterns with 𝑖 vertices that belong
to FP𝑉 (𝜏).6 Let R𝑖 be the set whose elements are the image sets on
𝑉 of all the orbits of all the patterns in F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , i.e.,

R𝑖 � {Z𝑉 (𝐴) : 𝐴 is an orbit of 𝑃 ∈ F𝑖 } .

Henceforth, we use the range spaces (𝑉 ,R𝑖 ), 1 ≤ 𝑖 ≤ 𝑘 . The rele-
vance of these range spaces is clear when looking at Equation (2).
We now show novel results to upper bound the eVC-dimension of
(𝑉 ,R𝑖 ) on any 𝑆 ⊆ 𝑉 . MaNIACS computes such bounds to derive
the approximation guarantees and to prune the search space.

The following two results are presented in the most general form
because they hold for any range space. We later tailor them for our
case, and discuss how to compute the presented bounds efficiently.

6The sets F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , depend on𝐺 and on 𝜏 , but the notation does not reflect these
dependencies to keep it light.
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Algorithm 1: MaNIACS
Input: Graph𝐺 = (𝑉 , 𝐸) , maximum pattern size 𝑘 , frequency

threshold 𝜏 , sample size 𝑠 , failure probability 𝛿
Output: A set Q with the properties from Thm. 4.5

1 𝑆 ← drawSample(𝑉 , 𝑠)

2 Q ← ∅; 𝑖 ← 1
3 H1 ← {𝑃 ∈ P : 𝑃 has a single vertex}
4 while 𝑖 ≤ 𝑘 and H𝑖 ≠ ∅ do

5 Z𝑖 ← getImageSets(H𝑖 , 𝑆 , 𝜏)

6 do

7 𝑏∗
𝑖
← getEVCBound(Z𝑖)

8 𝜀𝑖 ← getEpsilon(𝑏∗
𝑖
, 𝛿/𝑘)

9 H′
𝑖
← H𝑖

10 H𝑖 ← {𝑃 ∈ H𝑖 : f𝑆 (𝑃 ) ≥ 𝜏 − 𝜀𝑖 }
11 while H′

𝑖
≠ H𝑖 and H𝑖 ≠ ∅

12 Q ← Q ∪ {(𝑃, f𝑆 (𝑃 ), 𝜀𝑖 ) : 𝑃 ∈ H𝑖 }
13 if 𝑖 < 𝑘 then H𝑖+1 ← createChildren(H𝑖 , Z𝑖)

14 𝑖 ← 𝑖 + 1
15 return Q

Lemma 4.2. Let (D,R) be a range space, and let T ⊆ D. Consider

the set RT � {T ∩ 𝑅 : 𝑅 ∈ R}. Let 𝑔∗ be the maximum 𝑔 such

that T contains at least 𝑔 points each appearing in at least 2𝑔−1 sets
from RT . If, for at least one set 𝐵 of such 𝑔∗ points, there exist a set
𝑍𝐵 ∈ RT such that 𝐵 ⊆ 𝑍𝐵 , then ET (R) is at most 𝑔∗, otherwise it
is at most 𝑔∗ − 1.

Lemma 4.3. Let (D,R) and T as in Lemma 4.2. Let 𝑅1, . . . , 𝑅 |R |
be a labeling of the ranges in R such that |𝑅𝑤 ∩ T | ≥ |𝑅𝑢 ∩ T |
for 1 ≤ 𝑤 < 𝑢 ≤ |R|. Let (𝑎 𝑗 )ℓ𝑗=1 be a non-increasing sequence

of ℓ ≥ |R| naturals such that 𝑎 𝑗 ≥
��𝑅 𝑗 ∩ T

��
for 1 ≤ 𝑗 < |R | and

𝑎 𝑗 ≥
��𝑅 |R | ∩ T �� for |R | ≤ 𝑗 ≤ ℓ .

Let ℎ∗ be the maximum natural ℎ such that, for every 0 ≤ 𝑗 < ℎ,

if we let 𝑐 𝑗 =
∑𝑗

𝑧=0
(ℎ
𝑧

)
,
7
, it holds 𝑎𝑐 𝑗 ≥ ℎ − 𝑗 . Then, ET (R) ≤ ℎ∗.

While the lemma above may seem complex at first, its proof
is essentially an application of the pigeonhole principle, and the
procedure to compute the bound ℎ∗ from the sequence (𝑎𝑖 )ℓ𝑖=1 is
straightforward, as we discuss in Sect. 4.3.

For 𝜆 ∈ 𝐿, let R𝑖,𝜆 be the subset of R𝑖 containing all and only the
image sets of the orbits whose vertices have all label 𝜆. Clearly each
(𝑉 ,R𝑖,𝜆) is a range space. The following result ties the empirical
VC-dimension of these range spaces to that of (𝑉 ,R𝑖 ).

Lemma 4.4. For any 𝑆 ⊆ 𝑉 , it holds E𝑆 (R𝑖 ) = max𝜆∈𝐿 E𝑆 (R𝑖,𝜆).

Lemma 4.4 says that E𝑆 (R𝑖 ) is, in some sense, independent from
the number |𝐿 | of labels, which is surprising, from a theoretical point
of view.MaNIACS computes upper bounds to E𝑆 (R𝑖,𝜆), 𝜆 ∈ 𝐿, using
Lemmas 4.2 and 4.3, and then leverages Lemma 4.4 to derive an
upper bound to E𝑆 (R𝑖 ).

4.3 MaNIACS, the algorithm

The intuition behind MaNIACS is the following. It creates a sample
𝑆 by drawing vertices independently and uniformly at random
without replacement from 𝑉 . Then it computes from 𝑆 a value 𝜀𝑖
7We define

(𝑞
0
)
= 1 for any 𝑞.

such that 𝑆 is an 𝜀𝑖 -sample for the range space (𝑉 ,R𝑖 ), for 1 ≤ 𝑖 ≤ 𝑘 .
For such an 𝜀𝑖 , thanks to (6) and (2), it holds, for any 𝑃 ∈ F𝑖 , that

c𝑆 (𝐴) ≥ c𝑉 (𝐴) − 𝜀𝑖 ≥ 𝜏 − 𝜀𝑖 for any orbit 𝐴 of 𝑃,

which implies that f𝑆 (𝑃) ≥ 𝜏 − 𝜀𝑖 . This lower bound to the possible
frequency of 𝑃 ∈ F𝑖 ⊆ FP𝑉 (𝜏) on 𝑆 allows us to determine which
patterns may actually belong to FP𝑉 (𝜏) and which ones cannot.

Unfortunately, the sets F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , are not known a priori, as if
they were, we could use them to exactly obtain FP𝑉 (𝜏). MaNIACS
therefore computes a superset H𝑖 of each set. It uses the sizes of the
image sets on 𝑆 of the orbits of the patterns inH𝑖 to compute an
upper bound to the eVC-dimension of (𝑉 ,R𝑖 ), thanks to Lemmas 4.2
to 4.4. By plugging this upper bound in (6), it gets a value 𝜀𝑖 such
that 𝑆 is (probabilistically) an 𝜀𝑖 -sample for F𝑖 .

We first present a simplified version of MaNIACS (pseudocode
in Alg. 1), and discuss more details in Sect. 4.3.2. MaNIACS takes
as input a graph𝐺 = (𝑉 , 𝐸), a maximum pattern size 𝑘 , a minimum
frequency threshold 𝜏 , a sample size 𝑠 , and an acceptable failure
probability 𝛿 . It outputs a set Q with the following properties (proof
in App. A.2).

Theorem 4.5. With probability at least 1 − 𝛿 over the choice of 𝑆 ,

the output Q of MaNIACS contains a triplet (𝑃, f𝑆 (𝑃), 𝜀𝑃 ) for every
𝑃 ∈ FP𝑉 (𝜏) such that |f𝑆 (𝑃) − f𝑉 (𝑃) | ≤ 𝜀𝑃 .

Algorithm 2: getEVCBound

Input: Bag Z𝑖 of image sets Z𝐴 (𝑆) , ∀ orbit𝐴 of each pattern in H𝑖

Output: A value 𝑏∗
𝑖
≥ E𝑆 (R𝑖 )

1 foreach 𝜆 ∈ 𝐿 do

2 𝐷𝜆 ← set of image sets in Z𝑖 of orbits of vertices with label 𝜆
3 𝑀 ← |𝑆 |-vector with element (𝑣, | {𝑍 ∈ 𝐷𝜆 : 𝑣 ∈ 𝑍 } |) , ∀𝑣 ∈ 𝑆
4 sort𝑀 in decreasing order of the 2nd component

// Denote with (𝑣𝑖 , 𝑞𝑖 ) the 𝑖-th element of 𝑀

5 𝑔∗
𝜆
← max{𝑔 : 𝑣𝑔 ≥ 2𝑔−1 }

6 𝛾 ← max{𝑖 : 𝑣𝑖 > 2𝑔
∗
𝜆
−1 }

7 if �𝑄 ⊆ {𝑣1, . . . , 𝑣𝛾 }, |𝑄 | = 𝑔∗
𝜆
, s.t. ∃𝑍 ∈ 𝐷𝜆 s.t.𝑄 ⊆ 𝑍 then

𝑔∗
𝜆
← 𝑔∗

𝜆
− 1

8 𝑁 ← |𝐷𝜆 |-vector with element |𝑍 |, ∀𝑍 ∈ 𝐷𝜆

9 sort 𝑁 in decreasing order
// Denote with 𝑎𝑖 the 𝑖-th element of 𝑁

10 ℎ∗
𝜆
← min{𝑎1, ⌊log2 ( |𝐷𝜆 | + 1) ⌋ }

11 while ℎ∗
𝜆
> 1 do

12 foreach 𝑗 ∈ {0, . . . , ℎ∗
𝜆
− 1} do 𝑐 𝑗 ←

∑𝑗

𝑧=0
(ℎ∗

𝜆
𝑧

)
13 if �𝑗 ∈ {0, . . . , ℎ∗

𝜆
− 1} s.t. 𝑎𝑐 𝑗 < ℎ∗

𝜆
− 𝑗 then break

14 else ℎ∗
𝜆
← ℎ∗

𝜆
− 1

15 return max𝜆∈𝐿 min{𝑔∗
𝜆
, ℎ∗

𝜆
}

The algorithm starts by initializing the empty set Q, which
will contain the output (line 2) and by creating the sample 𝑆 =

{𝑣1, . . . , 𝑣𝑠 } of 𝑠 vertices by drawing them independently and uni-
formly at random from 𝑉 (line 1).

MaNIACS keeps, for every 1 ≤ 𝑖 ≤ 𝑘 , a supersetH𝑖 of the set F𝑖 .
The first such supersetH1 is initialized to contain every pattern of
a single vertex (line 3). The algorithm then enters a loop (lines 4–14)
which is repeated until 𝑖 is greater than 𝑘 or untilH𝑖 is empty. At
every iteration, MaNIACS first calls getImageSets to obtain the
collectionZ𝑖 of the image sets Z𝑆 (𝐴) on 𝑆 of every orbit𝐴 of every
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𝑖

pattern 𝑃 ∈ H𝑖 (pseudocode in Alg. 3 in Appendix). Each set Z𝑆 (𝐴) 
is obtained by running an existence query (pseudocode in Alg. 4 
in Appendix) for each vertex 𝑣 in the sub-sample 𝑆𝐴 , to determine 
whether 𝑣 belongs to at least one subgraph isomorphic to 𝑃 . The 
existence query is a recursive function that incrementally builds a 
dictionary 𝑀 , by inserting, at each iteration, a new candidate match 
from a pattern vertex to a graph vertex. If a match can be found for 
each vertex of the pattern, the query returns true, and 𝑣 is inserted 
into Z𝑆 (𝐴). A match 𝑧 for a pattern vertex 𝑢 is added to 𝑀 only if 
it is consistent with the matches already in 𝑀 , i.e., if the pattern 
vertices already matched and 𝑢 are connected in the same way as 
the graph vertices mapped to them (see line 7 in Alg. 4 in Appendix). 
If we wish to find the edge-induced subgraph isomorphic to 𝑃 , we 
just need to modify this consistency check.

MaNIACS then enters a do-while loop (lines 6–11), whose dual 
purpose is to compute an 𝜀𝑖 such that 𝑆 is a 𝜀𝑖 -sample for (𝑉 , R𝑖 ), 
and to iteratively refine H 𝑖 as a  superset o f F𝑖 .  To compute 𝜀𝑖 , 
we first need an upper bound to the eVC-dimension of (𝑉 , R𝑖 )  on 
𝑆 (line 7). This bound is computed by the getEVCBound function 
(pseudocode in Alg. 2). For each label 𝜆 ∈ 𝐿, let 𝐷𝜆 be the subset 
of Z𝑖 containing the distinct sets associated to orbits of vertices 
with label 𝜆 (line 2 of Alg. 2). First, 𝑔∗

𝜆 from Lemma 4.2 is computed 
(lines 3–7), by taking into account the number of image sets in 
𝐷𝜆 in which each vertex 𝑣 ∈ 𝑆 appears. Then, the value ℎ∗

𝜆 from 
Lemma 4.3 is computed (lines 8–14). The value 𝑏∗ returned by
getEVCBound is the maximum, over 𝜆 ∈ 𝐿, of min{ℎ∗

𝜆
, 𝑔∗

𝜆
}.

MaNIACS uses 𝑏∗
𝑖
in (6) together with 𝜂 = 𝛿/𝑘 to obtain 𝜀𝑖 (line 8

of Alg. 1). The value 𝜀𝑖 is used to refine H𝑖 by removing from it
any pattern whose frequency in 𝑆 is lower than 𝜏 − 𝜀𝑖 (line 10), as
they cannot belong to FP𝑉 (𝜏) (see proof of Thm. 4.5 in App. A.2).
The frequencies can be obtained fromZ𝑖 . This refinement process
is iterated until no more patterns can be pruned, i.e., H ′

𝑖
= H𝑖 ,

orH𝑖 becomes empty (line 11). At this point, the patterns still in
H𝑖 are added to the output set Q, together with their frequencies
on 𝑆 and 𝜀𝑖 (line 12). If 𝑖 < 𝑘 , MaNIACS creates the set H𝑖+1 to
contain the patterns on 𝑖 + 1 vertices whose parents are all inH𝑖 ,
by calling the function createChildren (line 13). Thanks to Fact 2,
this requirement ensures thatH𝑖 is the smallest superset of F𝑖 that
can be obtained on the basis of the currently available information.
At this point, the current iteration of the while loop is completed.
When the loop condition (line 4) is no longer satisfied, the algorithm
returns the set Q (line 15).

4.3.1 Generating the next set of patterns. MaNIACS takes an apriori-
like, level-wise approach that explores a subset of the “level” 𝑖 of
the pattern search space containing the patterns on 𝑖 vertices, after
having explored and pruned the level 𝑖 − 1. This subset is generated
by the createChildren function on the basis of the non-pruned
patterns at level 𝑖 − 1. In particular, this function extends each
non-pruned pattern in the level 𝑖 − 1, by adding an edge to every
possible position. As this procedure may generate the same pattern
multiple times (a pattern can have multiple parents), we identify the
canonical form of each pattern generated [27] and prune duplicate
patterns. For each distinct extension, we need to compute its orbits,
in order to compute their image sets (getImageSets function from
Alg. 1). The generation of the orbits and patterns in MaNIACS
follows steps similar to the procedure by Melckenbeeck et al. [33],

adapted to take into consideration the fact that we are working
with labeled graphs. We defer the details to the extended version
of this work due to space limitations.

4.3.2 Additional Pruning. An efficient pattern mining algorithm
must take any chance for pruning the search space. This require-
ment is particularly important when dealing with subgraphs, be-
cause computing the collection Z𝑖 (line 5) of image sets of the
orbits of a pattern 𝑃 ∈ H𝑖 is particularly expensive. We now de-
scribe how MaNIACS can prune as much as possible, as early as
possible, without any effect on its quality guarantees.

Before delving into pruning, we comment on the computation
of the set Z𝑆 (𝐴) for an orbit 𝐴 of a pattern 𝑃 ∈ H𝑖 . Computing
Z𝑆 (𝐴) does not require to explicitly verify whether 𝑣 ∈ Z𝑆 (𝐴) for
every 𝑣 ∈ 𝑆 . Rather, the algorithm can create, when initializingH𝑖 ,
a subset 𝑆𝐴 ⊆ 𝑆 for every orbit as above such that it holds

Z𝑆 (𝐴) ⊆ 𝑆𝐴 . (8)

For 𝑖 = 1, this set contains all and only the vertices in 𝑆 whose
label is the same as the label of the single vertex of the patterns.
For 1 < 𝑖 ≤ 𝑘 , we can use Fact 3: when creating H𝑖 on line 13,
the algorithm can associate to each orbit 𝐴 of a pattern in the set
H𝑖 returned by createChildren, a set 𝑆𝐴 obtained by taking the
intersections of the image sets Z𝑆 (𝐵) on 𝑆 of every parent 𝐵 of the
orbit 𝐴, which are available fromZ𝑖 , i.e.,

𝑆𝐴 �
⋂

𝐵 parent of 𝐴
Z𝑆 (𝐵) .

The computation of these sets can be done in the call to the crea-
teChildren function on line 13 of Alg. 1, for 1 < 𝑖 ≤ 𝑘 , and just
before the starting of the loop on line 4 for 𝑖 = 1. The properties
of the orbit child-parent relation (Fact 3) therefore enable a faster
computation of the collection Z𝑖 because Z𝑆 (𝐴) = Z𝑆𝐴 (𝐴), and
we only need to check for subgraph isomorphisms involving 𝑆𝐴 ,
which may be much smaller than 𝑆 . We remark that, thanks to
Equation (1), we need to find only one subgraph isomorphism for
each vertex in 𝑆𝐴 , rather than enumerating all of them.

Maintaining the sets 𝑆𝐴 for every orbit 𝐴 of a pattern 𝑃 ∈ H𝑖

allows for pruningH𝑖 before even computing the collectionZ𝑖 of
the image sets. The idea is that the sets 𝑆𝐴 can be used in place of
the exact image set Z𝑆 (𝐴) to compute an upper bound to the eVC-
dimension of (𝑉 ,R𝑖 ) on 𝑆 . It holds by definition that 𝑆𝐴 ⊇ Z𝑆 (𝐴)
for every orbit 𝐴, so a call to getEVCBound (with the minor tweak
of not getting rid of duplicated sets on line 2 of Alg. 2) using the
collection of these supersets would return a valid upper bound 𝑏∗

𝑖
to

the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 . Thus, a call to getEpsilonwith
parameters 𝑏∗

𝑖
and 𝛿/𝑘, would return a value 𝜀𝑖 that is not smaller

than the value 𝜀𝑖 that would be returned if we used 𝑏∗𝑖 . We can then
further improve MaNIACS by adding a do-while loop as the first
step of every iteration of the loop on lines 4–14. This inner loop
is exactly the same as the do-while loop on lines 6–11, but with
𝑏∗
𝑖
being used in place of 𝑏∗

𝑖
. At each iteration of this loop, some

orbits and therefore some patterns may be pruned fromH𝑖 because
not frequent enough, resulting potentially in a lower bound to the
eVC-dimension, thus in a lower 𝜀𝑖 , creating a positive feedback
loop. The improved algorithm has exactly the same properties as
the vanilla MaNIACS, i.e., Thm. 4.5 holds.
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The pruning strategies above can be incorporated in the call 
to the createChildren function. The call to getImageSets on 
line 5 also offers opportunities for pruning. MaNIACS computes 
one image set Z𝑆 (𝐴) = Z𝑆𝐴 (𝐴) at a time, and it evaluates whether 
𝑣 ∈ 𝑆𝐴 belongs to the image set, one vertex 𝑣 at a time. With the 
goal of maximizing pruning, we can first sort the orbits of a pattern 
by increasing size of their sets, and then compute the image sets of 
the orbits according to the obtained order. We can stop early the 
identification of the image set of an orbit 𝐴 , if the sum between 
the number of vertices in 𝑆𝐴 that are left to be examined, and the 
number of vertices in 𝑆𝐴 that we found to belong to Z𝑆𝐴 (𝐴), divided 
by the size of 𝑆 , is less than 𝜏 −𝜀𝑖 . Thus, we can also skip computing 
the image sets of the remaining orbits of the same pattern, and we 
can remove the pattern from H𝑖 .

Pruning is extremely important for MaNIACS, not only for com-

putational efficiency reasons, but also for statistical efficiency rea-
sons, as aggressive pruning leads to better bounds to the eVC-
dimension, and therefore to a smaller bound to the maximum esti-
mation error, i.e., to a better approximation quality guarantee.

5 EXPERIMENTAL EVALUATION
In this section, we aim to (1) show in which cases a sampling-based 
approximate algorithm can be preferred to an exact algorithm, (2) 
discuss how much information on the graph is required to obtain 
accurate results, (3) assess how strict our theoretical upper bounds 
are with respect to the actual estimation errors, and (4) evaluate the 
scalability of MaNIACS. Additional results are reported in App. A.3.
Datasets. We consider 5 real world networks, whose characteristics 
are summarized in Table 2 in App. A.1. All the datasets are pub-
licly available. Citeseer [18] is a citation network where nodes are 
publications and edges are citations. Node labels denote Computer 
Science areas. Phy-Cit [30] is a citation network covering e-print 
arXiv HEP-PH papers from 1993 to 2003. Node labels corresponds 
to year of publication of the paper. MiCo [18] is a co-authorship net-
work: nodes represent authors and edges collaborations between 
them. Node labels indicate each author’s research field. Patents[30] 
is a network of all the citations in utility patents granted between 
1975 and 1999. Each node label indicates the year the patent was 
granted. YouTube [13] is a network with nodes representing videos. 
Two videos are connected if they are related. The vertex label is a 
combination of a video’s rating and length.
Experimental Environment. We run our experiments on a 32-
Core (2.54 GHz) AMD EPYC 7571 Amazon AWS instance, with 
250GB of RAM, and running Amazon Linux 2. MaNIACS and the 
exact algorithm are implemented in Java 1.8, and we made the code 
publicly available (see App. A.1).
Parameter Configuration. We test several sample sizes and fre-
quency thresholds, while the parameters 𝑘 , 𝑐 ,and 𝛿 were always set 
to 5, 0.5, and 0.1, respectively. The last two have minimal impact on 
the performance (see (6)). Given that the sample extracted from the 
graph highly affects the quality of the results, we perform each test 5 
times and report the averages. The exact algorithm searches for the 
frequent patterns in the whole graph, without the need to compute 
any 𝜀𝑖 . We do not compare with other exact Java implementations 
such as GraMi [18] because they search for edge-induced patterns, 
and do not compute the pattern exact frequencies.
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Figure 2: MaxAE, 𝜀2, 𝜀3, 𝜀4, 𝜀5, for various sample sizes, min.

freq. threshold 𝜏 = 0.16, in Citeseer (left) and MiCo (right).

Evaluation Metrics. We evaluate the output quality in terms of:

• the Maximum Absolute Error (MaxAE) in the frequency estima-
tions of the patterns (i.e., what MaNIACS guarantees (Thm. 4.5));
• the Mean Absolute Error (MAE) in the frequency estimations;
• Precision, i.e., the fraction of returned patterns that are actually
frequent; and
• Kendall’s rank correlation coefficient, i.e., the correlation between
the ordered vectors of frequency estimates and actual frequencies.
Values close to 1 indicate strong agreement between the two
rankings, while values close to −1 indicate disagreement. When
FP𝑉 (𝜏) = ∅, we set its value to 0.

We do not report the Recall, i.e., the fraction of frequent patterns
returned by MaNIACS, because Thm. 4.5 guarantees a perfect recall.

MaxAE vs epsilon values. Figure 2 displays the MaxAE of MaNI-
ACS in Citeseer (left) and MiCo (right), together with its theoretical
upper bounds 𝜀𝑖 computed by MaNIACS, at varying sample size,
and with 𝜏 = 0.16. At this frequency threshold, the upper bounds
are quite large, and in the worst case, they lead to values of 𝜏 − 𝜀𝑖
close to 0.07 in Citeseer, and 0.03 in MiCo. As a consequence, MaNI-
ACS explores a large number of unnecessary patterns. Nonetheless,
the actual MaxAE achieved by MaNIACS is at least 2.5 times lower
than the upper bound, which implies that MaNIACS works even
better in practice than what is guaranteed by the analysis. This fact
is not surprising as some of the bounds we use are pretty loose,
and improving them is an important direction for future work. We
observe similar results for the other datasets.

Accuracy. According to (6), the upper bounds 𝜀𝑖 decrease as the
sample size grows: with larger samples, MaNIACS obtains lower
upper bounds and can perform a better pruning of superfluous
patterns. As expected, for small graphs, and especially when the
patterns have small frequencies, the sample size required to achieve
good frequency estimations can be close to the graph size. In Cite-
seer for example, where the patterns have frequencies below 0.173,
for 𝜏 = 0.13, a sample size equal to 1.4k (roughly 42% of the graph
size) leads to a precision of 0.72, but a sample size close to 80% of the
graph size is required to discover that no pattern of size greater than
2 is actually frequent (see Table 1, line 4). In this case, MaNIACS
achieves a perfect precision. Small graphs are not really the target
for a sampling algorithm anyway. In contrast, on Patents, where
the patterns have frequencies below 0.367, MaNIACS achieves a
precision of 0.71 with a sample size of 9k, which is roughly 0.3% of
the graph size, i.e., a very small sample.

A different situation can be observed in Phy-Cit (Table 1, lines
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Table 1: MAE, MaxAE, Precision, and Kendall’s correlation, 
for all datasets at fixed freq. thres. 𝜏 and varying sample size.

Dataset 𝜏 𝑠 MAE MaxAE Precision Kendall

Citeseer 0.13

1K 0.003 0.015 0.538 0.760
1.4k 0.004 0.010 0.720 0.760
2k 0.004 0.008 0.843 0.800

2.6k 0.003 0.006 1.000 0.800

Phy-Cit 0.18

9K 0.001 0.006 0.278 0.893
15k 0.001 0.004 0.390 0.918
18k 0.001 0.003 0.437 0.929
21k 0.001 0.002 0.436 0.978

Patents 0.25

6K 0.003 0.006 0.667 0.333
9k 0.003 0.005 0.717 0.349
12k 0.002 0.004 0.708 0.374
18k 0.001 0.003 0.750 0.349

MiCo 0.09

6K 0.002 0.006 0.488 0.952
9k 0.002 0.006 0.518 0.938
18k 0.002 0.004 0.612 0.973
48k 0.001 0.002 0.714 1.000

YouTube 0.09

60K 0.001 0.002 0.632 0.976
120k 0.000 0.002 0.716 0.988
240k 0.000 0.001 0.760 0.982
600k 0.000 0.001 0.823 1.000

5–8). Here MaNIACS returns up to 4 times more patterns than
the exact algorithm, and hence the precision is low. However, the
frequency estimations are very close to the exact frequencies (max
error is 0.001), and therefore the Kendall’s correlation is high, with
values greater than 0.89 even for a sample size of 9k. MaNIACS does
not and cannot offer guarantees on the precision, because the pre-
cision depends on the distribution of the exact pattern frequencies
around the threshold 𝜏 , which is unknown to the algorithm.

MaNIACS performs well at small sample sizes also on MiCo and
YouTube. Table 1, lines 9–16, reports the results achieved using a
minimum frequency threshold equal to 0.09, for which there are
roughly a dozen frequent patterns in both datasets. On MiCo, with
a sample size as little as 18k (1.8% of the graph size), the precision
is 0.612 and Kendall’s correlation is 0.973, in 2/7 of the time of the
exact algorithm. Similarly, in YouTube, by sampling only 1.3% of
the graph vertices, the precision is 0.632, the Kendall’s correlation
is 0.976, and the running time is 1/17 of the time required by the
exact algorithm. These results prove that, even when the number
of labels is large, MaNIACS can find good approximations of the
frequent patterns, while saving a very significant amount of time.
As the pattern size 𝑖 increases, the number of candidate patterns
to explore grows significantly, so the empirical VC-dimension and
the corresponding upper bound 𝜀𝑖 are likely to increase as well.

Sampling-based vs exact algorithm. Figure 3 shows the running
time of MaNIACS when using different sample sizes, varying 𝜏 ,
compared with the exact algorithm, on Patents (left), and Phy-Cit
(right). The advantages of MaNIACS are evident when processing
larger graphs such as Patents. Figure 3 (left) shows that MaNIACS
is up to 2 orders of magnitude faster than the exact algorithm. The
algorithm can achieve this performance because it has to examine
fewer than 0.6% of the graph vertices. For small graphs such as
Phy-Cit, especially for low frequency thresholds, there is no gain
from MaNIACS compared to the exact algorithm. At lower values
of 𝜏 , the frequency thresholds 𝜏 − 𝜀𝑖 used to prune the pattern space
are close to 0, hence almost all the patterns are deemed frequent.
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Figure 3: Running times of MaNIACS and exact algorithm

on Patents (left) and Phy-Cit (right).
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Figure 4: Scalability of the exact algorithm (left), and of Ma-

NIACS with sample size 9000 (right).

The time saved by MaNIACS by examining a smaller number of
vertices is counterbalanced by the time required to examine a larger
number of candidate patterns, which, in this case, is up to 3 times
larger than that of the exact algorithm. Conversely, for larger values
of 𝜏 , the pruning capacity of MaNIACS is similar to that of the exact
algorithm, and therefore the running times are comparable. Once
again, these results are expected: sampling algorithms are meant
for large datasets, i.e., graphs, not small ones.
Scalability. Figure 4 shows the running time of the exact algorithm
(left), and of MaNIACS at 𝑠 = 9𝑘 (right) (YouTube and Citeseer are
not reported because respectively too large or too small to have
meaningful results at this sample size). The running time of the
exact algorithm increases with lower frequency thresholds 𝜏 , and
is inversely proportional to the number of labels. E.g., even though
MiCo is far larger than Phy-Cit, the exact algorithm takes less time
at the same frequency threshold. This difference is due to the fact
that MiCo has 29 distinct labels, and thus, the patterns have lower
frequencies than those in Phy-Cit (6 labels). MaNIACS allows us
to control the complexity of the mining process while achieving
good results. Fig. 4 (right) shows that with a sample size to 9k,
the running time of MaNIACS on, e.g., Patents is two orders of
magnitude faster, with a maximum error in the range [0.004, 0.007].

6 CONCLUSIONS

We presented MaNIACS, a sampling-based algorithm that outputs
high-quality approximations of the collection of frequent subgraph
patterns in a large graph according to the MNI frequency. To com-
pute the quality of the approximation, MaNIACS relies on the em-
pirical VC-dimension, a concept from statistical learning theory that
ties the maximum frequency estimation error to sample-dependent

properties. We showed how to compute an upper bound on the
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eVC-dimension and how to use the resulting bound on the estima-
tion error to prune the pattern search space to avoid expensive-but-
worthless computations. The results of our experimental evaluation 
showed that MaNIACS achieves high-precision results, up to two 
orders of magnitude faster than an exact algorithm.
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A SUPPLEMENTARY MATERIAL

A.1 Reproducibility

The implementation of our algorithm is publicly available at https://
github.com/lady-bluecopper/MaNIACS, complete with instructions 
on how to run it, and a Jupyter Notebook results.ipynb with the full 
results of our experimental evaluation. This notebook contains all 
the plots omitted here due to space limitations.
Datasets description.

Table 2: Characteristics of the datasets.

Citeseer Phy-Cit MiCo Patents YouTube

Vertices 3.3K 30K 100K 2.7M 4.5M
Edges 4.5K 347K 1M 13M 43M
Labels 6 6 29 4 12
Density 8.37 10−4 7.46 10−4 2.16 10−4 3.67 10−6 4.17 10−6
Avg Label Freq 552 5K 3.4K 689K 382K
Med Label Freq 593 5.9K 2.1K 672K 472K
Avg Edge Freq 218.6 16K 2.4K 1.5M 563K
Med Edge Freq 86 12K 1.0K 1.2M 535K

Pseudocode for the computation of the image sets.

Algorithm 3: getImageSets
Input: Set of patterns H𝑖 , sample 𝑆 , frequency threshold 𝜏
Output: The image sets Z𝑖 of the patterns in H𝑖

1 Z𝑖 ← ∅
2 foreach 𝑃 ∈ H𝑖 do

3 foreach orbit 𝐴 of 𝑃 do

4 𝑛 ← a vertex of 𝑃 in 𝐴

5 𝑆𝐴 ← vertices in 𝑆 with the label of 𝐴
6 Z𝑆 (𝐴) ← ∅, 𝑟𝑒𝑚𝑎𝑖𝑛 ← |𝑆𝐴 |
7 foreach 𝑣 ∈ 𝑆𝐴 do

8 𝑀 ← ∅;𝑀 [𝑛] ← 𝑣

9 if existsIsomorphism(𝑃 , M) then
10 Z𝑆 (𝐴) ← Z𝑆 (𝐴) ∪ {𝑣 }
11 𝑟𝑒𝑚𝑎𝑖𝑛 ← 𝑟𝑒𝑚𝑎𝑖𝑛 − 1
12 if (𝑟𝑒𝑚𝑎𝑖𝑛 + |Z𝑆 (𝐴) |)/ |𝑆 | < 𝜏 − 𝜀𝑖 then
13 prune 𝑃 and go to next pattern

14 Z𝑖 ← Z𝑖 ∪ {Z𝑆 (𝐴) }

15 return Z𝑖

Algorithm 4: existsIsomorphism
Input: Pattern 𝑃 , Partial match𝑀

Output: true iff𝑀 contains a match for each vertex of 𝑃
1 if |𝑀 | = |𝑉𝑃 | then return true
2 𝑢 ← vertex of 𝑃 not already in𝑀

3 𝑐𝑎𝑛𝑑𝑠 ← ⋂
𝑤∈𝑢.Γ∩𝑀 𝑀 [𝑤 ] .Γ

4 foreach 𝑧 ∈ 𝑐𝑎𝑛𝑑𝑠 with the same label as 𝑢 do

5 𝑖𝑠𝑀𝑎𝑡𝑐ℎ ← true

6 foreach 𝑤 ∈ 𝑀 do

7 if 𝑤 ∉ 𝑢.Γ and𝑀 [𝑤 ] ∈ 𝑧.Γ then

8 𝑖𝑠𝑀𝑎𝑡𝑐ℎ ← false; break

9 if 𝑖𝑠𝑀𝑎𝑡𝑐ℎ then

10 𝑀 [𝑢 ] ← 𝑧

11 if existsIsomorphism(𝑃 , M) then return true

12 return false

A.2 Missing proofs

We now give the proofs for all our theoretical results, restated here
for convenience.

Lemma 4.2. Let (D,R) be a range space, and let T ⊆ D. Consider

the set RT � {T ∩ 𝑅 : 𝑅 ∈ R}. Let 𝑔∗ be the maximum 𝑔 such

that T contains at least 𝑔 points each appearing in at least 2𝑔−1 sets
from RT . If, for at least one set 𝐵 of such 𝑔∗ points, there exist a set
𝑍𝐵 ∈ RT such that 𝐵 ⊆ 𝑍𝐵 , then ET (R) is at most 𝑔∗, otherwise it
is at most 𝑔∗ − 1.

Proof of Lemma 4.2. Each point 𝑎 in a shattered set 𝐴 of size
|𝐴| = 𝑧 must belong to at least 2𝑧−1 distinct sets in RT , as it belongs
to this number of non-empty subsets of 𝐴. Additionally, there must
be a set in RT that contains the whole 𝐴. □

Lemma 4.3. Let (D,R) and T as in Lemma 4.2. Let 𝑅1, . . . , 𝑅 |R |
be a labeling of the ranges in R such that |𝑅𝑤 ∩ T | ≥ |𝑅𝑢 ∩ T |
for 1 ≤ 𝑤 < 𝑢 ≤ |R|. Let (𝑎 𝑗 )ℓ𝑗=1 be a non-increasing sequence

of ℓ ≥ |R| naturals such that 𝑎 𝑗 ≥
��𝑅 𝑗 ∩ T

��
for 1 ≤ 𝑗 < |R | and

𝑎 𝑗 ≥
��𝑅 |R | ∩ T �� for |R | ≤ 𝑗 ≤ ℓ .

Let ℎ∗ be the maximum natural ℎ such that, for every 0 ≤ 𝑗 < ℎ,

if we let 𝑐 𝑗 =
∑𝑗

𝑧=0
(ℎ
𝑧

)
,
8
, it holds 𝑎𝑐 𝑗 ≥ ℎ − 𝑗 . Then, ET (R) ≤ ℎ∗.

Proof of Lemma 4.3. Let 𝑧 = ET (R). Then there is a set𝐴 ⊆ T
with |𝐴| = 𝑧 that is shattered by R. For a set 𝐴 with |𝐴| = 𝑧 to
be shattered by R, there must be, for every 0 ≤ 𝑖 < 𝑧,

(𝑧
𝑖

)
distinct

ranges 𝐻𝑖,1, . . . , 𝐻𝑖,(𝑧𝑖) ∈ R such that
��𝐻𝑖, 𝑗 ∩𝐴

�� = 𝑧 − 𝑖 , as 𝐴 has
(𝑧
𝑖

)
subsets of size 𝑧 − 𝑖 . It must then also hold that

��𝐻𝑖, 𝑗 ∩ T
�� ≥ 𝑧 − 𝑖 .

If ℓ = |R | and 𝑎 𝑗 =
��𝑅 𝑗 ∩ T

�� for every 1 ≤ 𝑗 ≤ |R|, it follows
from the definition of ℎ∗ that it must be 𝑧 ≤ ℎ∗. For a generic
sequence (𝑎 𝑗 )ℓ𝑗=1, the thesis follows from the fact that the value
ℎ∗ computed on this generic sequence cannot be smaller than the
value ℎ∗ computed on the specific sequence for which ℓ = |R | and
𝑎 𝑗 =

��𝑅 𝑗 ∩ T
�� for every 1 ≤ 𝑗 ≤ |R|. □

Lemma 4.4. For any 𝑆 ⊆ 𝑉 , it holds E𝑆 (R𝑖 ) = max𝜆∈𝐿 E𝑆 (R𝑖,𝜆).

Lemma 4.4 is an immediate corollary of the following result.

Lemma A.1. No 𝑆 ⊆ 𝑉 containing vertices with different labels

can be shattered by R𝑖 .

Proof. The statement is immediate from the definition of image
set (see (1)). For any orbit𝐴, its image set Z𝑉 (𝐴) on𝑉 only contains
vertices with the same label, thus there would be no range in R𝑖
that would contain, for example, the whole 𝑆 , thus 𝑆 ∉ PR𝑖 (𝑆),
which implies that 𝑆 cannot be shattered by R𝑖 . □

Theorem 4.5. With probability at least 1 − 𝛿 over the choice of 𝑆 ,

the output Q of MaNIACS contains a triplet (𝑃, f𝑆 (𝑃), 𝜀𝑃 ) for every
𝑃 ∈ FP𝑉 (𝜏) such that |f𝑆 (𝑃) − f𝑉 (𝑃) | ≤ 𝜀𝑃 .

Proof of Thm. 4.5. For 1 ≤ 𝑖 ≤ 𝑘 , let𝜂𝑖 be the value𝜂 computed
as in Thm. 3.1 for 𝜙 = 𝛿/𝑘, (D,R) = (𝑉 ,R𝑖 ), T chosen as 𝑆 on
line 1, and 𝑑 being the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 . It follows
from Thm. 3.1 and an application of the union bound over the 𝑘
sets (hence the use of 𝛿/𝑘), that, with probability at least 1 − 𝛿 , it
8We define

(𝑞
0
)
= 1 for any 𝑞.
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Figure 6: Running time of MaNIACS and the exact algo-

rithm, varying sample size and min frequency threshold 𝜏 ,

on Mico (left) and Citeseer (right).

0.08 0.10 0.12 0.14
Min Frequency Threshold τ

100

101

102

103

T
im

e
(s

ec
)

exact

s60K

s120K

s240K

s600K

60K 240K 600K 900K 1.2M
Sample Size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
ax

A
E

B
ou

nd

MaxAE
ε2

ε3

Figure 7: YouTube: running time of MaNIACS and the exact

algorithm, varying sample size, and min frequency thresh-

old 𝜏 (left); andMaxAbsolute Error (MaxAE), 𝜀2, 𝜀3, 𝜀4, and 𝜀5,
for various sample size andmin frequency threshold 𝜏 = 0.16
(right).
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Figure 8: Average number of patterns found by MaNIACS,

together with the exact number of frequent patterns, vary-

ing minimum frequency threshold 𝜏 , in Phy-Cit (left) and

Mico (right).
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Figure 9: Average number of patterns found by MaNIACS,

together with the exact number of frequent patterns, vary-

ing minimum frequency threshold 𝜏 , in Patents (left) and

YouTube (right).

holds that 𝑆 is, simultaneously, an 𝜂𝑖 -sample for (𝑉 ,R𝑖 ) for every
1 ≤ 𝑖 ≤ 𝑘 . Assume for the rest of the proof that that is the case.

We show inductively that, at the end of every iteration of the
“main” loop of MaNIACS (lines 4–14), it holds that

(1) Q contains a triplet (𝑃, f𝑆 (𝑃), 𝜀𝑖 ) for each 𝑃 ∈ F𝑖 , and the
triplet is such that

|f𝑉 (𝑃) − f𝑆 (𝑃) | ≤ 𝜀𝑖 ;

(2) F𝑖 ⊆ H𝑖 , for 𝑖 ≤ 𝑘 .
At the beginning of the first iteration, i.e., for 𝑖 = 1, it obviously
holds F1 ⊆ H1 from the definition ofH1 (line 3). Thus, at the first
iteration of the do-while loop on lines 6–11, the value 𝜀1 computed
on line 8 using Thm. 3.1 is not smaller than𝜂1, because𝑏∗1 is an upper
bound to the eVC-dimension of (𝑉 ,R1) on 𝑆 , thanks to Lemmas 4.2
to 4.4, and the value 𝜂 on the l.h.s. of (6) is monotonically increasing
with the value 𝑑 used on the r.h.s. of the same equation. It then
follows, from this fact and from Corol. 4.1, that no pattern 𝑃 ∈
FP𝜏 (𝑉 ) may have f𝑆 (𝑃) < 𝜏 − 𝜀1, therefore the refinement of H1
on line 10 is such that it still holds F1 ⊆ H1 at the end of the first
iteration of the do-while loop. Following the same reasoning one
can show that this condition and the fact that 𝜀1 ≥ 𝜂1 throughout
every iteration of the do-while loop.

The set Q, updated on line 12, therefore contains, among others,
a triplet for every pattern 𝑃 ∈ FP𝜏 (𝑉 ), and the properties from
the thesis hold because of this fact and the fact that 𝜀1 ≥ 𝜂1, thus
completing the base case for point (1) in the list above. Point (2),
i.e., that F2 ⊆ H2, then follows from the anti-monotone property
of the MNI-frequency (Fact 2).

Assume now that points (1) and (2) hold at every iteration of the
while loop from 𝑖 = 1, . . . , 𝑖∗ < 𝑘 . The proof that they hold at the
end of iteration 𝑖∗ + 1 follows the same reasoning as above. □

A.3 Additional experiments
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Figure 5: Max Absolute Error (MaxAE), 𝜀2, 𝜀3, 𝜀4, and 𝜀5, for
various sample size, min frequency threshold 𝜏 = 0.16, in
Patents (left) and in Phy-Cit (right).
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