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ABSTRACT
Geographical location is a crucial element of humanitarian response,
outlining vulnerable populations, ongoing events, and available
resources. Latest developments in Natural Language Processing
may help in extracting vital information from the deluge of reports
and documents produced by the humanitarian sector. However,
the performance and biases of existing state-of-the-art information
extraction tools are unknown. In this work, we develop annotated
resources to fine-tune the popular Named Entity Recognition (NER)
tools Spacy and roBERTa to perform geotagging of humanitarian
texts. We then propose a geocoding method FeatureRank which
links the candidate locations to the GeoNames database. We find
that not only does the humanitarian-domain data improves the
performance of the classifiers (up to F1 = 0.92), but it also alleviates
some of the bias of the existing tools, which erroneously favor
locations in the Western countries. Thus, we conclude that more
resources from non-Western documents are necessary to ensure
that off-the-shelf NER systems are suitable for the deployment in
the humanitarian sector.

CCS CONCEPTS
• Social and professional topics → Geographic characteris-
tics; • Information systems → Data mining; Information systems
applications.
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1 INTRODUCTION
The vast network of humanitarian organizations performing a myr-
iad of tasks around the world produces a significant amount of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GoodIT ’23, September 06–08, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0116-0/23/09. . . $15.00
https://doi.org/10.1145/3582515.3609515

data and reports. For instance, the operations of the International
Federation of Red Cross and Red Crescent Societies (IFRC) spans
192 countries and includes almost 14 million volunteers [1]. To
manage the resulting reports, projects such as the Data Entry and
Exploration Platform (DEEP)1 have been developed to help human-
itarian organizations to compile and store documentation, and to
help structure the qualitative information inside. It is maintained by
Data Friendly Space, a U.S.-based international non-governmental
organization (INGO)2, in collaborationwith numerous international
organizations.

In the light of the information overload generated by the data-
rich operation of humanitarian efforts, computer-aided information
extraction promises to increase the usefulness of the produced docu-
mentation. Latest developments in Deep Learning (DL) and Natural
Language Processing (NLP) allow for the identification of poten-
tially important information in text, and its classification in stan-
dard hierarchies, which can then be used to aggregate knowledge
and share experience across time and projects. In particular, geolo-
cation is an important aspect of humanitarian activity, spanning
both operations in entire countries and regions, to specific villages,
refugee camps, and civil infrastructure. The accuracy of location
information is especially important in the light of the Sustainable
Development Goals (SDGs) principle of “Leave No One Behind”
that strives to reduce inequalities and vulnerabilities amongst all
countries. Unfortunately, the data sources available for training
competent models are often biased towards the West, even when
secondary data is used to fill the “datasphere” gaps [6]. Location
databases (or “gazetteers”) have a well-known bias towards the US
and other Western countries [9, 10], whereas popular alternative
data sources such as Twitter and Wikipedia struggle with pene-
tration in global South [31, 33]. Thus, it is imperative to create
resources and tools for the accurate processing of diverse humani-
tarian data in order to ensure no country is disadvantaged when
the information is collated.

In this study, we work closely with humanitarian partners to
create a Geolocation Extraction tool tuned specifically to process
documents generated by humanitarian projects. The tool performs
two sub-tasks: geotagging – the extraction of text fragments that
may be a location (or “toponyms”), and geocoding – the disam-
biguation of the toponym to a specific geographic location (with
accompanying information on GPS coordinates, type of location,
etc.). We contribute two datasets – one for each of these steps –
wherein humanitarian reports are annotated by specialists in the
field for candidate toponyms, and these toponyms are mapped to

1https://thedeep.io/
2https://datafriendlyspace.org/
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the appropriate entry in GeoNames, an extensive geographical data-
base3. Using these datasets, we tune popular existing Named Entity
Extraction (NER) models Spacy4 and roBERTa5, improving their
performance up to F1 = 0.92 on the target dataset. We then propose
a geocoding algorithm FeatureRank tailored to the humanitarian
domain, and compare it to two baselines from the literature. Finally,
we show that the tuned model not only improves in accuracy, but
that it may alleviate the geographic bias that favors locations in the
Western countries.

2 RELATED LITERATURE
Named Entity Recognition (NER) is one of the basic Natural Lan-
guage Processing (NLP) tasks involving the identification of entities
of interest in texts, commonly constrained to Person, Organisation
or Location. Whereas the early models used classic machine learn-
ing algorithms including support vector machines, random forests,
and decision trees using as features capitalization, word endings,
and regular expressions [22], from about 2011 neural networks have
been used to create more generalizable models [5, 35]. Combining
word context and its individual characters has allowed the training
of systems that required little domain-specific training data. Word
and sentence level embeddings have been used to build models
using several long short-term memory (LSTM) layers to achieve
performance of up to 90% F score in English [7] (this model was also
published as a NeuroNER package6). Graph embedding algorithms
that produce embeddings of vertices that preserve their proximity
in a graph, including DeepWalk [23] and TransE [2], have been
widely used in entity linking (EL) task, the task of matching a piece
of text (a potential entity) to an entry in a knowledge base such as
Freebase, DBpedia, andWikidata. Since 2015, large pre-trained mod-
els like Bidirectional Encoder Representations from Transformers
(BERT) [15] have given researchers the access to representations
trained on huge amounts of text data without the need to access
this data directly, while allowing strong expressive power suitable
to many NLP tasks. These models can then be trained using the
distant labels, improving task-specific recall and precision, and
further enhanced using self-training [18]. Neural networks and
pre-trained large models have also been used for entity linking
[28]. For instance, BERT-based cross-encoders have been used on
a concatenation of text segment context with a candidate entity
description to produce a score for each entity candidate [19, 34].
However, few of these efforts have been directed specifically to
geographical NER.

Natural language processing approaches have been applied to
understand the context in the extraction and geocoding of historical
floods, storms, and adaptation measures [16]. In the context of mass
emergencies, Imran et al. [13] highlighted the existing approaches
and challenges in processing social media messages during mass
emergencies. This survey sheds light on the importance of real-
time analysis of social media data for effective emergency response.
Several techniques were explored to extract and refine location
mentions in text such as geoparsing, location disambiguation, and
geotagging [21]. For instance, geotagging text data on the web has
3https://www.geonames.org/
4https://spacy.io/models/en#en_core_web_md
5https://huggingface.co/Davlan/xlm-roberta-base-wikiann-ner
6http://neuroner.com/

been approached through geometrical methods [25], offering an
alternative to relying solely on explicit geotags. The potential of
Twitter data were highlighted both in determining the geographic
origin of user-generated content [11], and developing predictive
models that can estimate the location of Twitter users based on their
posted content [36]. Moreover, mining Twitter data offered a better
understanding of disaster resilience [37], while was also proven
effective in event classification and location prediction during disas-
ters [30]. Importantly, efforts have been made to develop annotated
datasets and resources [14, 24] contributing to the development
and evaluation of algorithms for the identification and monitoring
of internal displacement, but also sentiment analysis, named en-
tity recognition, and geolocation from textual data. In this work,
we contribute annotated resources concerning the humanitarian
reports, instead of general web data.

Despite these advancements there are still many open issues to
accurate named entity recognition for the humanitarian sector. For
instance, known biases of the geographic information and modes
of communication are directly impacting the representation of
populations unevenly [10]. Population bias in geotagged tweets has
been a topic of concern in geolocation research [20], highlighting
the potential biases that can arise from relying solely on geotagged
tweets for location inference. Understanding and addressing these
biases is crucial to ensure accurate geolocation results.

3 DATA COLLECTION
We employ data from the HumSet database [8], originated from the
multi-organizational platform (DEEP) introduced earlier. Each entry
consists of a relevant excerpt from a document, annotated with
the humanitarian analysis framework categories. It is associated to
a lead_id that identifies the original document (lead) from which
the excerpt is extracted. Original documents come from different
sources, including reports by humanitarian organizations andmedia
articles. We downloaded them using deepex package7 from the links
available in HumSet. The documents come either in PDF format or
HTML pages, and text extraction from both sources is performed
with the same package. This parser also splits text in pages and
paragraphs, according to the basic structure of the document. In
this project, we use the entire text parsed from HumSet leads, and
not only the selection of excerpts of the database.

3.1 Data description
The dataset contains 15 661 documents from 45 different projects.
It is multilingual, with English (67.1%), Spanish (18.6%) and French
(14.1%) representing almost the totality of the documents’ languages
(language information is available in HumSet). Each project typically
focuses on one ormore countries, but some focus on none. There are
33 countries represented by country-specific projects. The content
of the documents may vary from text to images and tables. The
parser is able to fetch plain text and discard figures and non textual
elements. Some documents contain mainly non textual elements,
therefore the resulting extracted text is very short. Table 1 shows a
distribution of metrics of the text content extracted with the parser.

7available at https://github.com/the-deep/deepex
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Table 1: Summary statistics on text files parsed from docu-
ments.

size(KB) pages paragraphs words

mean 11.6 5.0 38.0 1621
std 40.5 14.5 130.9 5487
min 0.0 1 0 0
25% 1.2 1 2 170
50% 3.2 1 8 459
75% 7.6 3 26 1085
max 1354.2 358 4254 207 030

4 DATA ANNOTATION
This work contributes two annotated datasets, one for each step
of the geolocation extraction process: (1) geotagging, which is a
special case of NER, and (2) geocoding, where the found toponyms
are disambiguated and linked to specific geographic coordinates
[12]. For both tasks, we describe how the data was sampled, baseline
models were applied to extract candidates, how these candidates
were annotated, guided by coding schemas. Finally, we present the
statistics about the resulting annotated datasets.

4.1 Annotation: geotagging
4.1.1 Sampling. We begin by selecting 500 English-language docu-
ments from HumSet, satisfying several metrics, as described below.
As we want our sample to include as many different locations as
possible, while respecting the country distribution ranking of the
dataset, we treat the documents belonging to the 6 most popular
project countries differently from the rest (the “tail” of the distri-
bution). We impose different restrictions on the popular and tail
countries in terms of on the number of pages (minimum of 3 or 2,
respectively), average number of paragraphs per page (minimum 5
or 3) and average number of words per paragraph (minimum 500
or 300). This filter results in 1897 documents. We further sample
up to 100 documents from each project country, to undersample
popular countries, resulting in 1290 documents, which we then
sample randomly to get the final 500 document sample.

4.1.2 Pre-annotation using baseline models. Labelling task is per-
formed with Label Studio app8. With it, is possible to upload pre-
annotated documents, reducing the effort of the user to a simple
revision of the pre-annotations. In order to insure a variety of loca-
tions in our dataset, we truncate the documents at 4000 characters,
thus encouraging the annotators to label more distinct documents.
To further help annotators find the candidate toponyms, we con-
sidered pre-annotations which may ease the annotation process,
letting the user to focus on difficult cases without the need to tag
all the locations in the text. To explore this, we run a small test
experiment prior the full annotation process involving 4 users and
25 pilot documents. Two users were asked to tag pre-annotated
documents, the other 2 – documents without pre-annotations. An-
notation agreement does not vary among users with pre-annotated
documents and users without pre-annotated documents (remaining
at around 0.90), however the speed of their work improves by 7%
8https://labelstud.io/

(and this was during an adjustment period where some aspects
of the process were unclear to the labelers). Thus, we proceed to
create candidate toponyms using baseline NER models.

Pre-annotations are provided by two off-the-shelf NER mod-
els: Spacy en_core_web_md9, a pre trained pipeline for English
that includes NER components; and the roBERTa xlm-roberta-base-
wikiann-ner10, a multilingual roBERTa based NER model finetuned
on 20 annotated Wikipedia datasets11. The pre-annotations are the
results of the union of the predictions of the 2 models. In particular,
in case of multi-word entities, if the predictions of the 2 models over-
lap, the union of words of the 2 models is used as pre-annotation
(for instance, model 1 predicts "the Mediterranean" and model 2
"Mediterranean sea", the resulting union is "the Mediterranean sea").

4.1.3 Annotation schema. Defining clearly the meaning of location
is crucial for the annotation task. As shown in many other works,
a location-related term could take different meaning depending on
the context [17, 27]. We follow the main distinction by Gritta et
al. [12] between literal and associative toponyms. A literal toponym
refers directly to a physical location and an associative toponym
is only associated with a place. For example, “Syria” is a literal
toponym in “latest events in central Syria”, but an associative in
“Syria Red Cross aided border regions”. The annotation task, then,
comprises of reading the text, and annotating candidate geotags,
as well as creating new ones, and labeling them as either of these
2 categories: literal or associative. Instructions also include rules
on handling lists of locations, which are split in post-processing, as
well as how to annotate humanitarian-specific text such as names
of reports, organizations, and other adjectives that may include
toponyms. The instructions are available at shorturl.at/cxJN1.

4.1.4 Annotated geotagging dataset. A total of four 469 documents
were annotated by annotators associated with the DEEP platform,
specializing in humanitarian data analysis. The median number of
toponyms per document is 25, and the total number of toponyms
annotated is 11 025. Recall that each document has been truncated at
4000 characters to allow a broader inclusion of different documents.
The most common toponyms in the data were Libya, Syria, Tripoli,
Afghanistan, Yemen, Niger, Sudan, Venezuela, Nigeria, Somalia. The
annotated dataset includes lead_id of the document, source url link,
text of the document (first 4000 characters) and annotations and is
available at https://github.com/embelliardo/HumSet_geolocation_
annotations.

4.2 Annotation: geocoding
The second annotated dataset concerns the second task of this
study: the association of toponyms to a disambiguated location,
including the GPS coordinates. For this purpose, we have created
a dataset of toponyms in context mapped to an ID of GeoNames
entry. GeoNames is a geographical database that contains over 25
million geographical names, of which 4.8 million are populated
places, which also come with 13 million alternate names in local
alphabets12.

9https://spacy.io/models/en#en_core_web_md
10https://huggingface.co/Davlan/xlm-roberta-base-wikiann-ner
11https://huggingface.co/datasets/wikiann
12https://www.geonames.org/about.html
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The toponyms were selected from a random selection of docu-
ments annotated in the previous section. To prepare the toponyms
for annotation, regular expressions were used to split the lists of
toponyms into individual locations (i.e. “Al Hudaydah and Taizz
governorates” to “Al Hudaydah governorate” and “Taizz gover-
norate”), associate noun modifiers to each location (i.e. “North and
South Italy” to “North Italy” and “South Italy”), rephrase possessive
pronouns (i.e. “City of New York’ to “New York City”), standard-
ize special characters, and remove dashes and apostrophes. These
cleaned toponyms were then matched with the database of GeoN-
ames fields of name and alternate name (which provides additional
ways of writing the location name), which were similarly prepro-
cessed by standardizing special characters, and removing dashes
and apostrophes. The match was done in two ways. First match was
performed using longest consecutive word matching. The matches
were then filtered through a custom list which includes cardinals
alone, commonwords, and generic location signifiers. Secondmatch
was performed on the same GeoNames fields using the Whoosh
search engine that uses the Okapi BM25F ranking function to re-
trieve strings13. This way of matching allowed for more flexible
positioning of keywords (i.e. “Tripoli Airport” can be matched to
“Tripoli International Airport”, which consecutive word matching
would miss). The search engine matches were then filtered based
on the “feature code” of the GeoNames entity, which describes what
kind of location it is. We keep locations having this code among
the following (hand-crafted based on relevance): administrative
division (AD), populated place (PPL), mountain (MT), sea (SEA),
lake (LK), island (ISL) and airport (AIR). Note that we use the same
pipeline for the preparation of the toponyms for geocoding using
our automated algorithm below.

The annotation was performed using a custom-built tool that
displays the toponym, the document as its context, and a list of
candidate GeoNames entities, which are located on a map. The
annotators were instructed to select a GeoNames entity most likely
to be referenced by the toponym, and if the correct one cannot be
found, to select “none”. The main author of this paper performed
the annotation, resulting in 561 unique document/toponym match
pairs from 39 documents, with 474 having non-empty matches,
spanning 78 countries. The annotated dataset includes lead_id of
the document, toponym, match and the GeoNames ID of the correct
match, and is available at https://github.com/embelliardo/HumSet_
geolocation_annotations.

5 CUSTOMIZING GEO-LOCATION FOR
HUMANITARIAN TEXTS

In the next sections, we describe the evaluation of state-of-the-
art geotagging methods and tuning of these methods with the
annotated data.

5.1 Geotagging
Using the annotated geotagging dataset, we were now able to eval-
uate the off-the-shelf NER models – Spacy and roBERTa – used in
pre-selection of the toponyms. We compute two versions of the
metrics: exact agreement considers only exact string matches to
the ground-truth labels (subscripts 𝑒 in Table 2), whereas partial
13https://whoosh.readthedocs.io/en/latest/intro.html

agreement considers any substring overlap (subscript 𝑝). Note that
partial scoring includes exact matches. We define agreement be-
tween the output of the model and the ground-truth as the number
of toponyms predicted by the model which are in the annotated set,
divided by the union of toponyms of the two sets. We further use
the standard definitions of precision and recall. In the case of mul-
tiple correct matches, we count such matches as one (by weighting
each match proportional to the number of sub-matches), such that
we do not inflate the number of matched toponyms. Table 2 reports
the performance of the baseline models (as well as the tuned ones,
described below). Both algorithms were evaluated on the entire
annotated set using 10-fold cross-validation. The cross-validation
is run in two ways: without stratification, and with stratification
by the country of the project, such that the training data does not
have information about the test project country, making it a more
difficult task.

For both algorithms, and both evaluation methods, we find the
tuning of the model with additional data to improve performance,
both in terms of precision and recall. For roBERTa, the improve-
ment in F1 is from 0.72 to 0.79 (not stratified) for exact matches and
from 0.85 to 0.93 (not stratified) for partial ones. The improvement
is even more for Spacy, a 15 percentage point improvement in F1 to
0.79 (not stratified) for exact matches, and a 13 point improvement
in F1 to 0.91 (not stratified) for partial. Interestingly, the variance of
performance of the Spacy model decreases with additional tuning,
however in the stratified testing it remains higher. As expected,
the performance is lower when the data is stratified by project
country, but there are still some improvements. We also combine
the two models by taking a union of the matches produced by
both algorithms (and a largest span of those that partially overlap).
This approach favors the recall, achieving 0.97 in partial matching,
while still having a precision of 0.89. The training brings the per-
formance of the two algorithms closer (with Spacy having largest
improvement), but other considerations may be important in the de-
ployment of the models. Whereas Spacy model takes about 6.5MB,
roBERTa is much larger at 1.1GB. Similarly, Spacy runs faster, about
3.2 times faster than roBERTa. To conclude, if one favors recall, a
combined model should be used; if a low variance in performance is
desired, roBERTa may be a better choice; but if a lightweight model
is needed for fast processing, Spacy may be a better selection.

Figure 1 shows the improvement in performance as the amount
of training data is increased. We find a rise in performance within
the first 10% (about 50 documents), which gradually increases espe-
cially for the partial matches, which is true for both models, and
for both testing using perfect match and partial match. roBERTa
benefits especially from the new data, achieving F1 score above 0.9
with additional data (for partial scoring).

Next, we examine the disagreements in the extracted toponyms
by the different algorithms. In Table 3 we show several examples of
a text fragment and the associated toponyms extracted by the two
algorithms: in their baseline form and finetuned. The first example
talks about a boat (“VOS vessel”) named Theia, which is extracted
as a location by the roBERTa baseline model, but is ignored by
the finetuned one (Spacy performs correctly even as a baseline).
The second example has the phrase “Syrian Government”, which
is an associative toponym that we do not select for the present
task. The tuned roBERTa model learn to ignore such cases. Third
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Table 2: Agreement, precision, recall, and F1 for geotagging methods: mean (standard deviation) over 10 folds. Exact matches
with subscript 𝑒 and partial with subscript 𝑝. Tested with and without stratification (“ST”) by country of the project.

Method A𝑒 P𝑒 R𝑒 F1𝑒 A𝑝 P𝑝 R𝑝 F1𝑝
roBERTa𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .63(.03) .73(.02) .72(.03) .72(.02) .74(.03) .85(.02) .85(.03) .85(.02)
roBERTa𝑡𝑢𝑛𝑒𝑑 .75(.03) .78(.02) .81(.02) .79(.02) .87(.03) .92(.02) .95(.01) .93(.01)
roBERTa𝑡𝑢𝑛𝑒𝑑_𝑆𝑇 .72(.03) .79(.04) .76(.03) .78(.03) .85(.04) .94(.02) .90(.04) .92(.02)
Spacy𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .53(.08) .74(.07) .57(.08) .64(.07) .64(.07) .90(.04) .68(.08) .78(.05)
Spacy𝑡𝑢𝑛𝑒𝑑 .74(.03) .79(.03) .80(.03) .79(.02) .85(.02) .92(.03) .92(.03) .91(.01)
Spacy𝑡𝑢𝑛𝑒𝑑_𝑆𝑇 .65(.06) .77(.06) .70(.07) .74(.05) .77(.06) .92(.04) .82(.07) .87(.04)
Combined .72(.03) .74(.04) .80(.02) .78(.03) .87(.03) .89(.03) .97(.00) .93(.02)
Combined_𝑆𝑇 .70(.05) .73(.05) .77(.03) .75(.04) .86(.04) .90(.04) .95(.01) .92(.03)

0.0 0.5 1.0
train sample fraction

0.5
0.6
0.7
0.8
0.9
1.0

F 1

Spacy - perfect

0.0 0.5 1.0
train sample fraction

Spacy - partial

0.0 0.5 1.0
train sample fraction

roBERTa - perfect

0.0 0.5 1.0
train sample fraction

roBERTa - partial

Finetuned
Base

Figure 1: Average 𝐹1 score and standard deviation on 10 folds cross-validation at different sample size. 𝐹1 score is computed for
Spacy and roBERTa models, baseline and finetuned, and for perfect and partial matches.

example is similar, but we find that the training benefits Spacy, such
that the associative toponym is not selected. In the fourth example
the location string is mixed with numeric characters. Whereas the
baseline roBERTamodel is not able to identify it, Spacy identifies the
word, but with additional numerical characters. Training improves
roBERTa, but makes Spacy ignore the string (note that a combined
model would still find the toponym). The fifth example shows how
the trained model (in this case roBERTa) is capable of recognising
long lists of noun modifiers associated with “districts”. Finally, the
last example shows how the trained models are able to identify
location at a very granular level, in this case an hospital building.
Although not specifically focusing on particular kinds of toponyms,
we find that smaller locations such as hospitals, airports, refugee
camps, and others may especially necessitate training data to be
caught by the named entity extractors.

5.2 Geocoding
5.2.1 Baseline Approaches. Considering the geocoding task – the
mapping of toponyms to a unique set of geo-coordinates, and poten-
tially to other meta-data associated with a location – the literature
is sparse in this area. We consider two approaches to geocoding
from the previous literature. Buscaldi & Magnini [3] propose an
approach based on an iterative resolution of references by favor-
ing “unambiguous” ones, with an assumption that the references
appearing at greater frequency (such as countries) are less ambigu-
ous. Intuitively, for each candidate geolocation for a toponym, the
algorithm considers resolved references in the context around the

candidate, and computes inverse distance to the unambiguous ge-
olocations. The candidate geolocation having the shortest distance
to the unambiguous known references in the text is chosen as the
best. Following the findings of the paper, we do not implement the
text distance between the toponym and references in the text. We
considered as unambiguous toponyms which had only one GeoN-
ames match and had to be in one of the countries mentioned in
the document, as well as the countries themselves. The second ap-
proach by Chen, Vasardani, and Winter [4] also uses the contextual
information around a toponym. It involves the clustering of the can-
didate geolocations for all toponyms found in a document, finding
the best clustering radius, and choosing the candidate geolocations
from the biggest cluster. The model assumes that the toponyms
found in a document are located near each other. It further does not
provide a tie-breaking mechanism for choosing the best geolocation
within the selected cluster (so we break ties randomly).

5.2.2 FeatureRank. As an alternative to the general-purpose geocod-
ing algorithms, in this work we propose a custom feature-based
geocoding method tailored for the humanitarian domain. This
method, FeatureRank, considers geopolitical and population fea-
tures of candidate locations extracted from GeoNames, as well as
a document-wide distribution of the candidate locations for all
toponyms, thus capturing both local and global knowledge.

First, the toponyms are preprocessed as in the Section 4.2. Re-
call that the preprocessing involves several steps in cleaning and
splitting toponyms, searching GeoNames database using string
matching and search engine, and filtering the candidate geoloca-
tion set using a set of codes. This results in a set of candidate
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Table 3: Sample of toponyms with their context predicted by baseline and finetuned models. Correct annotation in bold.

roBERTa𝑡𝑢𝑛𝑒𝑑 roBERTa𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Spacy𝑡𝑢𝑛𝑒𝑑 Spacy𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
1. two VOS vessels. Two will be located on board the VOS Theia, two will be located at Aden port,
and one will ...

None ✓ VOS Theia None ✓ None ✓
2. ... and volatile in June, with tensions between the Syrian Government and ‘reconciled’ non-state

armed groups reported ...

None✓ Syrian Government None ✓ None ✓
3. The US Government Congratulates Buhari in Spite of Violent and Corrupt Election

None✓ None✓ None✓ US
4. Plateau(5), Taraba(3), Gombe(1), Kaduna(1), Kwara(1), FCT(1), Benue(2), Rivers(1) Kogi(1) ...

Kwara✓ None None Kwara(1
5. However, clashes intensified in At Tuhayat and Zabid districts of Hudaydah city ...
At Tuhayat and Zabid dis-
tricts ✓

At Tuhayat Tuhayat None

6. sources report 17 dead and eight wounded, currently in treatment at Am-Timan hospital
Am-Timan hospital✓ None Am-Timan hospital✓ None

geolocations for each toponym in a document. A variant of our
algorithm SearchFeatureRank also uses a search engine to query
for candidate locations (instead of substring match). Similar to the
baseline models, we summarize the distribution of the geolocation
candidates in the documents by computing a document-wide coun-
try distribution. To compute this distribution, for each toponym
in the document we first create a country distribution of its geolo-
cation candidates, and finally average them for a document-wide
distribution. Note that we are assuming the document is largely
concerning one country, which we find to be the case for most of
the documents in our dataset, but is not necessarily true for other
settings. We then geocode each toponym.

To do this, we compute a set of features for each geolocation
candidate for a toponym:

• IsCapital: it is 1 if the GeoNames feature code is PPLC, and
only if the candidate comes from the string match.

• IsCountry: it is 1 if the GeoNames feature code is PCLI or
PCLS, and only if the candidate comes from the string match.

• AdminLevel: the numeric level (1-5) of the administrative
unit (ADM or PPL) in the GeoNames feature code; 0 for
capital cities or countries; 6 for geolocations without a level.

• IsCity: it is 1 if the GeoNames feature code begins with PPL
(some populated location).

• Population: population provided by GeoNames.
• DocCountryMatch: the probability of the country of the can-
didate geolocation in the document country distribution.

Finally, the candidates are ranked using the following order:
IsCapital descending, IsCountry descending, DocCoun- tryMatch
descending, AdminLevel ascending, IsCity descending, Population
descending. The algorithm selects the best results according to the
ranking strategy, therefore a candidate is always chosen even if
none of the candidates matches the correct location. A thresh-
old rule has proven effective to filter out unlikely solutions: if

AdminLevel > 5 and the candidate Country is not the country
with highest DocCountryMatch, the location is discarded.

5.2.3 Evaluation. We evaluate these algorithms on the Geocoding
dataset described above. In particular, we consider several metrics:

• For correct prediction, we consider two cases:
– True Positive: match exists and correctly predicted
– True Negative: match does not exist and is correctly ig-
nored

– Correct: sum of the two above
• For incorrect prediction, we consider three cases:
– False Positive (new selection): match does not exist, but
some value is wrongly predicted

– False Negative: match exists but is not selected (i.e ex-
cluded by threshold)

– False Positive (wrong selection): match exists but wrong
candidate is selected

– Incorrect: sum of the three above
• For False Positive (wrong selection) we compute the average
distance of the incorrect guess to the correct one.

• For the toponyms which were tagged as non-locations, how
many were identified as locations.

We can see from Table 4 that an approach based on features is
better suited than other methods based on geographical distances.
Both FeatureRank and SearchFeatureRank reach similar perfor-
mances, with correct prediction in 79% and 80% of the cases, respec-
tively. The only notable difference is in the median distance error,
which decreases in the search engine version. Note that during the
geocoding annotation process, it was possible to indicate whether a
toponym is correct, and in 18 cases we found that the toponym was
selected incorrectly during the first round of annotations. Using
this information, we are able to test the performance of our models
on such cases, and we find that FeatureRank correctly does not
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match these cases to anything 50% of the time (compared to 0% by
BM and 22% by Chen baselines).

When we consider the 29 locations known to be in US & Europe
separately from all others, we find that our algorithm attains 100%
accuracy for locations in US & Europe and 84% for those outside
(and for those toponyms which are locations, but which are not
in GeoNames, the algorithm performs the worst, at 48% accuracy).
However, in terms of guessed locations, only 69% of the locations
our algorithm guesses to be in US & Europe are correct, compared
to 80% of those guessed in other locales. In particular, our algo-
rithm works well for locations in Libya, Colombia, Afghanistan
and Ecuador, where 100% of locations are correctly predicted. We
note that the worst performing countries are Panama, Mexico and
Paraguay, for which the algorithm never predicts correctly (how-
ever, we also do not have any projects about Panama and Paraguay
in the training data, though locations from those countries could
be mentioned in other projects). We hypothesize it is due to the
similar naming and language conventions among these countries.

6 APPLICATION STUDY
Finally, we apply the tuned toponym extraction and the custom
FeatureRank geocoding algorithm to the HumSet dataset. Although
we do not have the ground truth for these labels, we examine poten-
tial biases in the locations that the baseline models find, compared
to our tuned ones. In total, we annotate 6733 documents, extracting
13 967 distinct locations. Figure 2 shows the number of locations
identified by the two baseline models, and two tuned models, by
country (left) and by country grouped by their human development
index (right). We find that, generally, the number of matched loca-
tions increases for both models. However, for roBERTa, the matches
in US decrease dramatically, which is also reflected in the lower
matches in countries with very high HDI. Note that this effect was
not intended by the tuning of the algorithm, and is an interesting
side effect. We can also notice that the number of locations detected
increases even in countries that were not in the training set, like
Democratic Republic Of the Congo (CD) and Mozambique (MZ).

Figure 3 shows a map with areas highlighted in blue where the
baseline roBERTa model finds more locations, and highlighted in
red where the tuned roBERTa model finds more. We observe that
the baseline model favors United States and Europe, and Australia
– countries with high and very high development index. In fact, the
tuned model predicts 55% fewer matches in US. On the other hand,
the countries highlighted in yellow – those for which there are
projects in the HumSet data – show an increase in matches, espe-
cially Trinidad and Tobago has more than twice as many matches
(from 92 by baseline to 191 by tuned), Domenican Republic in-
creases by 17%, Bahamas by 16%, Sudan 14%, and Lybia by 12%.
However, even countries which do not have projects in the HumSet
documents have more matches, including Morocco at 102% more,
South Korea 90%, North Korea 81%, and Myanmar 64%. As we do
not know the ground truth of these matches, more work needs to be
done to understand whether this is due to increase in accuracy, or
whether this is an evidence of a new geographic bias. If these new
matches are indeed correct, this would point to a generalizability
of these models beyond the countries of the tuned data.

7 DISCUSSION
As we attempted to improve the performance of state-of-the-art
NER for geolocation of entities in humanitarian texts, we discovered
that training data from the humanitarian domain has not only
improved accuracy of the tools, but also possibly helped alleviate
the geographic bias of these tools toward theWestern countries. Our
findings during the application of the baseline and tuned algorithm
to the HumSet data suggest that data extraction tools should be
tested for bias in a systematic way, as proposed by algorithmic
auditing proponents [32]. The social justice concerns auditors of
economic and governmental systems extend to the use of AI tools in
regards to possibly vulnerable populations, such as those needing
humanitarian assistance. Similar concerns have been raised in the
use of AI for medical diagnosis [29] and hiring [26]. Auditing is
especially necessary for black-box algorithms wherein coverage
and completeness are impossible to ascertain, unlike for algorithms
that use gazetteers or databases.

In humanitarian context, geographic accuracy is imperative for
the accurate assessment of needs and their development over time.
During the development of the annotated resources, we encoun-
tered several peculiarities of geolocations present in humanitarian
texts. First, we often encounter geo-relevant organization names,
such as “Syrian Arab Red Crescent” or “European Commissioner for
Crisis Management” that indicate their affiliation or source, but not
necessarily the location of their current involvement. We observed
that this often would decrease the performance of distance-based
algorithms that average locations of found entity candidates. A
specialized module to handle such information may benefit the
mapping of the entities involved in a project. Second, locations of-
ten have qualifiers such as “western Yemen” or “north of Baghdad”,
necessitating for additional semantics in location representation
that could capture both the directionality and uncertainty of the
location. Third, rapid developments on the ground, such as the
building or dismantling refugee camps, should be added to the
geographic resources used for humanitarian aid on an ongoing
basis.

More research is needed to improve these tools and evaluate them
on a larger set of documents. Further, thus far only documents in
English language were considered (although many humanitarian
organizations publish their reports in English for international
consumption). This paper does not use any personal data, instead it
uses only published reports and news articles, available under the
Apache 2.0 license. We hope the annotated resources and guidelines
provided in this paper will spur further work on tuning NER tools
to handle data around vulnerable populations.
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