
Revista Brasileira de Ensino de Física, vol. 44, e20220101 (2022) Didactic Resources
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Licença Creative Commons

Learning Deep Learning

Henrique F. de Arruda*1,2 , Alexandre Benatti1 , César Henrique Comin3,
Luciano da F. Costa1

1Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.
2ISI Foundation, Via Chisola 5, 10126, Turin, Italy.

3Universidade Federal de São Carlos, Departamento de Ciência da Computação, São Carlos, SP, Brasil.

Received on April 01, 2022. Revised on July 21, 2022. Accepted on July 22, 2022.

As a consequence of its capability of creating high level abstractions from data, deep learning has been effectively
employed in a wide range of applications, including physics. Though deep learning can be, at first and simplistically
understood in terms of very large neural networks, it also encompasses new concepts and methods. In order to
understand and apply deep learning, it is important to become familiarized with the respective basic concepts. In
this text, after briefly revising some works relating to physics and deep learning, we introduce and discuss some
of the main principles of deep learning as well as some of its principal models. More specifically, we describe the
main elements, their use, as well as several of the possible network architectures. A companion tutorial in Python
has been prepared in order to complement our approach.
Keywords: Deep learning, Tutorial, Classification.

1. Introduction

In order for humans to interact with their environment,
which includes other humans, it is necessary to develop
models of the entities in the world (e.g. [1]). These
models allow not only the recognition of important
objects/actions, but also provide subsidies for making
predictions that can have great impact on our lives.
As a consequence of our restricted cognitive abilities,
the developed models of world entities need to have
some level of abstraction, so as to allow a more effective
handling and association of concepts, and also as a
means to obtain some degree of generalization in the
representations [2].
Interestingly, the ability of abstraction is required from

humans, as a consequence of the need to prevent a level
of detail that would otherwise surpasses our memory
and/or processing capacity [3]. So, when we derive a
category of a real object such as a pear, we leave out
a large amount of detailed information (e.g. color varia-
tions, small shape variations, etc.) so as to accommodate
the almost unlimited instances of this fruit that can be
found. Provided that we chose an effective set of features
to describe the pear, we will be able to recognize almost
any instance of this fruit as being a pear, while generally
not being able to distinguish between the pears in a tree.
Ideally, it would be interesting that the recognition

operated at varying levels of details so that, after
recognizing the general type of object, we could process
to subsequent levels of increased detail and information,
therefore achieving a more powerful performance.

* Correspondence email address: h.f.arruda@gmail.com

This is the case with several categories that are par-
ticularly important to humans, such as faces, plant and
animals, as well as actions, among others. In these cases,
subcategories are created, leading to increasing levels
of information and detail. However, because of limited
memory and processing, the problem becomes increas-
ingly complex (e.g. [4]), and we need to stop this sub-
categorization at a point that is viable given our needs.
As a consequence of the fundamental importance of

pattern recognition for humans, and also of our limita-
tions, interest was progressively invested in developing
automated means for performing this ability, leading to
areas such as automated pattern recognition, machine
learning, and computer vision (e.g. [5]).
Artificial approaches to pattern recognition typically

involve two main steps: (a) feature extraction; and
(b) classification based on these features (e.g. [1, 6]).
Figure 1 illustrates these two stages. While the former
was initially human-assisted, efforts were focused on
the classification itself. From the very beginning, neural
networks were understood to provide a motivation and
reference, as a consequence of the impressive power of
biological nervous systems (e.g. [7]).
Interestingly, the subject of artificial neural networks

(e.g. [8]) received successive waves of attention from the
scientific-technologic community (for instance, respec-
tive to the Perceptron (e.g. [9]), and Hopfield networks
(e.g. [10, 11]). These waves, frequently observed in
scientific development, are characterized by a surge
of development induced by one or more important
advances, until a kind of saturation is reached as a
consequence of the necessity of new major conceptual
and/or technological progresses. After saturation arises,

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0002-4325-6888
https://orcid.org/0000-0002-7419-4712
https://orcid.org/0000-0001-5203-4366
emailto:h.f.arruda@gmail.com

e20220101-2 Learning Deep Learning

...

size

weight

width

sweetness

Stage 1: Feature extraction

Category

...
f Classifier

Supervised

Data

Stage 2: Classification

→

Figure 1: Scheme of classification that starts from the feature
extraction step, in which information from the object (e.g. a
pear) is measured, to the classification where the respective
category is assigned. In this example, we show a supervised
classifier. So, a database (set of training samples) is used.

new subsequent waves of development are induced, inte-
grating and complementing the previous developments
through new approaches and perspectives.
The great current interest in deep learning stems

from the impressive performance that has been often
obtained. These achievements are a consequence
of several interrelated factors. First, we have that
computing hardware has developed to unprecedented
levels of performance, with emphasis on GPUs (Graphics
Processing Units), paving the way to implementing and
performing large neural algorithms [12]. Thus, many
layers are now possible, each incorporating impressive
numbers of neurons.

Another important basis of deep learning has been
the ever increasing availability of good quality large
databases [13]. Added to these, we also have conceptual
and methodological advances such as the possibility to
automatic define and extract features, as well as the
incorporation of novel activation functions [13].

Aiming at creating a guideline for learning deep
learning, the present text provides a brief and hopefully
accessible conceptual introduction to some of the main
respective aspects and developments. We present and
discuss the main concepts and illustrate the respective
applications. We also developed a tutorial that com-
prises examples of all presented deep learning variations,
which can be accessed from the following link: https:
//github.com/hfarruda/deeplearningtutorial.

This paper is organized as follows. Section 2 describes
the use of physics to develop deep learning as well as its
applications to solve physics-related problems. Section 3
describes traditional neural networks. In Section 4, we
cover the main characteristics of deep learning networks,
which include novel activation functions, computer
architectures, as well as some of the main deep learning
architectures.

2. Deep Learning and Physics

The development of machine learning and artificial
intelligence has relied on concepts from diverse areas,

including but not limited to mathematics, computer
science, biology, and physics. In the case of deep learning,
important concepts of physics [14, 15] have often been
employed. Here, we brief and non-exhaustively review
some of the concepts of physics that have found their
way to deep learning, and vice versa [16].
Among the various artificial neural networks devel-

opments, we have the concept of Boltzmann Machine
(BM) [17], which is also known as stochastic Hopfield
due to shared characteristics. The BM is based on the
concepts of statistical physics, and its name refers to the
original study Boltzmann in the areas of thermodynam-
ics and statistics [8]. For more details, see Section 4.5.4.
Variations of this type of neural network have been
important to developments and applications on deep
learning (e.g., [18, 19]), mainly regarding computer
vision [18, 20, 21]. For instance, the Deep Boltzmann
Machine has been applied to handwritten digit recogni-
tion (e.g. [18]).
Another interesting approach is the Deep Lagrangian

Networks (DeLaN) [22], which considers Lagrangian
mechanics in order to learn the dynamics of a system.
As an example of application, [22] used Deep Lagrangian
Networks for robot tracking control. Another work
considering Lagrangian dynamics was developed aimed
at applications to fiber-optic communication [23]. More
specifically, a deep learning technique was used to solve a
problem related to communication, in which the signal
propagation is described by the nonlinear Schrödinger
equation.
In addition to deep learning techniques based on

physics, deep learning has also been applied to the
analysis of physics-related phenomena [24, 25]. For
instance, the authors of [26] proposed a deep learning
model capable of learning nonlinear partial differential
equations of physical dynamics. General machine learn-
ing techniques, with a focus on deep learning, have been
often employed to the analysis of high-energy physics
experiments. An interesting review [27] has indicated the
use of deep learning in the Large Hadron Collider (LHC)
collision experiments, such as the use of neural networks
to assist simulations of related dynamics [28, 29]. Other
examples of application of deep learning in physics
include: analysis of satellite data to forecast oceanic
phenomena [30], understanding the physics of extensive
air showers [31], among other possibilities [24, 32].

3. Traditional Neural Networks

The idea of creating a classifier based on neurons starts
from a single unity (see Fig. 2a) whose dendrites can
receive the input information that is weighted by the
weight matrix W = [wi,k], the cell body sums up
the data, and the axons give the classification activa-
tion, which is controlled by a given function (called
activation function). More information regarding the
activation functions are provided in Section 4.3. In order

Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101

https://github.com/hfarruda/deeplearningtutorial
https://github.com/hfarruda/deeplearningtutorial

Arruda et al. e20220101-3

w 2,k
w 3,k

wN,k

w 1,k

Ʃ zk yk

Activation
function

Neuron kx 2

x 3

x N

x 1

x i

wi,k

(a)

(b)

Figure 2: (a) A highly simplified biological neuron. The main
parts of a neuron include: dendrites and synapses; the cellular
body; the implantation cone (represented as the dashed region),
in which the integration occurs; and the axons that transmit the
signal to the next neuron(s). (b) A possible model of a neuron
k, k = 1, 2, . . . , K: The input data xi, i = 1, 2, . . . , N , come
from the input layer at the left-hand side, and each of these
values is multiplied by the respective weight wi,k. These values
are then summed up, yielding zk, which is fed into the activation
function, producing the output yk.

to assign the correct class to a given input data, it
is necessary to associate the more appropriate weights,
by using a given training method. One possibility is to
optimize W according to an error function, where the
error is updated as follows

wi,k(n) = wi,k(n− 1) + αxi ε, (1)

where wi,k ∈ W , wi,k(n − 1) are the current weights,
wi,k(n) are the updated weights, α is the learning rate,
xi is the input data, and ε is the error. Interestingly, this
simple methodology can classify data from two classes
that are linearly separated. Figure 2 presents a highly
simplified biological neuron (a) as well as a possible
respective model (b).
In order to represent more general regions, sets of

neurons have been considered, which are organized as
a network [8]. The more straightforward manner is the
use of the Multilayer Perceptron (MLP) [8]. In this case,
the neurons are organized into three types of layers:

• Input layer: the first layer of the network (data
input);

• Hidden layer: receives information from a previ-
ous and, after a sum and activation operation,
transmits the data to the next layer. In the same
network, it is possible to have as much hidden
layers as necessary;

• Output layer: gives the classifier answer.

In MLP, all the neurons from a previous layer can
be connected to the next, which is called dense. The
training step consists of the method of back propaga-
tion [8] being similar to the approach employed to a
single neuron. More specifically, the training data is
fed into the network, and the weights are optimized
to decrease the error function from the output to the
input layer. Interestingly, it was found that one hidden
layer, for a sufficient large number of neurons, is capable
of learning any possible shape [33], which is called
universal aproximation theorem. So, theoretically, this
number of layers is enough to any problem. However,
usually at least two hidden layers are used because it
was found to decrease the learning time and improve
the accuracy [34].

4. The Deep Learning Framework

One of the main points of deep-learning is the capability
of the network to extract features directly from the
data. While feature extraction and classification are
performed in standard machine learning methods, in
deep-learning the network can learn the features from
the raw data. Figure 3 illustrates the similarities and
differences between a typical neural network and a
convolutional deep learning network.

4.1. Optimization

Optimization is one of the key points of deep learning.
This step consists of minimizing the loss function during
neural network training. The loss function, which mea-
sures the quality of the neural network in modeling the
data, is used in order to optimize the network weights
(W). There are several functions that can be used as
loss functions, some example include:Mean Square Error
(MSE), Mean Absolute Error (MAE), Mean Bias Error
(MBE), SVM Loss, and Cross entropy loss. The chosen
function depends on the deep learning network type and
the performed task.
The method used for optimization is called Optimizer.

This optimization allows the classifier to learn its weights
W with respect to the training data. Because it is not
possible to know the location of the global minimum
of this function, several methods have been considered
including gradient descent, stochastic gradient descent,
and Adam [35]. The latter, one of the most often
adopted methods, consists of an efficient method for
stochastic optimization. As in the stochastic gradient
descent, Adam also employs random sub-samples, called
minibatches. For each of the optimized parameters,

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022

e20220101-4 Learning Deep Learning

Input layer Hidden layer Output layer

Data

(a)

(b)

Input layer Feature extraction

Data

Convolution Pooling Convolution Pooling Flattening

...

Classifier

... ...

... ...
k0

k1

kN

k'0
k'1

k'N

k'2

k'3

Figure 3: A simple multilayer perceptron (a), and a convolutional deep learning network (b). A convolutional network involves layers
dedicated to convolution, pooling, and flattening. Each matrix of the convolution layer is associated with a given kernel ki. Often
a feedforward network is adopted for the classifier component.

one individual adaptive learning rate is used, and the
parameters are estimated from the first and second
moments of the gradients. This method is indicated
for problems involving a significant number of parame-
ters [35]. Another advantage of Adam is that it requires
relatively few memory.

4.2. GPUs

The Graphics Processing Unit (GPU) was created to
deal with graphical applications, such as games. By
considering the high processing power of these GPUs,
the manufacturers created a novel type of boards, called
General Purpose Graphics Processing Unit (GPGPU)
that can be applied to a wider range of applications. One
of the advantages of the GPGPUs, when comparing with
GPUs, is that programs of GPGPUs can be implemented
in a simpler way. Consequently, many libraries have been
developed, which include more efficient methods of linear
algebra, computer graphics, image processing, and deep
learning.
By comparing Central Processing Units (CPUs) and

GPGPUs, typically the GPGPUs have a considerably
higher number of cores (see Figure 4). However, only
some specific applications can be executed in a GPGPU,
which are characterized by data parallelism tasks. For
instance, GPGPUs are efficient when a given operation
is computed over many elements of an array. Some
disadvantages of using GPGPUs include the high cost
of the data transfer between the CPU RAM (Random-
Access Memory) and the board memory, and the limited
memory size, among others. GPGPUs typically cannot
replace CPUs, but many novel approaches have become
achievable with this technology, including deep learning.

GPGPUCPU

Memory

Control

Core Core

Core Core

Memory

Control

Core Core

Core Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core Core

Core

Core Core

Core Core

Control

Core Core

Core Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core Core

Core

Core Core

Core Core

Control

Core Core

Core Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core Core

Core

Core Core

Core Core

Control

Core Core

Core Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core Core

Core

Core Core

Core Core

Figure 4: A simplified comparison between CPU and GPGPU.
The CPU cores are more powerful and can be employed to
execute complex tasks in parallel, while the GPGPU have lots
of cores that are more specific to performing massive processing
of data.

4.3. Activation functions

In biological neurons, the cell body sums up the input
stimulus, and the output is controlled by a respective
activation function. In Figure 5 we show some of the
main types of activation functions. In the case of the step
function [36], if the integrated stimulus intensity is lower
than zero, the neuron is considered unactivated, yielding
zero as result. Otherwise, the neuron returns one and is
considered activated (see Fig. 5a). The step function is
typically employed for classification of linearly separable
data (e.g. [8]).
Other activation functions can also be employed. For

example, we have the sigmoid function [13] (shown in
Figure 5(b)), which can be interpreted as a probability,
as it returns values between zero and one. This function

Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101

Arruda et al. e20220101-5

Figure 5: Examples of activation functions, used in specific neural networks-based solutions.

is defined as

f(z) = 1
1 + e−z

, (2)

where z is the value of the cell body (at the implan-
tation cone) sum. Another alternative is the hyperbolic
tangent [37], which is defined as

f(z) = ez − e−z

ez + e−z
. (3)

In this case, the function returns positive or negative
values when the input is positive or negative, respec-
tively, as shown in Figure 5(c). Due to this characteristic,
the hyperbolic tangent is typically employed in tasks
involving many negative inputs.
Another possibility is the identity function [13], also

called linear function. In this case, the input and
output are exactly the same, as can be observed in
Figure 5(d). This function is typically employed for
regression tasks. In the case of convolutional neural
networks (see Section 4.5), the most common activation
function is the Rectified Linear Unit (ReLU) [13], which
is a function defined as

f(z) = max(0, z). (4)

This functions is shown in Figure 5(e). In the case
of image data, the value of the pixels are given by
positive numbers. So the input layer does not have
negative values. This function is understood as being
ease to optimize and to preserve properties having good
generalization potential.
Alternatively, the Leaky Rectified Linear Units (Leaky

ReLU) [38, 39] function can be employed instead of
ReLu. The difference is that the Leaky ReLU returns
output values different from zero when the inputs are
negative. In some situations, the Leaky ReLU was found
to reduce the training time. This function is defined as

f(z) = max(αz, z), (5)

where α is the parameter that controls the negative part
of the function. An example of this function is illustrated
in the Figure 5(f).

The softmax function [13] can be used in the last layer
to deal with classification problems in which there are
many distinct classes. This function is defined for each
neuron k, k = 1, 2, . . . ,K (see Fig. 2) as follows

f(zk) = ezk∑K
i=1 e

zi

, (6)

where zi is the ith input to the respective activation
function and K is the number of inputs to that function.
Because the sum of the exponential values normalizes
this function, it can be understood as a probability
distribution.

4.4. Deep learning main aspects

This subsection briefly describes the characteristic
aspects of deep learning.

4.4.1. Bias

The concept of bias consists of incorporating a fixed
value, b, as input to the neural layer [40]. This value
allows the activation function to adapt in order to
better fit the data. Biasing can be mathematically
represented as

yk = f(XT ·Wk + b), (7)

where X = [xi] is the input column vector, Wk = [wi,k]
is the column vector k derived from the weight matrix
W , f(·) is a given activation function, and yk is the
output of the neuron k.

4.4.2. One hot encoding

One possibility to deal with categorical features (e.g.,
car brands, nationalities, and fruits) is to map the
categories into integer numbers [41]. However, the order
of the numbers is arbitrary and can be interpreted by
the classifier as a ranking. Another solution consists
of assigning a separated variable to each category. An
example regarding fruits can be found in Figure 6. This
approach is called one hot encoding.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022

e20220101-6 Learning Deep Learning

Encodings

Blueberry

Pear

Apple

Pear

Apple

Fruit

1 0 0

0 1 0

0 0 1

1

1

0 0

00

Categorical
features

Figure 6: Example of One Hot Encoding, where the fruits are
converted into a sparse matrix.

0 3 6 1 2 0
9 7 5 6 5 2
4
1 3

8 8 5
5 4

9 0
2 3

7 6 7 8 8 4
1 3 1 2 0 7

9 6 5
8 8 9
7 8 8

Figure 7: Example of max pooling, in which the highest number
of each window is selected and assigned to the new, reduced
matrix.

4.4.3. Pooling

This process is used in convolutional neural networks
(CNNs), typically after the convolution, for reducing the
dimensionality of a given matrix, by first partitioning
each matrix in an intermediate layer and then mapping
each partition into a single value [42]. There are many
possibilities of pooling. For example, the max pooling
selects the maximum value from each window; the min
pooling considers the minimum value instead, among
many other possibilities. See an example in Figure 7.

4.4.4. Flattening

This technique is employed in CNNs to convert a 2D
matrix (or a set of matrices) into a 1D vector, as

x1,1 x1,2 · · · x1,M

x2,1 x2,2 · · · x2,M

...
...

. . .
...

xN,1 xN,2 · · · xN,M

Flattening
−−−−−−−→

x1,1
x1,2
...

x1,M

x2,1
x2,2
...

x2,M

...
xN,M

, (8)

where N×M is the dimension of the input matrixX. By
considering a matrix set, the resultant vector represents
the concatenation of the vectors respectively to all of the
matrices.

x

y

(a)

x

y

x

y

(b) (c)

Figure 8: Example of overfitting while classifying samples from
two classes, represented by blue circles and yellow squares, in
the presence of noisee. The dashed lines indicate the proper
separation between regions, and the black lines indicate the
separation found by a classifier. This classification problem can
be described by the regions as in (a), but different samplings
from this problem can lead to rather different classification
curves, as illustrated in (b) and (c), since the curve adheres
too much to each of the noisy sampled data sets.

4.4.5. Overfitting

Overfitting (e.g. [43]) happens when the model fits, in
presence of noise or original category error, many details
of the training data at the expense of undermining
its generality for classifying different data. Figure 8
illustrates an example of this behavior. Some of the
possible approaches to address overfitting are discussed
in the following.

4.4.6. Dropout

Dropout was proposed in order to minimize the problem
of overfitting [44]. More specifically, the objective of
this approach is to avoid excessive detail by replacing a
percentage of the values of a given layer with zeros. The
percentage of zeros is the parameter of this technique.
The success of Dropout derives from the fact that the
neurons do not learn too much detail of the instances of
the training set. Alternatively, it can be considered that
Dropout generates many different versions of a neural
network, and each version has to fit the data with good
accuracy.

4.4.7. Batch normalization

Batch normalization [45] is based on the idea of normal-
izing the input of each layer to zero mean and unit stan-
dard deviation for a given batch of data. The advantages
of applying this technique include the reduction of the
number of training steps and, consequently, a decrease
of the learning time. This effect occurs because it allows
the neurons from any layer to learn separately from
those in the other layers. Another advantage is that, in

Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101

Arruda et al. e20220101-7

some cases, batch normalization can mitigate overfitting.
In these cases, the use of Dropout can be unnecessary.

4.4.8. Weight regularization

Typically, overfitting leads to large values for the weights
W . Thus, this effect can be reduced by constraining the
weights to have small values, that is, by regularizing the
values of the weights. This technique consists of adding
penalties to the loss function during the optimization
step. Some possibilities of weight regularization were
proposed [13], such as L1, L2 (also called weight decay),
and L1L2. L1 and L2 are defined as the sum of the
absolute weights and the sum of the squared weights,
respectively, and L1L2 employs the sum of both regular-
izations, which are defined as

L1 = l1
∑

i

|wi,k|, (9)

L2 = l2
∑

i

w2
i,k, (10)

L1L2 = L1 + L2, (11)

where l1 and l2 set the amount of regularization and wi,k

are elements of the matrix W .

4.5. Types of deep learning networks

In order to deal with a variety of problems, many
neural network topologies have been proposed in the
literature [13]. Here, we describe some of the most
used deep learning topologies, and comment on their
respective applications.

4.5.1. Feedforward

Feedforward is one of the first artificial neural net-
work topologies proposed in the literature [46]. In spite
of its simplicity, this network is still used nowadays,
including deep learning. In a feedforward structure, the
information moves in a single direction (from the input
nodes to the output, through the hidden layers), without
loops. Figure 9 shows a typical example of a feedforward
network for binary classification, having a single neuron
in the output layer.
In Deep Learning Tutorial – 1,1 two main examples of

the use of this network can be found. In the first example,
we employ the feedforward network in binary classifi-
cation, more specifically to distinguish wine from two
cultivars, by using a wine dataset containing chemical
information about different wines. The second consists of
an analysis of the same dataset, which can be classified
into three classes, according to their cultivars. In this
case, we show an example of the use of softmax as

1 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_feedforward.ipynb

Figure 9: Example of a feedforward network that can be
employed in binary classifications.

the activation function. In addition to the illustrated
classification task, the feedforward networks are also
employed to regression tasks.

4.5.2. Convolutional neural network

A convolutional neural network (CNN) [13] is often
applied for visual analysis. CNNs can be particularly
efficient in tasks such as objects detection, classification,
and face detection. This is to a great extent allowed by
the fact that these networks can automatically learn
effective features. An example of CNN is shown in
Figure 3.
The first layer of a CNN is a matrix corresponding

to an image. The hidden layers are associated to spe-
cific convolutions, followed by respective pooling layers.
These two types of layers are repeated many times,
alternately. The matrices are then converted into an 1D
vector by using the process called flattening. Finally,
the vector is sent to a classifier, e.g., a feedforward
network. Many variations of this network can be found
in the literature. Usually, the dropout technique does not
tend to be particularly effective when applied to CNNs
because a very large number of nullifying operations
would need to be applied in order to counteract the large
redundancy commonly found in visual data.
In Deep Learning Tutorial – 2,2 we present a tutorial

regarding classification, using the well-known CIFAR10,
which consist of a dataset of colored digits images with
10 classes.

4.5.3. Recurrent neural network

Recurrent neural networks (RNN) [47] consists of a class
of neural networks with recurrent layers, as illustrated
in Figure 10. In these layers, for each neuron, the output
is re-inserted as an input. The hyperbolic tangent is
employed as the activation function in hidden layers.
This recurrent behavior can be understood as a type of
memory, which gives rise to different ways of processing
sequences or vectors. This type of network has been

2 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_CNN.ipynb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022

https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_feedforward.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_feedforward.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_feedforward.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_CNN.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_CNN.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_CNN.ipynb

e20220101-8 Learning Deep Learning

Figure 10: Example of RNN, which is similar to the structure
of the feedfoward network, but with recurrent neurons.

employed to solve various problems including speech
recognition, text translation, language modeling, and
image captioning, among others.
One problem that can affect RNNs is called vanishing

gradient, which consists in the gradient of loss functions
vanishing to zero during the training stage [48]. In order
to address this problem, it is possible to use the Long
Short-Term Memory (LSTM)3 [49]. For each LSTM
neuron, there is a different set of rules that involves some
activation functions (sigmoids and hyperbolic tangents).
These functions control the flow of incoming information
so as to boost the output, consequently reducing the
effect of the vanishing gradient.
In Deep Learning Tutorial – 3,4 we present a deep

LSTM learning model able to predict Bitcoin prices
along time by using the input as a temporal series.

4.5.4. Boltzmann machine

The Boltzmann machine is a stochastic neural network
where all neurons are non-directly interconnected [50]
(see Fig. 11a). The types of neurons used in this model
are divided into visible and hidden, the information being
input into the former type of neurons, which can have
their values modified. Simulated annealing [51] is used
in the training step instead of gradient descent. One
disadvantage of this network in its basic configuration
is its relatively high computational cost due to the high
number of connections increasing exponentially with the
number of neurons.
One possible solution to the problem of high com-

putational cost is the restricted Boltzmann machine
(RBM) [52], which is a variant of the Boltzmann machine
(see Fig. 11b). In this case, the nodes are divided into
two layers, that represent visible and hidden neurons.
The neurons from one layer are connected with all the
neurons of the other layer. Furthermore, there are no
connections between nodes in the same layer. Another

3 More information about the LSTM can be found in http://cola
h.github.io/posts/2015-08-Understanding-LSTMs/.
4 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_LSTM.ipynb

(a)(a)

(b)(b)

Figure 11: (a) Example of Boltzmann Machine network and (b)
example of Restricted Boltzmann Machine network, in which
the green and blue nodes represent visible and hidden neurons,
respectively.

difference is the employed training step of RBM, which
can be the contrastive divergence (CD) algorithm [52].
Among the many possible applications, we can list
dimensionality reduction, classification, collaborative fil-
tering, feature learning, topic modeling, many-body
quantum mechanics, and recommendation systems.
In Deep Learning Tutorial – 4,5 we provide an example

of RBM for a recommendation system of CDs and
Vinyls.

4.5.5. Autoencoders

Autoencoders consist of a deep learning model that
generates a coding representation from a given data [53].
One example of autoencoder is shown in Figure 12.
The first part of the network is used to create the code
(encoder), and the second is responsible for recovering
the original data (decoder). The quality of training
is measured by considering the differences between
the input layer and the output layer. After training,
the decoder and the output layer are removed, and the
values produced by the encoder become the output of the
network. There are many applications of autoencoders,
which include dimensionality reduction, information
retrieval, as well as several computer vision tasks. In the
latter, the encoder and decoder layers are typically
convolutional.

5 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_RBM.ipynb

Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101

https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_LSTM.ipynb
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_LSTM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_LSTM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_RBM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_RBM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_RBM.ipynb

Arruda et al. e20220101-9

Figure 12: Example of an autoencoder network. After training,
the code layer becomes the output of the network.

In order to illustrate an autoencoder application, we
use the Fashion MNIST dataset, which comprises dif-
ferent types of clothes. By using the resulting codes, we
project the data using a Uniform Manifold Approxima-
tion and Projection (UMAP) [54]. The code is available
in Deep Learning Tutorial – 5.6

4.5.6. Generative adversarial networks

Generative Adversarial Networks (GANs) [55] are super-
vised deep learning models capable of generating,
through learning, patterns from data and noise. These
networks consist of two parts, the generator, and the
discriminator (see Figure 13). For instance, for a GAN
that creates characters, the generator is responsible for
creating the desired character, and the discriminator
monitors the quality of the generated character. The
training step is repeated many times, and the discrim-
inator is progressively made more strict regarding the
training dataset. Applications adopting GANs include
the generation of images from texts, videos from images,
and text from videos, among others. Also, GANs are
known to be sensitive to changes in network parame-
ters [56, 57].
In Deep Learning Tutorial – 6,7 we present an example

regarding handwritten character generation, using the
MNIST (Modified National Institute of Standards and
Technology) dataset to train a GAN. As a result, we cre-
ate a network that automatically generates handwritten
characters.

5. Performance Evaluation

Performance evaluation methods can be applied to each
deep learning configuration, and are often decisive for
enhancing performance and better understanding the
obtained results given the adopted configurations. In the
case of supervised methods, one of the most common
evaluation approach is the k-fold [40]. This approach

6 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_autoencoder.ipynb
7 https://github.com/hfarruda/deeplearningtutorial/blob/mast
er/deepLearning_GAN.ipynb

Figure 13: Example of Adversarial networks, which are divided
into two parts, the generator and discriminator.

consists of partitioning the data into k groups with the
same size. For each step, a group is selected as the test
group, while the remainder are considered the training
data. This process is repeated k times for all possible
test groups, and then an accuracy index is computed.
The average and standard deviation of this accuracy
are calculated. A high accuracy average means that the
method reached a high performance and a high standard
deviation suggests that the classifier has overfitted the
data (ex [58]).
For the cases in which a massive combination of

parameters needs to be tested, another approach can
be employed to avoid overfitting. In this case, the
data is divided into three sets, namely train, validation
and test. The training set is used for optimizing the
model weights. The validation set is used for estimating
the model performance and for tuning hyperparameters
(e.g., number of layers, dropout rate, number of training
epochs). After a final model is obtained, the test set is
used for estimating the model performance on previously
unseen data.

6. Concluding Remarks

Deep learning has been used to effectively solve many
problems involving classification and clustering. As such,
these networks have been incorporated into the most
diverse applications, ranging from automated movies
subtitles to self-driving cars. In principle, deep learning
structures consist of large neural networks involving
many neurons and considering very large datasets,
as well as GPGPUs. In addition, some new concepts
and methods have been incorporated in this approach,
including autoencoding, diverse activation functions, as
well as overfitting prevention.
In the present work, after briefly reviewing some

interdisciplinary works involving physics and deep learn-
ing, we briefly introduced the main elements underlying
deep learning, including its motivation, basic concepts,
and some of the main models. These elements are

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022

https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_autoencoder.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_GAN.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_autoencoder.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_autoencoder.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_GAN.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_GAN.ipynb

e20220101-10 Learning Deep Learning

Table 1: Comparison among the models considered in this work. *RBMs are normally employed as a part of the deep belief networks.
†NLP means Natural Language Processing. The last column presents links to tutorial elaborated for each model.

Models Learning Main Applications Information Flow Tutorials
Feedforwrd Supervised Classification and Regression. Single Direction Tutorial – 1

CNN Supervised Computer Vision. Single Direction Tutorial – 2
RNN Supervised Temporal Series. With Loops Tutorial – 3
RBM* Unsupervised Computer Vision, Recommender Systems, Undirected Tutorial – 4

Information Retrieval, and
Data compression, etc.

Autoencoder Unsupervised Information Retrieval and Single Direction Tutorial – 5
Data compression.

GAN Semi-supervised Generation of Images, Audio Synthesis, Single Direction Tutorial – 6
NLP†, and Temporal Series.

Full tutorial available at https://github.com/hfarruda/deeplearningtutorial

particularly important for understanding a wide range of
deep learning-related methods. Table 1 summarizes the
revised models and some of their respective characteris-
tics. A tutorial in Python has been prepared to serve as a
companion to this work, illustrating and complementing
the covered material (https://github.com/hfarruda/de
eplearningtutorial). It is hoped that the reader will be
motivated to probe further into the related literature.

Acknowledgments

Henrique F. de Arruda acknowledges FAPESP for spon-
sorship (grant no. 2018/10489-0, from 1st February
2019 until 31st May 2021). H. F. de Arruda also
thanks Soremartec S.A. and Soremartec Italia, Ferrero
Group, for partial financial support (from 1st July 2021).
His funders had no role in study design, data collec-
tion, and analysis, decision to publish, or manuscript
preparation. Alexandre Benatti thanks Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001. Luciano da F.
Costa thanks CNPq (grant no. 307085/2018-0) and
FAPESP (proc. 15/22308-2) for sponsorship. César H.
Comin thanks FAPESP (Grant Nos. 2018/09125-4 and
2021/12354-8) for financial support. This work has
been supported also by FAPESP grants 11/50761-2 and
15/22308-2.

References

[1] L.F. Costa, Modeling: The human approach to sci-
ence (cdt-8), available in: https://www.researchgate.net
/publication/333389500_Modeling_The_Human_App
roach_to_Science_CDT-8, accessed in 06/06/2019.

[2] E.B. Goldstein and J. Brockmole, Sensation and percep-
tion (Cengage Learning, Belmont, 2016).

[3] R.G. Cook and J.D. Smith, Psychological Science 17,
1059 (2006).

[4] L.F. Costa, Quantifying complexity (cdt-6), available in:
https://www.researchgate.net/publication/332877069_
Quantifying_Complexity_CDT-6, accessed in 06/06/
2019.

[5] L.F. Costa and R.M. Cesar Jr, Shape analysis and
classification: theory and practice (CRC Press, Inc.,
Boca Raton, 2000).

[6] R.O. Duda, P.E. Hart and D.G. Stork, Pattern classifi-
cation (John Wiley & Sons, Hoboken, 2012).

[7] F.R. Monte Ferreira, M.I. Nogueira and J. DeFelipe,
Frontiers in neuroanatomy 8, 1 (2014).

[8] S. Haykin, in: Neural networks and learning machines
(Pearson Education, India, 2009), 3 ed., v. 10.

[9] I. Stephen, IEEE Transactions on neural networks 50,
179 (1990).

[10] J.D. Keeler, Cognitive Science 12, 299 (1988).
[11] B. Xu, X. Liu and X. Liao, Computers & Mathematics

with Applications 45, 1729 (2003).
[12] S. Dutta, Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery 8, e1257 (2018).
[13] I. Goodfellow, Y. Bengio and A. Courville, Deep learning

(MIT press, Cambridge, 2016).
[14] N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost and

K. Um, arXiv:2109.05237 (2021).
[15] A. Tanaka, A. Tomiya and K. Hashimoto, Deep Learning

and Physics (Springer, Singapore, 2021).
[16] L. Zdeborva, Nature Physics 16, 602 (2020).
[17] D.E. Rumelhart, G.E. Hinton, J.L. McClelland, in:

Parallel distributed processing: Explorations in the
microstructure of cognition, edited by D.E. Rumelhart
and J.L. McClelland (MIT Press, Cambridge, 1986).

[18] R. Salakhutdinov and H. Larochelle, in: Proceedings
of the thirteenth international conference on artificial
intelligence and statistics (Sardinia, 2010).

[19] M.H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and
R. Melko, Physical Review X 8, 021050 (2018).

[20] N. Srivastava and R.R. Salakhutdinov, Advances in
neural information processing systems 25 (2012).

[21] I. Goodfellow, M. Mirza, A. Courville and Y. Bengio, in:
Proceedings of Advances in Neural Information Process-
ing Systems 26 (Lake Tahoe, 2013).

[22] M. Lutter, C. Ritter and J. Peters, arXiv:1907.04490
(2019).

[23] C. Häger and H.D. Pfister, IEEE Journal on Selected
Areas in Communications 39, 280 (2020).

[24] P. Sadowski and P. Baldi, in: Braverman Readings in
Machine Learning. Key Ideas from Inception to Current

Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101

https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_feedforward.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_CNN.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_LSTM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_RBM.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_autoencoder.ipynb
https://github.com/hfarruda/deeplearningtutorial/blob/master/deepLearning_GAN.ipynb
https://github.com/hfarruda/deeplearningtutorial
https://github.com/hfarruda/ deeplearningtutorial
https://github.com/hfarruda/ deeplearningtutorial
https://www.researchgate.net/publication/333389500_Modeling_The_Human_Approach_to_Science_CDT-8
https://www.researchgate.net/publication/333389500_Modeling_The_Human_Approach_to_Science_CDT-8
https://www.researchgate.net/publication/333389500_Modeling_The_Human_Approach_to_Science_CDT-8
https://www.researchgate.net/publication/332877069_Quantifying_Complexity_CDT-6
https://www.researchgate.net/publication/332877069_Quantifying_Complexity_CDT-6

Arruda et al. e20220101-11

State, edited by L. Rozonoer, B. Mirkin and I. Muchnik
(Springer, Boston, 2018).

[25] M. Erdmann, J. Glombitza, G. Kasieczka and U.
Klemradt, Deep Learning for Physics Research (World
Scientific, Singapore, 2021).

[26] M. Raissi, The Journal of Machine Learning Research
19, 932 (2018).

[27] D. Guest, K. Cranmer and D. Whiteson, Annual Review
of Nuclear and Particle Science 68, 161 (2018).

[28] T.A. Le, A.G. Baydin and F. Wood, in: Proceedings of
the 20th International Conference on Artificial Intelli-
gence and Statistics PMLR 54 (Fort Lauderdale, 2017).

[29] A.G. Baydin, L. Shao, W. Bhimji, L. Heinrich, L. Mead-
ows, J. Liu, A. Munk, S. Naderiparizi, B. Gram-Hansen,
G. Louppe, et al., in: Proceedings of the international
conference for high performance computing, networking,
storage and analysis (Denver, 2019).

[30] G. Zheng, X. Li, R.H. Zhang and B. Liu, Science
advances 6, eaba1482 (2020).

[31] A. Guillen, A. Bueno, J. Carceller, J. Martınez-
Velazquez, G. Rubio, C.T. Peixoto and P. Sanchez-
Lucas, Astroparticle Physics 111, 12 (2019).

[32] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J.
Denzler, N. Carvalhais and Prabhat, Nature 566, 195
(2019).

[33] R. Hecht-Nielsen, in: Proceedings of the international
conference on Neural Networks (New York, 1987).

[34] M.M. Poulton, in: Handbook of Geophysical Exploration:
Seismic Exploration (Elsevier, Amsterdam, 2001), v. 30.

[35] D.P. Kingma and J. Ba, arXiv:1412.6980 (2014).
[36] A.K. Jain, J. Mao and K. Mohiuddin, Computer 29, 31

(1996).
[37] P. Sibi, S.A. Jones and P. Siddarth, Journal of The-

oretical and Applied Information Technology 47, 1264
(2013).

[38] A.L. Maas, A.Y. Hannun and A.Y. Ng, in: Pro-
ceeding International Conference on Machine Learning
(Atlanta, 2013).

[39] B. Xu, N. Wang, T. Chen and M. Li, arXiv:1505.00853
(2015).

[40] C.M. Bishop and N.M. Nasrabadi, Pattern recognition
and machine learning (Springer, Berlim, 2006), v. 4.

[41] A. Deshpande and M. Kumar, Artificial intelligence
for big data: Complete guide to automating big data
solutions using artificial intelligence techniques (Packt
Publishing Ltd, Birmingham, 2018).

[42] M. Cheung, J. Shi, O. Wright, L.Y. Jiang, X. Liu and
J.M. Moura, IEEE Signal Processing Magazine 37, 139
(2020).

[43] X. Ying, in: 2018 International Conference on Computer
Information Science and Application Technology – v.
1168 (Daqing, 2019).

[44] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever
and R.R. Salakhutdinov, arXiv:1207.0580 (2012).

[45] S. Ioffe and C. Szegedy, in: Proceedings of the 32nd Inter-
national Conference on Machine Learning (Mountain
View, 2015).

[46] J. Schmidhuber, Neural networks 61, 85 (2015).
[47] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Nature

323, 533 (1986).

[48] Y. Bengio, P. Simard and P. Frasconi, IEEE transactions
on neural networks 5, 157 (1994).

[49] S. Hochreiter and J. Schmidhuber, Neural computation
9, 1735 (1997).

[50] G.E. Hinton, S. Osindero and Y.W. Teh, Neural compu-
tation 18, 1527 (2006).

[51] E. Aarts, J. Korst, Simulated annealing and Boltzmann
machines: a stochastic approach to combinatorial opti-
mization and neural computing (John Wiley & Sons,
Inc., Hoboken, 1989).

[52] G.E. Hinton, Neural computation 14, 1771 (2002).
[53] P. Baldi, in: Proceedings of ICML workshop on unsuper-

vised and transfer learning, PMLR 27 (Bellevue, 2012).
[54] L. McInnes, J. Healy and J. Melville, arXiv:1802.03426

(2018).
[55] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville and Y. Bengio, in:
Advances in neural information processing systems 27,
edited by Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence and K.Q. Weinberger (NeurIPS Proceedings,
Montreal, 2014).

[56] K. Roth, A. Lucchi, S. Nowozin and T. Hofmann, in:
Advances in Neural Information Processing Systems 30,
edited by I. Guyon, U. Von Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan and R. Garnett
(NeurIPS Proceedings, Montreal, 2014).

[57] L. Metz, B. Poole, D. Pfau and J. Sohl-Dickstein, in:
Proceedings of International Conference on Learning
Representations (San Juan, 2016).

[58] G.C. Cawley and N.L. Talbot, Journal of Machine
Learning Research 11, 2079 (2010).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0101 Revista Brasileira de Ensino de Física, vol. 44, e20220101, 2022

	Introduction
	Deep Learning and Physics
	Traditional Neural Networks
	The Deep Learning Framework
	Optimization
	GPUs
	Activation functions
	Deep learning main aspects
	Bias
	One hot encoding
	Pooling
	Flattening
	Overfitting
	Dropout
	Batch normalization
	Weight regularization

	Types of deep learning networks
	Feedforward
	Convolutional neural network
	Recurrent neural network
	Boltzmann machine
	Autoencoders
	Generative adversarial networks

	Performance Evaluation
	Concluding Remarks

