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A B S T R A C T

In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying
possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to
analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational
cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance
Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete
Fracture Network and thus identifying the backbone.
1. Introduction

Discrete Fracture Networks (DFNs) [1–3] are popular models
adopted for performing flow simulations in underground fractured
media, in which each fracture of the network is represented by a 2-
dimensional polygon into a 3-dimensional domain and characterized
by its own geometrical and hydro-geological features (namely, position,
size, orientation, fracture transmissivity, etc.). In this paper we propose
a new strategy, based on flux-regression Neural Networks (trained on
datasets generated via DFN flow simulations) and Layer-wise Relevance
Propagation, to identify backbones of DFNs, namely, suitable sub-
networks where the transport characteristics approximate the ones of
the original network [4]. These sub-networks can be used in many
applications and furnish relevant information for estimating probability
of clogging problems or leakage phenomena, which are crucial issues
for example for geological waste storage applications (e.g. geological
storage of CO2) and enhanced oil production.

In [5], backbones are identified through particle tracking methods
that find the fractures where most of the transport of particles occurs.

∗ Corresponding author at: Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy.
E-mail address: francesco.dellasanta@polito.it (F. Della Santa).

However, the computational domain characterizing a DFN can be quite
large and exhibit a great deal of geometrical complexity, therefore
transport and flow simulations turn out to be very costly, even if recent
literature has proposed several approaches to overcome these problems;
to mention a few: we recall here papers based on reformulations as
lower-dimensional problems [6–8]; papers based on the use of partially
conforming meshes [9–12]; other interesting geometrical approaches
are proposed in [13–18]; approaches consisting in a reformulation
of the problem as a PDE-constrained optimization problem [19–24],
that can be used in conjunction with several space discretizations [25,
26]. Nonetheless, computational simulation on a large DFN is still a
costly task, and it may be prohibitive to perform a large number of
simulations.

Due to the expensive cost of particle tracking simulations, other
backbone identification methods based on graph topology and Machine
Learning (ML) have been developed [4,27–31]. These methods usually
train the learning algorithms as binary classifiers for single fractures
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(backbone fracture or not) on datasets built using particle flow sim-
ulations; in particular, in [30] the fractures are labeled with respect
to the Flow Topology Graph (FTG), while in [4] with respect to the
mass flux. Then, the quality of the backbones (identified through a
classification of the DFN’s fractures) is quantitatively evaluated mea-
suring the similarity between the breakthrough curves of the DFN
and of the backbones; i.e., the time spent by particles to flow from
the source to the sink of the network. The great advantage of the
overmentioned ML methods is that, given a sufficiently large dataset
of classified fractures for the training, the backbone identification is
performed in a fast and accurate way, that is extremely useful in the
framework of Uncertainty Quantification (UQ), where a large number
of simulations is required; indeed, one of the main issues related to
DFNs is the lack of deterministic information about geometrical and
hydro-geological fracture features. This information is typically only
known by means of probability distribution, and data needed for actual
simulations are typically sampled from the available distributions. All
the cited backbone identification methods take into account, as quality
criterion of the identified backbone, the time spent by particles to flow
from the source to the sink of the network, such that the breakthrough
curve or the first passage time of the particles through the ‘‘backbone-
reduced’’ DFN is approximately equal to the one of the full DFN.
However, in some problems the quantity of interest (QoI) may be, for
example, the total flux exiting the DFN or flowing in some direction;
in this work, for identifying the backbone, we focus on the total flux
outflowing the network. Then, for a given DFN, the target is to identify
a backbone such that its exiting flux approximates the one of the full
DFN. The method is tested and applied in the framework of a DFN
with fixed geometry but with stochastic fracture transmissivities; in
particular, the method illustrated is able to identify a backbone of the
given DFN sufficiently good (with respect to the approximation of the
QoI) for every possible sample of fracture transmissivities, being useful
for analyzing clogging conditions or preventing leakage problems.

The method that we propose is based on the Layer-wise Relevance
Propagation (LRP) algorithm [32,33] applied to Neural Networks (NNs)
trained for flux regression of DFNs [34,35]. LRP is part of the family of
the eXplainable AI algorithms, introduced in recent years [36] to gain
insight about NN predictions. While most applications of LRP concern
NNs trained on image datasets for classification tasks (e.g. [32,37]),
here we apply LRP to a NN trained on physical simulation data for a
regression task. Furthermore, LRP usage is here characterized by an
innovative way of application; indeed, we do not run the LRP on input
data one by one, looking at the most relevant features for each single
prediction of the NNs, but we compute an approximation of the expected
relevance scores of all the features in the domain space. In this way, we
are able to use the LRP as a feature selection method and therefore
identify the backbone fractures of the DFN as the ones with higher
expected relevance score. Finally, we highlight the effectiveness of the
LRP-based feature selection method by checking the quality of the
identified backbone, running the DFN simulations on the corresponding
subnetwork.

The method proposed herein can be very useful in applications
requiring the identification of the most conducting fractures of a DFN
in which the fracture transmissivities are described by means of a
statistical distribution; in particular the backbone obtained with this
method can be extremely effective in the analysis of clogging conditions
(see e.g., [38]) and leakage problems for polluting substances (for
example CO2, see e.g. [39] and [40]). Indeed, since the backbones
returned by our method are identified in the framework of UQ, they are
statistically robust with respect to changes in fracture transmissivities;
then, for example, a user is able to statistically know which fractures
are more relevant for flux and should be avoided for waste storage
problems, or which fractures are most critical in flux propagation
and can be important in clogging problems. On the other hand, the
2

backbones obtained with the method proposed are not useful in UQ
Fig. 1. External surface of a natural fractured medium (left) and a DFN (right).

analyses of the fluxes, since the trained NNs required by the method
are clearly faster and more precise than flow simulations on backbones.

The paper is organized as follows. In Section 2 the DFN model is
briefly recalled. In Section 3 the use of Neural Networks for approx-
imating the DFN simulations is described, after a brief introduction
about the notations used for the NNs. In Section 4 the LRP method
is described; in particular, in the section the method is recalled and
in the Appendix A we introduce some new formal definitions in place
of the typical examples used in literature (e.g., see [33]). At the end
of Section 4, the new usage of LRP as feature selector is described. In
Section 5 the application of NNs for flux regression and LRP to identify
backbones is proposed, and numerical results are presented on a case
study consisting of two test case DFNs. We end with some conclusions
in Section 6.

2. Brief description of discrete fracture network model

We recall here, for the reader’s convenience, the model problem
of the Discrete Fracture Networks (DFNs) flow simulations. For full
details, we point the interested reader to [19,21], while a sketch of
the numerical approach here used in the simulations is given in the
supplementary materials of this work.

A DFN is a discrete model used to describe and characterize a net-
work of underground connected fractures in a fractured rock medium
as a set of 2D polygons in the 3D space R3 (see Fig. 1). Each polygon
represents a fracture and is labeled with an index in a set 𝐼 ; then, each
fracture is denoted by 𝑖, with 𝑖 ∈ 𝐼 . A DFN is composed by the union
of all the fractures:

∪𝑖∈𝐼𝑖.

Each fracture is endowed with its own size and orientation in the
3D space and with its own transmissivity parameter 𝜅𝑖 for the flux
characterization; all these data are typically sampled from suitable dis-
tributions. Segments given by the intersection of two or more fractures
are called traces and characterize the connectivity of the network; then,
DFNs can be represented as graphs with fractures as nodes and traces
as edges.

The flow simulations in a DFN are characterized not only by its
geometry but also by the hydrogeological properties conferred to the
fractures, such as the transmissivity. The transmissivity parameter 𝜅𝑖 of
𝑖, for each 𝑖 ∈ 𝐼 , represents the flow facilitation through the fracture
and it is fundamental for the flow characterization in the DFN; in the
next Section we focus on the NN regression problem for predicting the
outflowing fluxes of a DFN given the transmissivities of its fractures.
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Fig. 2. Example of NN built for vector valued regression concerning flux prediction
(𝑛 = 3, 𝑚 = 2, 𝑑 = 2). For simplicity, biases have not been represented.

3. Neural networks for flux regression in discrete fracture net-
works

In this section we briefly recall the method used in [34] to address
the problem of flux prediction in DFNs using NNs, with an improve-
ment that enhance flux approximation; we start fixing the notation
adopted in this work for the description of a generic Feedforward
Neural Network (FNN).

Given a FNN  made of 𝐿 + 1 ∈ N layers, we denote them as
𝑈 (0) ,… , 𝑈 (𝐿) where:

• 𝑈 (0) is the input layer;
• 𝑈 (𝐿) is the output layer;
• 𝑈 (1) ,… , 𝑈 (𝐿−1) are the hidden layers.

Let  be a FNN trained for approximating (≈) a function 𝑭 ∶ 𝐴 ⊆ R𝑛 →

R𝑚, then we let 𝑭 denote the function corresponding to  at the end
of the training; therefore, assuming that  is ‘‘well-trained’’, it holds
𝑭 ≈ 𝑭 or, more precisely, 𝑭 (𝒙) ≈ 𝑭 (𝒙) for each 𝒙 ∈ 𝐴 ⊆ R𝑛.

In the following subsection we introduce the multi-task architecture
at the core of our approach, showing its performances.

3.1. Multi-task architecture

In this work we use the same architecture introduced in [34] for
the approximation of a function 𝑭 ∶ 𝐴 ⊆ R𝑛 → R𝑚. These NNs are
characterized by a ‘‘tree-shaped’’ structure (see Fig. 2), obtained by
extending the one described in [41, chapter 7.7] for multi-task learning.
In particular, given a hyperparameter 𝑑 ∈ N, the NN architecture is
given by:

• One input layer 𝑈 (0) of 𝑛 units;
• A sequence of 𝑑 hidden layers 𝑈 (1),… , 𝑈 (𝑑), each one made of 𝑛

units with softplus (𝑓 (𝑥) = log(1 + 𝑒𝑥)) activation function, such
that 𝑈 (𝓁−1) is fully connected to 𝑈 (𝓁), for each 𝓁 = 1,… , 𝑑. We
call ‘‘trunk of the NN’’ the sequence 𝑈 (0),… , 𝑈 (𝑑);

• 𝑚 sequences of 𝑑 hidden layers 𝑈 (𝑑+1)
𝑗 ,… , 𝑈 (2𝑑)

𝑗 , each one made
of 𝑛 softplus units, followed by one output layer 𝑈 (2𝑑+1)

𝑗 made of
one linear unit for each 𝑗 = 1… , 𝑚. These layers are such that
𝑈 (𝑑) is fully connected to 𝑈 (𝑑+1)

𝑗 and 𝑈 (𝓁−1)
𝑗 is fully connected to

𝑈 (𝓁)
𝑗 , for each 𝓁 = 𝑑 + 2,… , 2𝑑 + 1, for each 𝑗 = 1,… , 𝑚. We call

‘‘branches of the NN’’ all the 𝑚 sequences 𝑈 (𝑑+1)
𝑗 ,… , 𝑈 (2𝑑+1)

𝑗 .

The choice of using softplus functions for the hidden layers was
made after a preliminary investigation in [34], comparing the perfor-
mances obtained also with other activation functions.
3

3.2. Regression problem setting

The problems addressed in this paper are characterized as follows.
We consider DFNs consisting of 𝑛 fractures, with fixed geometrical
properties, immersed in a cubic matrix block with a 1000 meters long
edge. See Fig. 3 for two examples.

We set the boundary conditions in such a way that two opposite
faces of the block represent an inlet and outlet face, respectively;
namely, we impose a Dirichlet boundary condition 𝐻 = 10 on fracture
edges created intersecting the DFN with the leftmost face of the domain,
corresponding to 𝑥 = 0, and 𝐻 = 0 on the edges obtained intersecting
the DFN with the rightmost face (𝑥 = 1000). The fractures intersecting
such faces are called inflow and outflow fractures, respectively. All
other fracture edges are insulated (homogeneous Neumann condition).
The boundary conditions and the geometry of the DFN mainly affect the
flux directionality, and the transmissivities have a great impact on the
flow intensity on each outflow fracture. We consider here, as a target,
the prediction of the exiting fluxes and their distributions among the
outflow fractures.

The fracture transmissivities are assumed to be isotropic parame-
ters 𝜅1,… , 𝜅𝑛 modeled as random variables with log-normal distribu-
tion [28,42]:

log10 𝜅𝑖 ∼  (−5, 1∕3) . (1)

We consider in particular two test cases (DFN158 and DFN202)
characterized by 𝑛 = 158 and 𝑛 = 202 fractures, respectively (see
also [34]). The fractures are assumed to be octagons, and have been
randomly generated using the following distribution for the geometrical
features [43,44]: fracture radii have been sampled with respect to a
truncated power law distribution, with exponent 𝛾 = 2.5 and upper
and lower cut-off 𝑟𝑢 = 560 and 𝑟0 = 50, respectively; the fracture
orientations have been sampled from a Fischer distribution having
mean direction 𝝁 = (0.0065, −0.0162, 0.9998) and dispersion parameter
17.8; uniform distribution has been used for mass centers.

The resulting number of outflow fractures for DFN158 and DFN202
is 𝑚 = 7 and 𝑚 = 14, respectively.

3.2.1. Dataset characterization
Let us introduce the following notation. Let 𝜿 = [𝜅1,… , 𝜅𝑛]⊤ ∈ R𝑛 be

the vector collecting transmissivities of all fractures of the given DFN
and let 𝝋 = [𝜑1,… , 𝜑𝑚]⊤ ∈ R𝑚 be the vector collecting all the exit
flows. Let 𝑭 ∶ 𝐴 ⊆ R𝑛 → R𝑚 be a function defined by

𝝋 = 𝑭 (𝜿), (2)

that is the function that provides the vector of outflows associated to
the transmissivity input 𝜿.

Let us consider 𝐷 ∈ N samples 𝜿𝑘 ∈ R𝑛, 𝑘 = 1,… , 𝐷, drawn
according to distribution (1). The dataset  used for the creation of
the training set, the test set and the validation set is

 =
{

(𝜿𝑘,𝝋𝑘) ∈ R𝑛 × R𝑚
|𝑭 (𝜿𝑘) = 𝝋𝑘 , ∀ 𝑘 = 1,… , 𝐷} . (3)

The test set  is created by randomly picking approximately 30% of
the elements in . The remaining elements are then randomly split into
two subsets  and  , representing the training set and the validation
set, respectively, and such that || ∼ 20% | ⧵ |.

3.3. Neural network training and performances

We consider the two test cases described in the previous subsection
(DFN158 and DFN202). We recall that they are respectively character-
ized by 𝑛 = 158 and 𝑛 = 202 total fractures, and 𝑚 = 7 and 𝑚 = 14
outflow fractures.

The multi-task architecture previously described is used to build,
for each DFN, suitable NNs. We consider the following values, for some
hyper-parameters already tested in [34], yielding four different NNs for
each DFN:
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Fig. 3. 3D view of DFN158 (left) and DFN202 (right).
Table 1
Mean relative errors E[𝑒𝑟( 𝐵

𝑛,𝑑 ;𝑛)] for several values of depth parameter
𝑑 and mini-batch size 𝐵 for all the test cases (𝑛 = 158, 202).

DFN158 DFN202

𝑑 = 1 𝑑 = 3 𝑑 = 1 𝑑 = 3

𝐵 = 10 0.0104 0.0085 0.0060 0.0070
𝐵 = 30 0.0099 0.0082 0.0057 0.0055

• depth parameter 𝑑 ∈ {1, 3} (the depth of the NN being equal to
2𝑑);

• mini-batch size 𝐵 ∈ {10, 30};
• a number 𝑛 of units for the input layer and hidden layers coincid-

ing with the number of fractures;
• the ‘‘tree-shaped’’ structure has 𝑚 = 7 branches for DFN158 and
𝑚 = 14 branches for DFN202.

We refer to these NNs and options as

𝐵
𝑛,𝑑 , ∀ 𝑑 ∈ {1, 3} , ∀ 𝐵 ∈ {10, 30} , (4)

they are trained and tested with respect to a dataset 𝑛 (see Sec-
tion 3.2.1) of 10 000 pairs (𝜿𝑘 ,𝝋𝑘) ∈ R𝑛 × R𝑚, in order to make
predictions of the outflowing fluxes of DFN158 and DFN202. The
training is made using the optimizer adam [45], with a maximum
number of epochs 𝑐max = 1000, mini-batch size 𝐵 and two regularization
methods: early stopping method, with patience parameter 𝑝∗ = 150, and
‘‘minimum validation error’’ method. Then, for each fixed 𝑛 = 158, 202,
the two networks  ∗

𝑛 with best performances are selected, taking into
account a grid search approach with respect to the values of 𝑑 and
𝐵 and using as performance measure the mean value of the global
relative errors of the predictions of 𝐵

𝑛,𝑑 on the test set 𝑛 (see Table 1);
for simplicity we indicate this quantity as E[𝑒𝑟(𝐵

𝑛,𝑑 ; 𝑛)], defining the
vector of relative errors of a prediction �̂� with respect to the total
exiting flux [34] as

𝒆𝑟(�̂�) =
|�̂� − 𝝋|
∑𝑚

𝑖=1 𝜑𝑖
= 1

∑𝑚
𝑖=1 𝜑𝑖

[

|�̂�1 − 𝜑1| ,… , |�̂�𝑚 − 𝜑𝑚|
]⊤ . (5)

The results of the grid search are  ∗
158 ∶=  30

158,3 and  ∗
202 ∶=  30

202,3.
The approach here adopted for building and training the NNs is the

same used in [34] but with a main difference: a pre-processing phase
for the input data has been introduced. Indeed, NN performances often
increase when some transformations are applied that normalize input
data to have zero mean and standard deviation equal to 1 [46]. Hence,
we introduced a function 𝑔 ∶ R → R:

𝑔(𝜅 ) =
log10(𝜅𝑖) − 𝜇

=∶ 𝜅 ∼  (0, 1) , ∀ 𝑖 = 1,… , 𝑛 (6)
4

𝑖 𝜎 𝑖
where 𝜇 = −5 and 𝜎 = 1∕3 are the mean and the standard devia-
tion used in (1), respectively. Then, we trained the NNs as in [34]
with respect to a ‘‘normalized’’ version of 𝑛, that is the dataset ̃𝑛
characterized by ‘‘normalized’’ inputs such that

̃𝑛 =
{(

𝜿𝑘 , 𝝋𝑘
)

∈ R𝑛 × R𝑚
| (𝜿𝑘,𝝋𝑘) ∈ 𝑛

}

, (7)

where 𝜿𝑘 = 𝒈(𝜿𝑘) and 𝒈 ∶ R𝑛 → R𝑛 is the element-wise application of
the function 𝑔 to the components of 𝜿𝑘.

In Tables 2 and 3, we report the measurements of the Jensen–
Shannon divergence (𝐷JS) for the actual flux distributions and the
predicted flux distributions given by the NNs  ∗

𝑛 with respect to the
inputs of the test set ̃𝑛 (see Fig. 4 for visualizing an example of
distribution comparison); we report also an additional relative dis-
similarity measure for distributions, the ratio KL∕ , increasing the
interpretability (and comparability) of the values. The dissimilarity
measure introduced is defined as the ratio between the Kullback–
Leibler divergence (𝐷KL) and the entropy () of the actual distribution
(see [34] and [41, chapter 3.13]), namely:

𝐷KL(𝑃 ∥ 𝑄)
(𝑃 )

=
E𝑥∼𝑃

[

log (𝑃 (𝑥)∕𝑄(𝑥))
]

E𝑥∼𝑃
[

log𝑃 (𝑥)
] , (8)

where 𝑃 is the actual flux’s probability distribution of a fracture and 𝑄
is the one of corresponding predictions. The interpretability advantages
of using ratio (8) derive from the relationship between the 𝐷KL and the
cross-entropy (𝑃 ,𝑄) [41, chapter 3.13], since we have:
𝐷KL(𝑃 ∥ 𝑄)

(𝑃 )
=

(𝑃 ,𝑄) − (𝑃 )
(𝑃 )

=
(𝑃 ,𝑄)
(𝑃 )

− 1 , (9)

where

(𝑃 ,𝑄) ∶= E𝑥∼𝑃
[

log𝑄(𝑥)
]

. (10)

Indeed, (𝑃 ,𝑄) measures the average information needed to describe
the entropy (𝑃 ) (that is the average information rate of 𝑃 ) using a ran-
dom sampling from 𝑄; then the ratio (8) represents a sort of ‘‘relative
information error’’, measuring the relative missing information when
we want to describe the average information rate of 𝑃 using a random
sampling from 𝑄.

4. Layer-wise relevance propagation

Deep Neural Networks, like those considered in this work, are
very powerful regression models but often appear as black-box models
that, fore each input, return predictions computed through a very
complicated function. The difficulties in obtaining and understanding
the explicit formula of this function led many users to define NNs
‘‘difficult to be explained’’, since no information about input–output
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Table 2
DFN158. Jensen–Shannon divergence and dissimilarity measure between actual and predicted flux
distributions.

8 12 14 78 90 98 107

𝐷JS 0.0050 0.0018 0.0063 0.0012 0.0196 0.2144 0.0060
𝐷KL∕ 0.0009 0.0003 0.0010 0.0002 0.0033 0.0379 0.0010
Table 3
DFN202. Jensen–Shannon divergence and dissimilarity measure between actual and predicted flux
distributions.

8 15 18 31 61 73 93

𝐷JS 0.0050 0.0941 0.0226 0.0033 0.0021 0.0014 0.0324
𝐷KL∕ 0.0007 0.0177 0.0040 0.0005 0.0003 0.0003 0.0055

115 156 162 173 176 180 187

𝐷JS 0.0256 0.0928 0.0059 0.0016 0.0327 0.0069 0.0570
𝐷KL∕ 0.0042 0.0165 0.0014 0.0002 0.0039 0.0016 0.0097
Fig. 4. DFN158 case (left) and DFN202 case (right). Example of two comparisons between probability density functions of the actual flux distribution (continuous line) and the
predicted flux distribution (dotted line) for one of the outflowing fractures, done by  ∗

𝑛 .
relationships is given or easily understood and, moreover, the users
do not have a clear view of the mathematical operations performed
on input data by the NN in order to return the output. The lack of
transparency of the inner computations was considered as one of the
greatest limits of these instruments, therefore several methods has been
recently introduced to tackle this issue [32,33,47–49].

In this work we focus on the Layer-wise Relevance Propagation
(LRP) [32]. LRP defines a subclass of ‘‘eXplainable AI’’ (XAI) algo-
rithms [36] that, given a trained NN with function 𝑭 , looks at a
prediction 𝑭 (𝒙) and assigns relevance scores to the components 𝑥𝑘 of
𝒙, taking into account the weights and the architecture of the NN. The
computed relevance scores indicate how much each 𝑥𝑘 contributed in
computing the prediction 𝑭 (𝒙). Given a NN model, an input 𝒙 and a
value 𝑅 ∈ R (defined score) related to 𝑭 (𝒙), the method propagates
the score 𝑅 backward through the NN from the output layer 𝑈 (𝐿) to
the input one 𝑈 (0), redistributing it among all the input units of 𝑈 (0).
The redistribution of 𝑅 depends on a propagation rule that takes into
account the forward propagation of 𝒙 through the NN and, therefore,
depends on the weights and the network connectivity. The final result
describes the components 𝑥𝑘 of 𝒙 that have higher influence in the
computation of the corresponding prediction made by the NN. Actually,
these components are the list of values that come up to the input units
from the propagation of 𝑅.

In literature, LRP is always applied with respect to one input at a
time: given one input 𝒙 and a score 𝑅, LRP computes the relevance
of the components 𝑥𝑘 of 𝒙 for the prediction of the output. Then, the
relevance is considered as a characteristic of the input and, therefore,
the most relevant components can vary changing the input taken into
account. A major difference in this work is that the authors not only
compute the relevance scores of all the inputs in a given dataset but
they also aggregate this information (see Section 4.2 and Section 5).
5

The result is an approximation of the expected relevance score vector
that furnishes a description about how the NN looks at the domain
space. Then, this vector can be used to perform feature selection, iden-
tifying the most relevant fractures for the predictions and, therefore,
the backbone of the DFN.

4.1. The propagation rule

To understand the LRP method, we describe the mechanism that
regulates the propagation of the score 𝑅 backward through the NN;
this sequence of operations is called ‘‘propagation rule’’ of the method
and can vary according to the NN architecture and the regression or
classification problem considered. In this section we describe the main
characteristics of the propagation rule and we introduce the 𝛼-𝛽 rule
adopted for the experiments illustrated in the next Section.

One of the most important aspects that characterizes the propaga-
tion rule is the criterion behind the choice of the score 𝑅 with respect to
the input 𝒙 of the NN, at the beginning of the process, as several choices
can be made. In this work we consider the simplest and most used
case in literature, taking the starting score equal to the NN prediction
corresponding to 𝒙 [50]; see Section 5 for a discussion about this
choice in the framework of backbone identification. If the output layer
𝑈 (𝐿) of the network is given by more than one unit, the criterion is
generalized in such a way that it assigns to each output unit 𝑢𝑗 ∈ 𝑈 (𝐿)

a relevance score 𝑅(𝐿)
𝑗 equal to the 𝑗th component of the prediction

vector corresponding to input 𝒙, i.e.:

𝑅(𝐿)
𝑗 (𝒙) = (𝑭 (𝒙))𝑗 . (11)

Then the total starting score is

𝑅(𝒙) =
∑

𝑅(𝐿)
𝑗 (𝒙) =∶ 𝑅(𝐿)(𝒙) . (12)
𝑢𝑗∈𝑈 (𝐿)
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For the ease of notation, from now on we drop the dependency of the
relevance scores on the input 𝒙.

Assuming for simplicity to have a FNN, LRP method defines a rule to
propagate these scores from 𝑈 (𝐿) to 𝑈 (𝐿−1) and, more generally, from
ach layer to the previous one. The rule comprises the definition of
essages, for each pair (𝑢𝑖, 𝑢𝑗 ) ∈ 𝑈 (𝓁) ×𝑈 (𝓁+1), for each 𝓁 = 0 ,… , 𝐿−1,

uch that the message 𝑅(𝓁 ,𝓁+1)
𝑖←𝑗 ∈ R is the amount of score 𝑅(𝓁+1)

𝑗 that
pread to unit 𝑢𝑖 ∈ 𝑈 (𝓁) from unit 𝑢𝑗 ∈ 𝑈 (𝓁+1). Actually, the message
(𝓁 ,𝓁+1)
𝑖←𝑗 represents how much the output of unit 𝑢𝑖 sent to 𝑢𝑗 is relevant

or the prediction computation 𝑭 (𝒙); then, the relevance score 𝑅(𝓁)
𝑖 of 𝑢𝑖

with respect to 𝑭 (𝒙) is given by the sum of all the ‘‘partial’’ relevances
(i.e. the messages):

𝑅(𝓁)
𝑖 =

∑

𝑢𝑗∈𝑈 (𝓁+1)

𝑅(𝓁 ,𝓁+1)
𝑖←𝑗 , (13)

for each 𝓁 = 0 ,… , 𝐿 − 1. Therefore, the relevance of the component
𝑥𝑖 of the input 𝒙 ∈ R𝑛 is given by the quantity 𝑅(0)

𝑖 computed starting
from 𝑅(𝒙).

Due to the empirical origin of the LRP method, in literature (e.g.,
see [33]) the computation of the messages is usually described through
examples that show many possible arbitrary formulas for the compu-
tation of 𝑅(𝓁 ,𝓁+1)

𝑖←𝑗 but, to the best of the authors knowledge, no formal
definitions exist. Then, to facilitate the understanding of the problem,
in Appendix A we introduce a more general and formal definition of
the messages 𝑅(𝓁 ,𝓁+1)

𝑖←𝑗 characterizing the propagation rule. The content
of Appendix A can be useful to the interested reader that is new to the
LRP algorithm and, in general, for a formal generalization of LRP to
FNNs characterized by multi-task architecture.

4.2. Expected relevance score: LRP for feature selection in NNs

LRP method has been widely used in applications for explanation
of NNs concerning images but rarely for explanation of regression NNs
(e.g. [32,37]). Probably due to this reason, to the best of the authors
knowledge, the usage of LRP as feature selection method proposed in
this paper has never been considered before.

The main idea behind the feature selection performed using LRP is
the following: compute the expected relevance scores

E𝒙∼𝑞[𝑅
(0)
1 ] ,… ,E𝒙∼𝑞[𝑅(0)

𝑛 ] (14)

for the components 𝑥1 ,… , 𝑥𝑛, respectively, of a random input vector
𝒙 ∈ R𝑛 with distribution 𝑞, with respect to a given FNN  with
function 𝑭 ∶ R𝑛 → R𝑚. Then, the most important features for 𝑭 are the
ones characterized by a higher expected relevance score. Furthermore,
assuming that 𝑭 (𝒙) ≈ 𝑭 (𝒙) for each 𝒙 ∈ 𝐴 ⊆ R𝑛, LRP allows to perform
indirectly (through  ) a feature selection also with respect to the exact
function 𝑭 ∶ 𝐴 ⊆ R𝑛 → R𝑚.

From a practical point of view, we can approximate the vector of
expected relevance scores

�̄� = �̄�(0) ∶ = E𝒙∼𝑞[𝒓(0)] = E𝒙∼𝑞

[

[

𝑅(0)
1 ,… , 𝑅(0)

𝑛

]⊤
]

=
[

E𝒙∼𝑞[𝑅
(0)
1 ] ,… ,E𝒙∼𝑞[𝑅(0)

𝑛 ]
]⊤

(15)

computing the vector of mean relevance scores with respect to a given
set  ⊂ R𝑛 of 𝑆 samplings of 𝒙, i.e.:

�̄�() = �̄�(0)() ∶= E [𝒓(0)] =
1
𝑆

∑

𝒙∈
𝒓(0) = 1

𝑆
∑

𝒙∈

[

𝑅(0)
1 ,… , 𝑅(0)

𝑛

]⊤
≈ �̄� ,

(16)

where �̄�() = �̄� for 𝑆 = || → +∞.
6

d

4.2.1. Testing of the expected relevance scores
We end this section introducing the strategy used to evaluate the

effectiveness of our approach. Since we aim at using the expected
relevance scores returned by LRP to select an arbitrary number 𝑝 ∈ N,
𝑝 ≤ 𝑛, of most relevant features in the domain of 𝑭 , the strategy used
in this work to evaluate the behavior of our method is different from
the ones usually adopted for LRP.

A common criterion used to evaluate a local XAI algorithm, like
LRP, is the so called excluding criterion. This criterion consists in ana-
lyzing how the predicted NN outcome changes if the 𝑝 most important
features of an input 𝒙, identified by the XAI algorithm, are modified to
an uninformative neutral value, obtaining an altered input 𝒙′ [47,49].
Then, given a second altered input 𝒙rand obtained from 𝒙 setting 𝑝 ran-
dom components to the neutral value, the excluding criterion analyzes
how the predictions 𝑭 (𝒙′) and 𝑭 (𝒙rand) change with respect to 𝑭 (𝒙): if
the 𝑝 most important input features of 𝒙 have been properly identified
by the algorithm, the distance between 𝑭 (𝒙′) and 𝑭 (𝒙) is significantly
greater than the distance between 𝑭 (𝒙rand) and 𝑭 (𝒙). In computer
vision, where LRP has been mainly applied, each input feature is a pixel
color and the neutral value is usually assumed to be the gray color.

However, in the DFN context the excluding criterion is not easily
applicable due to the difficulty to define a suitable neutral value, and
to the obstacles to extend the criterion from a local XAI method to
a global one based on the expected relevance scores. Therefore, here
we propose a novel criterion, called retaining criterion, that involves the
usage of the DFN simulator represented by the approximated function
𝑭 ∶ 𝐴 ⊆ R𝑛 → R𝑚. Let 𝑭

|𝑝 ∶ 𝐴
|𝑝 ⊆ R𝑝 → R𝑚 be a restriction of 𝑭 with

espect to the 𝑝 most relevant features of a given input 𝒙, identified
y the XAI algorithm; analogously, let 𝒙

|𝑝 ∈ 𝐴
|𝑝 be the restriction of

∈ 𝐴 ⊆ R𝑛. Then, the criterion consists in comparing 𝑭
|𝑝(𝒙|𝑝) and

𝑭 (𝒙): if 𝑭
|𝑝(𝒙|𝑝) ≈ 𝑭 (𝒙), the algorithm has correctly identified the 𝑝

ost relevant features of 𝒙. In DFN terms, given a set of 𝑝 most relevant
ractures, we run a DFN flow simulation on the subnetwork given by
hese fractures, with the corresponding transmissivity values 𝒙

|𝑝, while
emoving all the other fractures; then, we compare the total outflowing
lux of this subnetwork with the one of the full DFN.

The retaining criterion can also be extended easily to a global XAI
lgorithm like the one we defined in Section 4.2. In this case the 𝑝 most
elevant features are the 𝑝 ones with highest expected relevance score
nd, therefore, are fixed for each input 𝒙 ∈ R𝑛. Then, the expected
elevance scores returned by LRP perform a good feature selection of 𝑝
eatures if 𝑭

|𝑝(𝒙|𝑝) ≈ 𝑭 (𝒙) for each 𝒙 ∈ 𝐴 ⊆ R𝑛.
In general, we observe that the new retaining criterion is character-

zed by the following advantages over the excluding criterion:

• absence of a neutral value usage and definition;
• easily extendable to a global XAI algorithm for feature selection

evaluation;
• the possibility to compare the effects of different choices of 𝑝

directly looking at actual simulator outputs instead of model
predictions.

hen, the retaining criterion is adopted for evaluating the quality of
he backbones identified with the new method described in the next
ection.

. Main results

Let us consider a NN  ∗
𝑛 ∈ { ∗

158,
∗
202} (see Section 3.3) and a

eneral input vector 𝜿 of (normalized) transmissivities for  ∗
𝑛 . Since we

ave 𝑭 (𝜿) ≈ 𝑭 (𝜿) up to a good accuracy (Tables 1–3), the application
f LRP method to  ∗

𝑛 with respect to a given 𝜿 returns a vector of
elevance scores
(0) =

[

𝑅(0)
1 ,… , 𝑅(0)

𝑛

]⊤

hat is a vector characterizing the relevance of fractures 𝑖 in the DFN
uring the computation of the fluxes 𝝋 = 𝑭 (𝜿), for each 𝑖 = 1 ,… , 𝑛. In
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particular, due to the conservation property of LRP (see Appendix A),
we can observe that initialization of the scores as in (11) allows the
relevance scores of the most relevant fractures 𝑖 to increase when the
sum of the predicted fluxes ∑𝑚

𝑗=1 �̂�𝑗 = 𝑅(𝜿) is large; the ratio behind
hoice (11) is that fracture relevances related to larger (predicted)
luxes will give a greater contribution to the estimate of the expected
elevance score of the fractures.

Given the interpretation of LRP relevance scores as fracture rele-
ances in the DFN for the single simulation 𝑭 (𝜿), we can use LRP as
eature selection method with respect to the fluxes provided by  ∗

𝑛 (see
ection 4.2) and assuming 𝑭 (𝜿) ≈ 𝑭 (𝜿) for each transmissivity vector
∈ R𝑛, we can interpret the vector of expected relevance scores �̄� ∈ R𝑛

s a measure of the expected relevance of the fractures 1 ,… ,𝑛 in the
FN, for any random 𝜿 sampled.

As a consequence, if this interpretation of LRP relevance scores is
orrect, a collection of the ‘‘most relevant’’ fractures (e.g. the ones with
𝜿∼𝑞𝜅 [𝑅

(0)
𝑖 ] greater than an arbitrary threshold) can be interpreted as a

ossible backbone of the DFN, where the target Quantity of Interest
QoI) to be preserved is the total flux exiting from the DFN. For this
eason, in order to validate the approach proposed, in this section we
nalyze the fluxes obtained running simulations on sub-networks of
oth DFN158 and DFN202, obtained selecting the fractures through
RP applied on  ∗

158 and  ∗
202, respectively, and comparing them with

‘full’’ simulations on the whole DFNs. From these comparisons, we
btain a validation of both the LRP-based feature selection’s quality
see Section 4.2.1) and the sub-networks as backbones.

.1. Direct method

Let us consider the NNs  ∗
158,

∗
202 and the corresponding datasets

̃158 , ̃202 (see (7)), each one with cardinality |̃158| = |̃202| = 10 000
see Section 3.3). For each  ∗

𝑛 ∈ { ∗
158,

∗
202} we compute the vector

f mean relevance scores with respect to the set ̃𝑛, i.e. the vector

̄𝑛 ∶= �̄� (̃𝑛) = Ẽ𝑛
[𝒓(0)] = 1

|̃𝑛|

∑

(𝜿,𝝋)∈̃𝑛

𝒓(0) , (17)

sing an LRP method characterized by the 𝛼-𝛽 rule with 𝛼 = 1 and
= 0 (see (A.10), Appendix A). Then, looking at the values of �̄�𝑛 and

ecalling that �̄�𝑛 ≈ E𝜿∼𝑞𝜅 [𝒓
(0)], we create a hierarchy for the fractures

f the DFN such that 𝑖 is ‘‘less relevant than or as relevant as’’ 𝑗 if

�̄�𝑛
)

𝑖 = Ẽ𝑛
[𝑅(0)

𝑖 ] ≤ Ẽ𝑛
[𝑅(0)

𝑗 ] =
(

�̄�𝑛
)

𝑗 , (18)

or each 𝑖, 𝑗 ∈ {1 ,… , 𝑛}. In Fig. 5 we visualize the sorted set of fractures
ith the corresponding mean relevance scores

(

�̄�𝑛
)

𝑖, both for DFN158
nd for DFN202.

A first observation about the element values of �̄�𝑛, for each 𝑛 =
58, 202, is that all the boundary fractures of the DFNs with exiting flux
elong to the set of fractures in the top 25% with highest relevance
cores. This observation has non-trivial consequences; in fact it is an
mportant clue that the NNs  ∗

𝑛 learned to approximate 𝑭 coherently
ith the topology of the network of fractures characterizing the DFNs.

ndeed, although one may think that it is obvious that NNs mainly look
t the inputs corresponding to the fractures with exiting flux, we should
emember that the NNs  ∗

𝑛 have no information about relationships
etween inputs and outputs, with the exception of the coupling they

‘observe’’ during the training; in particular, assuming that 𝑖 is a
oundary exit fracture, no information about the strict physical-based
elationship between the transmissivity 𝜅𝑖 and the computed flux have
een given to the NN.

The only exception to the general behavior observed for the outflux
ractures, is fracture 156 in DFN202; 156 is indeed an exit fracture,
ut looking at the actual flux statistics for DFN202, we can observe that
156 is characterized by an extremely low flux, especially with respect

o the ones of the other outflowing boundary fractures. With reference
o the box in Fig. 5 (bottom), the fracture corresponds to the leftmost
7

olumn with crossing-lines texture. In general we can observe that, for
ractures with exiting fluxes, the mean relevance score is characterized
y a non-negligible dependence on the mean value of the flux (Tables 4,
); indeed an average monotonically increasing trend is observed and
eported in Fig. 6.

We continue our analysis focusing on the sub-networks of both
FN158 and DFN202 given by the set of fractures in the top 25% , 50% ,
5% relevance scores, respectively. First of all, we analyze the topol-
gy of the graphs that characterize the networks. Comparing the
raph of the full DFNs and the graphs of the sub-DFNs given by the
5% , 50% , 75% ‘‘most relevant’’ fractures (Figs. 7 and 8) we can observe
hat follows:

1. The less relevant fractures are in general those belonging to
‘‘dead-end’’ branches of the networks, since they are the first
fractures removed when pruning the DFN graphs to keep only
the 75% most relevant ones;

2. Pruning further the DFN graphs (50% of most relevant frac-
tures), other fractures are removed, which are not dead-end
fractures but belong to source–sink paths (i.e., paths in the
graph that start from any inlet fracture and end in any outlet
fracture); removing this fractures is likely to reduce the number
of source–sink paths. However, it is worth noting that at least
one source–sink path is always left. In particular, the bottle-
neck fractures (i.e., the cut nodes of the graphs) belonging to
source–sink paths are not removed. A clear example is the single
fracture that keeps connected the two main halves of DFN158
(see Fig. 7);

3. Pruning too much the graphs (25% of most relevant fractures),
some outflow fractures get disconnected, but the overall network
connectivity is preserved. Some bottleneck nodes can also be
removed from the graphs (see Fig. 8);

4. In the DFN158 case, the LRP algorithm seems to be more sen-
sitive to the actual physic relevance of the fractures in the
flux problem than in the DFN202 case. Indeed, for DFN202, in
the set of 25% most relevant fractures five of the outflowing
ones belong to a connected component without inlet fractures;
these fractures (15,18,115,180,187), disconnected from any
source of flux, are considered (by the LRP algorithm) less rel-
evant than the other outflowing ones that are at the end of
a source–sink path. Moreover, fractures 15,18,115,180,187
are characterized by a mean relevance score smaller than one
(see Table 4).
The explanation of this behavior is likely to dwell into the
higher number of bottleneck fractures characterizing DFN202
with respect to DFN158. Indeed, the more the bottleneck nodes,
the more little differences in the relevance scores can bring to
inaccurate fracture removals.

As a final analysis to confirm that the process outlined is able to
detect a subnetwork of the DFN that can be considered its backbone, we
run numerical simulations on all the sub-DFNs previously introduced
(we denote them as DFN158|25%, …, DFN202|75%). More precisely,
these simulations run using as input parameters the same transmissivity
values of the full DFNs, but restricted to the remaining fractures of the
sub-DFN.

After running these simulations for the sub-DFNs, we compare the
total flux exiting from the sub networks with the one of the corre-
sponding full DFN, observing very similar behaviors (see Fig. 9) that
are confirmed by the values reported in Tables 6 and 7. In general
we can observe that for DFN158 the sub-DFNs approximate better the
behavior of the full-DFN total flux than in the DFN202 case; the reason
is attributable to the observations written at item 4. In general (coher-
ently with the physics of the problem) we observe a general decrease
of the total exiting flux while pruning the DFN fractures in the graph;
however, we observe in both cases (DFN158 and DFN202) a good
conservation of the mean total flux and a quite perfect conservation
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Fig. 5. Mean relevance scores
(

�̄�𝑛
)

𝑖 (𝑦 axis) and corresponding fractures 𝑖 (𝑥 axis), sorted in ascending order w.r.t. the score values. Top: DFN158; bottom: DFN202. The box
in the top-left corner contains the first 60% of the sorted mean relevance scores. Boundary fractures of the DFN have been highlighted with a crossing-lines texture (exiting flux)
and a horizontal-line texture (entering flux). Only outflowing fractures are labeled.
Table 4
DFN158. Mean relevance scores and mean flux values (mm2/s) of outflux boundary fractures (on ̃158).
Columns sorted w.r.t. the mean relevance score (ascending order).

8 12 14 78 90 98 107

Ẽ158
[𝑅(0)

𝑖 ] 0 .4371 0.7689 1.1326 2.6015 2.8107 3.3984 5.7554
Ẽ158

[𝜑𝑗 ] 0.5372 1.8071 7.0173 13.4984 24.6603 26.8003 67.2993
Table 5
DFN202. Mean relevance scores and mean flux values (mm2/s) of outflux boundary fractures (on ̃202).
Columns sorted w.r.t. the mean relevance score (ascending order).

156 187 115 15 180 18 93

Ẽ202
[𝑅(0)

𝑖 ] 0.4020 0.6648 0.7487 0.7516 0.9421 0.9974 1.0520
Ẽ202

[𝜑𝑗 ] 0.2118 1.4390 2.6950 1.3839 1.9175 2.9906 2.4751

61 176 31 173 8 73 162

Ẽ202
[𝑅(0)

𝑖 ] 1.3964 1.4791 1.7046 2.7052 2.8025 3.4430 7.5665
Ẽ202

[𝜑𝑗 ] 5.2791 6.5818 6.5228 11.4715 27.0487 19.9980 56.0594
of the standard deviation of the same quantity. In particular, looking
at Tables 6 and 7 we see that removing 75% of the fractures we lose
only 14.38% of the flux in DFN158 and 29.01% of the flux in DFN202.

The simulations run on all the sub-DFNs proved that backbones for
both DFN158 and DFN202 have been discovered thanks to the NNs
 ∗

158 and  ∗
202, respectively, since we have identified sub-networks of

fractures in the DFNs that approximate the flux behaviors of the full
networks with respect to 10 000 samplings of transmissivity vectors 𝜿 ∈
8

R𝑛 (𝑛 = 158, 202). Then, we showed that is possible to identify a back-
bone for a given DFN with a given NN that approximates sufficiently
well the function 𝑭 for the actual exiting fluxes computation.

The backbones built using the method illustrated in this section are
characterized by the property of being robust with respect to different
choices of transmissivity vectors, preserving (approximately) the total
flux behavior; therefore, this backbones theoretically could be able to
conserve also the first passage time of particles for transport problems
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Fig. 6. DFN158 case (left) and DFN202 case (right). Plot of Mean relevance scores versus mean flux values (mm2/s) of boundary fractures with exiting flux, computed with respect
to ̃𝑛.
Fig. 7. Graphs representing networks of fractures. From left to right, from top to bottom: DFN158, DFN158|75%, DFN158|50%, DFN158|25%. Triangles/diamonds are fractures with
exiting/entering fluxes.
Table 6
DFN158. Mean value and standard deviation of the total flux for the DFN and its sub-DFNs (percentages
are computed w.r.t. the DFN values). Last row shows 𝐷KL∕ for the flux distributions of sub-DFNs with
respect to the one of the DFN.

DFN158 DFN158|75% DFN158|50% DFN158|25%
E[

∑

𝜑 ] 141.6738 136.8680 (96.61%) 133.5348 (94.26%) 121.2997 (85.62%)
𝜎[

∑

𝜑 ] 27.5962 27.5345 (99.78%) 27.3233 (99.01%) 27.0040 (97.85%)
𝐷KL∕ – 0.0028 0.0077 0.0451
Table 7
DFN202. Mean value and standard deviation of the total flux for the DFN and its sub-DFNs (percentages
are computed w.r.t. the DFN values). Last row shows 𝐷KL∕ for the flux distributions of sub-DFNs with
respect to the one of the DFN.

DFN202 DFN202|75% DFN202|50% DFN202|25%
E[

∑

𝜑 ] 146.0742 142.9892 (97.89%) 128.2563 (87.80%) 103.6958 (70.99%)
𝜎[

∑

𝜑 ] 37.4519 37.2404 (99.44%) 36.3729 (97.12%) 37.4810 (100.08%)
𝐷KL∕ – 0.0007 0.0217 0.1045
9
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Fig. 8. Graphs representing networks of fractures. From left to right, from top to bottom: DFN202, DFN202|75%, DFN202|50%, DFN202|25%. Triangles/diamonds stars are fractures
with exiting/entering fluxes.
Fig. 9. Total flux comparisons, for both DFN158 (left) and DFN202 (right), with respect to the probability density functions of their sub-DFNs.
(QoI conserved by backbones in [4,5,27,28,30]), since this quantity
depends on the fluxes characterizing the DFN. However, further studies
should be done to confirm this hypothesis, but they are not part of the
purpose of this work.

5.2. Refinement of the direct method: LRP and physically based strategy

In Section 5.1 we observed that, computing the expected rele-
vance scores with the LRP method for  ∗

158 and  ∗
202, we are able to

identify backbones for DFN158 and DFN202 characterized by a good
approximation of the total exiting flux of the corresponding full DFNs.
However, sorting the DFN fractures with respect to the scores, we
observed that not important fractures (e.g. the ones belonging to dead-
ends branches of the network) sometimes have a higher score than
other fractures, especially in lower scores cases (see Fig. 10, see item
4, Section 5.1). Therefore, we can refine the backbone identification
method described in Section 5.1 taking into account the fractures of
the dead-end branches that, for a better evaluation of the abilities of
10
the new LRP-based feature selection method, were intentionally not
removed from the network.

The main idea behind the refinement of the method is the follow-
ing: chosen an arbitrary ‘‘percentage step’’ 𝑝, we create iteratively a
sequence of sub-DFNs alternating two main steps until a minimum
percentage threshold 𝜏 of the starting total fractures is reached. The
two steps are the following:

• a graph-pruning step based on removing dead-end branches from
the graph of the current sub-DFN. Moreover, the sorted sequence
of expected relevance scores is ‘‘updated’’, removing from it the
same fractures removed from the graph;

• a graph-pruning step based on the ‘‘updated’’ expected relevance
scores keeping a specific percentage of fractures (as described in
Section 5.1);

More specifically, we can describe the whole refinement procedure
with the Algorithm 1.
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Table 8
Summary of outcome of Algorithm 1 (𝑝 = 𝜏 = 0.25) showing the number of nodes in 𝐺 at each step (percentages are w.r.t. the initial number
of nodes). Bold values characterize the returned sub-DFNs.

while-step 1 while-step 2

remove dead-ends [𝜌1𝑁0] most rel. fractures remove dead-ends [𝜌2𝑁0] most rel. fractures remove dead-ends

DFN158 87 (55.06%) 79 (50%) 77 (48.73%) 40 (25.32%) 39 (24.68%)
DFN202 108 (53.47%) 101 (50%) 99 (49.01%) 51 (25.25%) 46 (22.77%)
Fig. 10. Mean relevance scores
(

�̄�𝑛
)

𝑖 (𝑦 axis) and corresponding fractures 𝑖 (𝑥 axis), sorted in ascending order w.r.t. the score values. Top: DFN158; bottom: DFN202. The box
in the top-left corner contains the first half of the sorted mean relevance scores. Boundary fractures of the DFN have been highlighted with a crossing-lines texture (exiting flux)
and a horizontal-line texture (entering flux). Fractures belonging to dead-end branches of the network are the darkest ones. Only outflowing fractures are labeled.
Algorithm 1 (Refined Backbone Identification).

Data: 𝐺 (graph of the full DFN), 𝑝 ∈ (0, 1) (percentage step), 𝐿
(fracture/node sequence, sorted in increasing order with respect
to the relevance score value), 𝜏 ∈ (0, 1) (minimum percentage
threshold).

Outputs:  (sequence containing the subs-sequences of 𝐿 and charac-
terizing the sub-DFNs).

Procedure Refined Backbones(𝐺,𝐿, 𝑝, 𝜏):

1.  ← empty sequence;
2. 𝑁0 ← number of nodes in 𝐺; (num. of fractures of the full
DFN)

3. 𝜌 ← 1; (percentage ‘‘counter’’)
4. 𝑅 ← subset of 𝐺’s nodes s.t. they belong to dead-end

branches;
5. 𝐿 ← remove all the 𝑣 ∈ 𝑅 from 𝐿; (𝐿 still sorted w.r.t.
relevance scores)
11
6. G ← sub-graph of 𝐺 given by nodes in 𝐿;
7. 𝑁 ← number of nodes in 𝐺;
8. while 𝑁∕𝑁0 > 𝜏 do:
9. while 𝜌 ≥ 𝑁∕𝑁0 do: (in case (|𝑅|∕𝑁0) > 𝑝)

10. 𝜌 ← 𝜌 − 𝑝;
11. end while
12. if 𝜌 < 𝜏 do break;
13. 𝐿 ← last round(𝜌𝑁0) elements of 𝐿; 𝐿 (still sorted

w.r.t. relevance scores)
14. 𝐺 ← sub-graph of 𝐺 given by nodes in 𝐿;
15. repeat lines 4–7;
16. add 𝐺 to ;
17. end while

In Algorithm 1, the step corresponding to the removal of the dead-
ends, both from the graph and the sequence of relevance scores, is
described in lines 4–7; the step that keeps only a particular number
of fractures (i.e. [ 𝜌𝑁 ]) with higher relevance score (as in Section 5.1)
0
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Fig. 11. Graphs representing the network of fractures of: DFN158|48.73% (top-left), DFN158|24.68% (top-right), DFN202|49.01% (bottom-left), DFN202|22.77% (bottom-right).
Triangles/diamonds are fractures with exiting/entering fluxes.
is described in lines 13–14. In general, the algorithm returns, for each
DFN, a sequence of sub-DFNs
(

DFN|(𝜌𝑖−𝜖𝑖)100%

)

𝑖=1,…,𝑠
, (19)

where 𝑠 is the number of main iterations executed by the algorithm, 𝜌𝑖
is the value of 𝜌 at the 𝑖th iteration and 𝜖𝑖 is the percentage of fracture
removed at line List 15 at the 𝑖th iteration. The stopping criteria of the
algorithm are such that 𝜌𝑠 is always greater than the threshold 𝜏 but
𝜏 > 𝜌𝑠 − 𝑝; on the other hand, (𝜌𝑠 − 𝜖𝑠) can be lesser than 𝜏, if the
dead-end fractures in DFN|𝜌𝑠 are more than (𝜌𝑠−𝜏)𝑁0. In this last case,
the stopping criterion of the main while loop is reached. Concluding
the description of the algorithm, the role of the inner while loop (line
List 9) is only to skip the values of 𝜌 such that 𝜌𝑁0 is greater than the
current number of nodes in G.

One of the most important observation for Algorithm 1 is that such
a kind of refinement actually has a negligible computational cost, since
the computation of dead-end branches of a graph is not particularly
expensive; all the remaining operations are the same ones illustrated
in Section 5.1.

Now, we apply the refined method to DFN158 and DFN202. Then,
we compare the results with the previous ones. For both DFN158 and
DFN202, we run Algorithm 1 with 𝑝 = 𝜏 = 0.25, such that it should
return a sequence of sub-DFNs
(

DFN|(0.75−𝜖1)100%,DFN|(0.50−𝜖2)100%,DFN|(0.25−𝜖3)100%

)

(20)

comparable with those computed in Section 5.1. However, since both
in DFN158 and in DFN202 the number of fractures belonging to dead-
end branches is greater than 25% of the total number of fractures,
Algorithm 1 does not return the first element of sequence (20). A
brief summary of the operations performed by the refined method is
described in Table 8.

Looking at the sub-DFNs graphs obtained with the refined method
(see Fig. 11), we observe that from all the influx fractures exist a
12
Table 9
DFN158. Mean value and standard deviation of the total flux for the DFN and its sub-
DFNs computed with Algorithm 1 (percentages are computed w.r.t. the DFN values).
Last row shows 𝐷KL∕ for the flux distributions of sub-DFNs with respect to the one
of the DFN.

DFN158 DFN158|48.73% DFN158|24.68%
E[

∑

𝜑 ] 141.6738 138.2734 (97.60%) 124.8932 (88.15%)
𝜎[

∑

𝜑 ] 27.5962 27.5544 (99.85%) 26.9265 (97.57%)
𝐷KL∕ – 0.0014 0.0314

Table 10
DFN202. Mean value and standard deviation of the total flux for the DFN and its sub-
DFNs computed with Algorithm 1 (percentages are computed w.r.t. the DFN values).
Last row shows 𝐷KL∕ for the flux distributions of sub-DFNs with respect to the one
of the DFN.

DFN202 DFN202|49.01% DFN202|22.77%
E[

∑

𝜑 ] 146.0742 142.9952 (97.89%) 112.4792 (77.00%)
𝜎[

∑

𝜑 ] 37.4519 37.5844 (100.35%) 38.0651 (101.64%)
𝐷KL∕ – 0.0008 0.0695

path that ends in an outflux fracture. This simple fact is actually very
important; indeed it is an evidence of the efficiency of the refined
method introduced, since the original method was not able to preserve
a source–sink path for each influx fracture of the sub-DFNs (e.g., we
recall the observations made for DFN202|25%).

We conclude the comparison analyzing the total fluxes exiting from
the new sub-DFNs. Reading the values in Tables 9 and 10 we observe
that the sub-DFNs obtained with the refined method are characterized
by a better flux approximation of the total flux exiting from the full
DFN (see also Figs. 12 and 13 for a visual comparison). Therefore, in
the end, we can assert that the method characterized by Algorithm 1
is a good refinement of the method proposed in Section 5.1, returning
subnetworks of the DFN that can be considered its backbones.
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Fig. 12. Total flux comparisons, for both DFN158 (top) and DFN202 (bottom), with respect to the probability density functions of all their sub-DFNs (computed with both two
methods described in this work).
Fig. 13. Mean total flux comparison for both DFN158 (left) and DFN202 (right), with respect to their sub-DFNs. Continuous line characterizes the values corresponding to the
sub-DFNs obtained with the refined method. Dotted lines characterizes the values corresponding to the sub-DFNs obtained with the not refined method.
6. Conclusions

In this work, we presented a novel backbone identification method
with target preserved QoI the total flux exiting from the DFN. The new
method is based on a novel application of the LRP algorithm to a NN
trained to predict the fluxes of an arbitrary DFN.

Given two test case DFNs with a total number of fractures equal to
158 and 202, respectively, we trained a set of flux regression multi-
task NNs for both of them; then, we selected the two NNs with best
regression performance, i.e. the networks  ∗

158 and  ∗
202, and we

applied the LRP algorithm as a feature selection method, computing
the expected relevance of the fractures of both the DFNs.

The simpler method proposed for identifying the backbone consists
of selecting an arbitrary percentage of the most relevant fractures,
looking only at the expected relevances. This method showed a very
interesting characteristic of the NNs: looking both at the graph of
the sub-DFNs and at their flux distributions, the backbones obtained
proved to be physically consistent and able to preserve well the total
flux of the DFN; these facts underline a not obvious NN ability of
understanding the implicit and hidden physical relationships between
fractures. Indeed, we want to recall that the NNs have been trained
looking only at the pairs (�̃�,𝝋) of the training sets, having no other
information of the problem, both geometrical and hydrogeological.

At the end of this work, we proposed also a refinement of the
first method. Since flux regression NNs approximate the numerical
simulation results for computing the total flux of the DFNs, the un-
derstanding of the real relationships between fractures is good but
cannot be perfect, especially for the less relevant fractures. Then, a new
iterative method has been proposed; the main idea behind this refined
method is based on alternating the removal of dead-end fractures and
the removal of the less relevant fractures. The result is an algorithm
13
able to return backbones even better than the ones obtained with the
first method, where the connectivity of the fracture network and the
preservation of the statistical properties of the total flux is robust.

In conclusion, the results illustrated in this work confirm the pos-
sibility of identifying flux-preserving backbones through a novel ap-
proach, based on Deep Learning and Layer-wise Relevance Propagation,
that can be a new useful instrument for many engineering applications.
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Appendix A. Details about layer-wise relevance propagation

In this appendix, we propose a novel general and formal definition
of the LRP messages introduced in Section 4.1. We define the message
𝑅(𝓁 ,𝓁+1)
𝑖←𝑗 , from unit 𝑢𝑗 ∈ 𝑈 (𝓁+1) to unit 𝑢𝑖 ∈ 𝑈 (𝓁) for the LRP method, as

(𝓁 ,𝓁+1)
𝑖←𝑗 ∶= 𝜌

(

𝑐(𝑥(𝓁)𝑖 , 𝑤(𝓁+1)
𝑖𝑗 ) , 𝑅(𝓁+1)

𝑗

)

, (A.1)

here 𝑥(𝓁)𝑖 is the output of unit 𝑢𝑖 ∈ 𝑈 (𝓁) and 𝑤(𝓁+1)
𝑖𝑗 is the weight of the

dge (𝑢𝑖, 𝑢𝑗 ) in the FNN. The functions 𝜌 ∶ R2 → R and 𝑐 ∶ R2 → R are
rbitrary functions, that we denote as relevance function and contribution
unction, respectively.

The relevance function 𝜌 has the role to decide ‘‘how much’’ of the
core 𝑅(𝓁+1)

𝑗 has to be propagated backward to unit 𝑢𝑖; the higher the
utput of 𝜌 (i.e. the message 𝑅(𝓁 ,𝓁+1)

𝑖←𝑗 ), the more relevant is 𝑢𝑖 with
espect to 𝑢𝑗 . The partial relevance of 𝑢𝑖 obviously depends on the
core 𝑅(𝓁+1)

𝑗 , which is the relevance of 𝑢𝑗 , but also on how much 𝑢𝑖
‘contributed’’ to unit 𝑢𝑗 in the forward passage. This contribution is

easured by the function 𝑐, taking into account both 𝑥(𝓁)𝑖 and 𝑤(𝓁+1)
𝑖𝑗 . In

iterature [32,33], the most used choice of 𝜌 is the multiplication, such
hat the role of 𝑐 is reduced to the computation of an appropriate factor
or rescaling 𝑅(𝓁+1)

𝑗 . Moreover, the function 𝑐 can be different for each
essage. For example 𝑐 can be characterized by different parameter

alues varying the unit 𝑢𝑗 considered (see parameters 𝑧±𝑗 in 𝛼-𝛽 rule
ater).

The propagation rule, that the LRP method defines to compute the
essage 𝑅(𝓁 ,𝓁+1)

𝑖←𝑗 through 𝜌 and 𝑐, is assumed to satisfy the following
roperties:

1. Conservation [33]: the sum of the scores propagated from each
layer to the preceding ones remains equal, that is:

𝑅(0) = ⋯ = 𝑅(𝐿−1) = 𝑅(𝐿) = 𝑅(𝒙) , (A.2)

where, for each 𝓁 = 0,… , 𝐿, we define 𝑅(𝓁) as

𝑅(𝓁) =
∑

𝑢𝑖∈𝑈 (𝓁)

𝑅(𝓁)
𝑖 . (A.3)

The introduction of the conservation property is important be-
cause it highlights that LRP actually compute a decomposition of
the outputs (assuming (11)) in terms of the input variables [32,
33].

2. Coherence: with ‘‘coherence’’ we intend the general criterion be-
hind the user choices of the functions 𝜌 and 𝑐 for the propagation
rule. Definitions of 𝜌 and 𝑐 are not formally considered or argued
in literature due to the empirical and heuristic nature of both
the propagation rules addressed and the problems related to the
typical LRP applications.
Therefore, trying to introduce a more detailed formalization, we
decide to define as ‘‘coherent’’ a propagation rule such that:
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• exists a measure or signed measure 𝜇𝜌 with respect to the
Borel 𝜎-algebra on R2 (here denoted as (R2)) such that
𝜌(𝜉1, 𝜉2) = 𝜇𝜌((0 , 𝜉1) × (0 , 𝜉2)), for each (𝜉1, 𝜉2) ∈ R2;

• exists a measure or signed measure 𝜇𝑐 with respect to the
𝜎-algebra (R2) such that 𝑐(𝜉1, 𝜉2) = 𝜇𝑐 ((0 , 𝜉1)×(0 , 𝜉2)), for
each (𝜉1, 𝜉2) ∈ R2.

The coherence property, introduced by the authors of this work,
has the purpose of providing an outline on how to build a
‘‘good’’ propagation rule for LRP. Indeed, not every pair of
arbitrary functions 𝜌 and 𝑐 return scores that describe correctly
the relevance of the inputs on the outputs, even if the conser-
vation property is guaranteed. Defining 𝜌 and 𝑐 as functions
characterized by the measures 𝜇𝜌 , 𝜇𝑐 , respectively, we think that
the relevance scores obtained with LRP better characterize the
relationship between input and outputs in the NN.

Once a propagation rule is defined, recalling the purpose of the LRP
ethod, the total starting score 𝑅(𝐿) propagates from the output layer

o the input units 𝑢𝑖 ∈ 𝑈 (0) and values 𝑅(0)
𝑖 let the user to understand

he relevance of the components of the given input 𝒙 behind the FNN
rediction 𝑭 (𝒙).

The propagation rule, defined by the two properties of conservation
nd coherence is not uniquely identified. Therefore different propaga-
ion rules have been proposed in literature [33]. In this work, the rule
pplied in Section 5 belongs to the class of rules named 𝛼-𝛽 rule. For
he ease of notation we denote as 𝑧𝑖𝑗 the product

𝑖𝑗 = 𝑥𝑖𝑤𝑖𝑗 , (A.4)

here for simplicity we decide to drop the layer dependencies previ-
usly denoted with superscripts like (𝓁) and (𝓁 + 1).

Then, 𝛼-𝛽 rule defines the quantity
±
𝑖𝑗 ∶= max(± 𝑧𝑖𝑗 , 0) (A.5)

s signed local contribution of 𝑢𝑖 with respect to 𝑢𝑗 and the quantity

±
𝑗 ∶= 𝑏±𝑗 +

∑

𝑢𝑖∈𝑈 (𝓁)

𝑧±𝑖𝑗 , (A.6)

s signed pre-activation of 𝑢𝑗 , where 𝑏𝑗 is the bias of 𝑢𝑗 and 𝑏±𝑗 =
max(± 𝑏𝑗 , 0).

Therefore the definition of the message from 𝑢𝑗 ∈ 𝑈 (𝓁+1) to 𝑢𝑖 ∈ 𝑈 (𝓁)

n the 𝛼-𝛽 rule [33, section 5.1] is characterized by

𝑅(𝓁,𝓁+1)
𝑖←𝑗 = 𝜌

(

𝑐𝑗 (𝑥𝑖 , 𝑤𝑖𝑗 ) , 𝑅
(𝓁+1)
𝑗

)

= 𝑐𝑗 (𝑥𝑖 , 𝑤𝑖𝑗 ) ⋅ 𝑅
(𝓁+1)
𝑗 =

(

𝛼
𝑧+𝑖𝑗
𝑧+𝑗

− 𝛽
𝑧−𝑖𝑗
𝑧−𝑗

)

𝑅(𝓁+1)
𝑗 ,

(A.7)

where, for each fixed 𝛼 , 𝛽 ∈ R+, one should have 𝛼 − 𝛽 = 1 in order
to satisfy the conservation property. To avoid numerical instability, a
small number (e.g. 𝜖 = 10−9) is added to the denominators of (A.7). We
also observe that the 𝛼-𝛽 rule is characterized by a coherence property,
where 𝜇𝜌 and 𝜇𝑐𝑗 are such that:

𝜇𝜌((0 , 𝜉1) × (0 , 𝜉2)) = 𝜉1 𝜉2 (A.8)

and

𝜇𝑐𝑗 ((0, 𝜉1) × (0, 𝜉2)) =

⎧

⎪

⎨

⎪

⎩

𝛼
𝑧+𝑗

𝜉1 𝜉2 , if 𝜉1 𝜉2 ≥ 0

− 𝛽
𝑧−𝑗

𝜉1 𝜉2 , if 𝜉1 𝜉2 < 0
. (A.9)

Specifically, in Section 5 of this work the parameter values are fixed
o 𝛼 = 1 and 𝛽 = 0. This setting implies that, in the propagation rule,
he message is defined as

(𝓁 ,𝓁+1)
𝑖←𝑗 =

{

(𝑥𝑖𝑤𝑖𝑗∕𝑧+𝑗 )𝑅
(𝓁+1)
𝑗 , if 𝑥𝑖𝑤𝑖𝑗 ≥ 0

0 , if 𝑥𝑖𝑤𝑖𝑗 < 0
. (A.10)
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A.1. LRP generalization to multitask neural networks

In this subsection of the appendix we generalize the LRP method
to FNNs having a multitask architecture of the type described in
Section 3.1. In principle, the application of LRP to multitask FNNs
can be easily performed, since any multitask FNN can be ‘‘trans-
lated’’ into an equivalent non-multitask FNN characterized by some
null weights. However, this sort of translation is not advisable for at
least two reasons: firstly, it violates the principle of parsimony in terms
of coding and computational load; secondly, one hinders the model
interpretability by losing its tights with topology of the underlying DFN.
It is, therefore, worthwhile generalizing the LRP method to multi-task
architectures.

Let us consider a multitask FNN  with the same architecture as
he one introduced in Section 3.1, characterized by 𝑛 inputs, 𝑚 branches
nd outputs, and depth 2𝑑. Let us introduce the following notation for
he scores involving the layers of the branches.

• Let 𝐿 be such that 𝐿 = 2𝑑 + 1. For each ℎ = 1,… , 𝑚, the starting
score assigned to the ℎth output is denoted as

𝑅(𝐿 ;ℎ)
1 = �̂�ℎ =

(

𝑭 (𝜿)
)

ℎ
, (A.11)

where 𝑭 is the function associated to  and (𝜿 , �̂�) is a given
input–output pair defined as in Section 3.3. Then, the total start-
ing score 𝑅(𝜿) =

∑𝑚
ℎ=1 �̂�ℎ is re-defined as

𝑅(𝜿) =
𝑚
∑

ℎ=1
𝑅(𝐿 ;ℎ)
1 =∶ 𝑅(𝐿) . (A.12)

• For each 𝓁 = 𝑑 + 1,… , 2𝑑, the scores computed with respect to
units of the layer 𝑈 (𝓁)

ℎ (belonging to the ℎth branch of  ) are
denoted as 𝑅(𝓁,𝓁+1 ;ℎ)

𝑖←𝑗 . Then, analogously to (13) and (A.3), 𝑅(𝓁 ;ℎ)
𝑖 ,

𝑅(𝓁 ;ℎ) and 𝑅(𝓁) are defined, respectively, as

𝑅(𝓁 ;ℎ)
𝑖 =

∑

𝑢𝑗∈𝑈
(𝓁+1)
ℎ

𝑅(𝓁,𝓁+1 ;ℎ)
𝑖←𝑗 , (A.13)

𝑅(𝓁 ;ℎ) =
∑

𝑢𝑖∈𝑈
(𝓁)
ℎ

𝑅(𝓁 ;ℎ)
𝑖 (A.14)

and

𝑅(𝓁) =
𝑚
∑

ℎ=1
𝑅(𝓁 ;ℎ) . (A.15)

In particular, the above equation is used also for the case 𝓁 = 𝐿 =
2𝑑 + 1, even if the result is 𝑅(𝐿 ;ℎ) = 𝑅(𝐿 ;ℎ)

1 .
• For 𝓁 = 𝑑 and for each ℎ = 1,… , 𝑚, the score propagated from
𝑢𝑗 ∈ 𝑈 (𝑑+1)

ℎ to 𝑢𝑖 ∈ 𝑈 (𝑑) is denoted as 𝑅(𝑑,𝑑+1 ;ℎ)
𝑖←𝑗 . Then the total

score 𝑅(𝑑)
𝑖 propagated to 𝑢𝑖 is given by

𝑅(𝑑)
𝑖 =

𝑚
∑

ℎ=1

∑

𝑢𝑗∈𝑈
(𝑑+1)
ℎ

𝑅(𝑑,𝑑+1 ;ℎ)
𝑖←𝑗 (A.16)

Generalizing now the 𝛼-𝛽 rule (A.7) to define the scores 𝑅(𝓁,𝓁+1 ;ℎ)
𝑖←𝑗 ,

for each 𝓁 = 𝑑,… , 𝐿 − 1 and for each ℎ = 1,… , 𝑚, we observe that the
conservation and coherence properties are satisfied for the multitask
NN  . Then, for the generality of parameters 𝑛, 𝑚, and 𝑑 considered,
we can assert that the LRP method characterized by the 𝛼-𝛽 rule can be
applied to multitask NNs characterized by the architecture described in
Section 3.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
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