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Empirical networks are often globally sparse, with a small average number of connections per node, when
compared to the total size of the network. However, this sparsity tends not to be homogeneous, and networks
can also be locally dense, for example, with a few nodes connecting to a large fraction of the rest of the network,
or with small groups of nodes with a large probability of connections between them. Here we show how latent
Poisson models that generate hidden multigraphs can be effective at capturing this density heterogeneity, while
being more tractable mathematically than some of the alternatives that model simple graphs directly. We show
how these latent multigraphs can be reconstructed from data on simple graphs, and how this allows us to
disentangle disassortative degree-degree correlations from the constraints of imposed degree sequences, and
to improve the identification of community structure in empirically relevant scenarios.
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I. INTRODUCTION

One of the most important properties of empirical
networks—representing the pairwise interactions of social,
biological, informational, and technological systems—is that
they exhibit a strong structural heterogeneity, while being
globally sparse [1]. The latter property means that most
possible connections between nodes are not observed, which
as a consequence means that, on average, the probability of
observing a connection between two nodes is very small, and
hence the typical number of connections each node receives is
much smaller than the total number of nodes in the network.
For example, even though the global human population is
on the order of billions, most people interact only with a
far smaller number of other people. Nevertheless, such net-
work systems are rarely homogeneously sparse: instead, local
portions of the network can vary greatly in their number of
interactions. As has been widely observed [2], the number
of neighbors of each node is very often broadly distributed,
typically spanning several orders of magnitude. In addition,
networks exhibit diverse kinds of mixing patterns in relation
to the degrees [3], e.g., nodes may connect to other nodes
with similar degree (assortativity), or nodes with high degree
may connect preferentially with nodes of low degree and vice
versa (disassortativity). It is possible also for networks to
possess communities of tightly connected nodes [4], such that
the probability of a link existing between members of these
subgroups far exceeds the global average. The existence of
such heterogeneous mixing patterns serves as a signature of
the process responsible for the network formation and may
give insight into its functional aspects.

A central complicating factor in the characterization and
understanding of the different kinds of mixing patterns in
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networks is that they cannot be fully understood in isolation.
For example, although networks with degree heterogeneity
can exhibit, in principle, any kind of mixing pattern, there is a
stronger tendency of very heterogeneous networks to exhibit
degree disassortativity [5–7]. This is because once the degrees
of a fraction of the nodes become comparable to the total
number of nodes in the network, there is no other option
than to connect them with nodes of lower degree. Since it
is not possible to fully decouple degree heterogeneity from
mixing, it can become difficult to determine whether the latter
is simply a byproduct of the former, or if it can be related to
other properties of network formation.

The degree disassortativity induced from broad degree
distributions can also occur in networks exhibiting commu-
nity structure, and in a similar way: if a node has a degree
comparable to the number of nodes in the community to
which it belongs, it will tend to be connected to nodes of the
same community with a smaller degree. The resulting mixing
pattern may confuse community detection methods that do not
account for this possibility, which will mistake the pattern that
arises from a purely intrinsic constraint, with one that needs
an extrinsic explanation in the form of a different division of
the network into groups.

In this work we address the problem of describing degree
and density heterogeneity by considering models of random
multigraphs, i.e., where more than one link between nodes
is allowed, as well as self-loops, following a Poisson dis-
tribution, where a full decoupling of the degree distribution
and degree mixing patterns is in fact possible. These can be
transformed into models of simple graphs by erasing self-
loops and collapsing any existing multiedges into a single
edges. Conversely, we can recover the decoupling of degree
variability and mixing by reconstructing an underlying multi-
graph from a given observation of a simple graph. Then, by
inspecting the inferred multigraph, we can finally determine
what is the cause and byproduct.
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We also show how latent Poisson models can be employed
in the task of community detection in the presence of density
and degree heterogeneity. When dealing with simple graphs,
degree correction [8], as we show, is in general is not suffi-
cient to disentangle community structure from induced degree
disassortativity. When performing latent multigraph recon-
struction, we demonstrate that this becomes finally possible.
Furthermore, we show how the latent multigraph approach
is more effective at describing the heterogeneous density
of many networks, when compared to just using a multi-
graph model directly to represent a simple graph, as is often
done [9]. In particular, we show how this increases our ability
to uncover smaller groups in large networks.

This paper is divided as follows. We begin in Sec. II
by formalizing the intrinsic effect of degree constraints by
employing the maximum-entropy principle, and we show how
the Poisson model appears naturally when multiedge distin-
guishability is taken into consideration. In Sec. III we describe
the erased Poisson model for simple graphs, we compare
its induced degree correlations with alternative maximum-
entropy models, and present methods of Bayesian inference
capable of reconstructing it from simple graph data. We
then show how it can shed light into the origins of degree
disassortativity in empirical networks. In Sec. IV we show
how the erased Poisson model can improve the task of com-
munity detection, by allowing the induced degree mixing to
be decoupled from the modular network structure, and also
describe arbitrary density heterogeneity, and thereby enhance
the resolution of small dense communities in large globally
sparse networks. We finalize in Sec. V with a conclusion.

II. MAXIMUM-ENTROPY ENSEMBLES FOR SIMPLE
AND MULTIGRAPHS

One of our primary objectives is to model the effects of
degree heterogeneity in network structure. To this end, we
will concern ourselves with network ensembles that satisfy
the constraint that the expected degrees of the nodes are given
as parameters. Specifically, if P(A) is the probability that
network A occurs in the ensemble, we have that the following
condition needs to hold:∑

A

P(A)
∑

j

A ji = k̂i, (1)

for a given expected degree sequence k̂ = {k̂1, . . . , k̂N }, where
Ai j determines the number of edges between nodes i and j,
ki = ∑

j A ji is the degree of node i, and and N is the number
of nodes in the network. Given the constraints of Eq. (1), there
are many choices of ensemble P(A) that satisfy it. Since we
want to understand the intrinsic effect of the imposed degrees
on other aspects of the network structure, we are interested
in the choice of P(A) that is maximally uniform, or agnostic,
with respect to the possible networks, conditioned only that
the above constraint is satisfied. More formally, this means we
want the choice that maximizes the ensemble entropy [10,11]

S = −
∑

A

P(A) ln P(A). (2)

Employing the method of Lagrange multipliers to perform
the constrained maximization yields a product of independent

distributions for each entry in the adjacency matrix,

P(A) =
∏
i< j

(θiθ j )Ai j

Zi j
, (3)

where the θ are “fugacities” (exponentials of Lagrange mul-
tipliers) that keep the constraints in place [5,11–13], and
Zi j = ∑

Ai j
(θiθ j )Ai j is a normalization constant, comprised of

a sum over all possible values of Ai j . Thus, the value of Zi j

will be different depending on whether we are dealing with
simple graphs or multigraphs. For the case of simple graphs
with Ai j ∈ {0, 1}, we have Zi j = 1 + θiθ j , which results in
independent Bernoulli distributions for every node pair,

P(A) =
∏
i< j

(θiθ j )Ai j

1 + θiθ j
, (4)

with mean values

〈Ai j〉 = θiθ j

1 + θiθ j
. (5)

In order for the constraints of Eq. (1) to be fulfilled, the fu-
gacities need to be chosen by solving the system of nonlinear
equations ∑

j �=i

θiθ j

1 + θiθ j
= k̂i, (6)

which in general does not admit closed analytical solutions,
and needs to be solved numerically.

For multigraphs with Ai j ∈ N0, we have instead Zi j =∑∞
Ai j=0(θiθ j )Ai j = (1 − θiθ j )−1, assuming θiθ j < 1, which re-

sults in a product of geometric distributions,

P(A) =
∏
i< j

(θiθ j )
Ai j (1 − θiθ j ), (7)

with mean values

〈Ai j〉 = θiθ j

1 − θiθ j
, (8)

and the fugacities are obtained by solving an analogous but
different system of equations∑

j �=i

θiθ j

1 − θiθ j
= k̂i, (9)

which also cannot be solved in closed form in general.
In both of the above cases, if all imposed degrees k̂i are

sufficiently smaller than
√

2E , with 2E = ∑
i k̂i being twice

the number of expected edges, then in the limit N � 1 the
fugacities can be obtained approximately as

θi ≈ k̂i√
2E

. (10)

In this case the expected value of the adjacency matrix be-
comes 〈

Ai j
〉 ≈ θiθ j = k̂ik̂ j

2E
, (11)

both for simple and multigraphs, and hence the difference
between those ensembles vanish. In this situation, the ex-
pected number of edges between nodes is in the order of
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1/N , for sparse networks with E ∼ O(N ), and thus the net-
works are also locally sparse, since no portion of the network
is connected with high probability. The ensemble does not
possess intrinsic degree correlations between neighbors, since
the expected value of the adjacency matrix is simply the
product of the fugacities. However, if the expected degrees k̂
are broadly distributed, with a fraction of them approaching
or exceeding

√
2E (known as the “structural cutoff” [14]),

this assumption will no longer hold, even if the network
is globally sparse with E ∼ O(N ). In this situation, typical
networks sampled from the ensemble will exhibit intrinsic
nontrivial mixing patterns. We will return to this in Sec. III A,
but for now we move to maximum-entropy ensembles with
distinguishable multiedges.

A. Distinguishable multiedges and the Poisson model

We now consider a third situation when multiple edges
between nodes are allowed, but the individual edges between
the same two nodes can be distinguished from one another.
We do so by allowing the edges to belong to one of M discrete
types. We implement this by introducing a binary variable
X m

i j ∈ {0, 1} specifying whether an edge of type m ∈ [1, M]
exists between nodes i and j, such that the adjacency matrix
of the associated multigraph becomes Ai j = ∑M

m=1 X m
i j , so that

Ai j ∈ [0, M]. By maximizing the entropy of this augmented
ensemble while imposing the same degree constraints of
Eq. (1), we obtain an equation similar in form to Eq. (3),

P(X ) =
∏
i< j

(θiθ j )
∑

m X m
i j

Zi j
, (12)

but with a different normalization

Zi j =
M∑

Ai j=0

(
M

Ai j

)
(θiθ j )

Ai j = (1 + θiθ j )
M . (13)

If we now consider the associated multigraph ensemble, by
ignoring the edge types, we obtain a product of binomial
distributions

P(A) =
∑

X

P(X )
∏
i< j

δAi j,
∑

m Xm
i j

(14)

=
∏
i< j

(
M

Ai j

)(
θiθ j

1 + θiθ j

)Ai j
(

1 − θiθ j

1 + θiθ j

)M−Ai j

. (15)

Taking the limit M → ∞, and making the variable transfor-
mation θi → θi/

√
M, while keeping the constraints of Eq. (1)

fixed, we obtain a product of Poisson distributions

P(A) =
∏
i< j

(θiθ j )Ai j e−θiθ j

Ai j!
. (16)

In this case the degree constraints take a simpler form

k̂i = lim
M→∞

∑
j �=i

θiθ j

1 + θiθ j

M

= θi

∑
j �=i

θ j . (17)

The above model becomes even more convenient if we allow
for self-loops, i.e., Aii > 0. Repeating the same calculations

we obtain

P(A) =
∏
i< j

(θiθ j )Ai j e−θiθ j

Ai j!

∏
i

(
θ2

i /2
)Aii/2

e−θ2
i /2

(Aii/2)!
, (18)

where we adopt the convention that Aii is twice the number of
self-loops incident on node i. With this simple modification
the degree constraints now become

k̂i = θi

∑
j

θ j . (19)

Unlike any of the previous models considered, the above
equations can be directly solved as

θi = k̂i√
2E

, (20)

once more with 2E = ∑
i k̂i. The mean of the adjacency entry

is then

〈Ai j〉 = θiθ j = k̂ik̂ j√
2E

. (21)

This model, therefore, becomes asymptotically equivalent to
the simple and multigraph ensembles considered previously
if the expected degrees are all sufficiently smaller than

√
2E ,

however, it retains a lack of intrinsic degree correlations even
if this condition is not satisfied, since the expected number
of edges between nodes is always a product of the fugacities.
More specifically, the expected degree 〈k〉nn(k) of the neigh-
bors of nodes of degree k is given by

〈k〉nn(k) =
∑

A

P(A)

∑
i δki,k

∑
j A jik j/ki∑

i δki,k
(22)

=
∑

i

θ2
i =

∑
i k̂2

i

2E
, (23)

which is a constant independent of k.
The Poisson model has been proposed originally by Norros

and Reittu [15], but not as a maximum-entropy ensemble for
multigraphs possessing distinguishable multiedges, as we do
here. At first, this might seem like a construct designed pri-
marily for mathematical convenience, rather than a principled
proposition, as there is no inherent property of a multigraph
that allows us to tell multiedges apart. However, there are
situations where the notion of multiedge distinguishability
does arise naturally. For example, there may be different roads
between the same two cities [16], both of which are identifi-
able due to their spacial location. In proximity networks [17],
multiedges correspond to events that are localized in space
and time, and hence are distinguishable. We consider in the
Appendix different kinds of intuitive random graph models
that possess this property and show how they are exactly
equivalent to the Poisson model. Nevertheless it generates
multigraphs, where in many realistic settings we are interested
in simple graphs, with at most one edge between two nodes.

A common approach is simply to ignore the discrepancy,
and employ the Poisson model even when modeling simple
graphs [8], arguing that the difference is negligible for sparse
graphs, a point which we will examine in more detail in
Sec. IV. For now, we simply anticipate that in order for this
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approximation to be valid, the graphs need to be uniformly
sparse. In the following, we consider the erased Poisson
model, which provides a better alternative to model simple
graphs with heterogeneous sparsity.

III. THE ERASED POISSON MODEL
FOR SIMPLE GRAPHS

An alternative to the maximum-entropy model for simple
graphs is the “erased” Poisson model, where a multigraph
A is generated from the Poisson model P(A|θ) and a simple
graph G(A) is obtained from it by simply ignoring (“erasing”)
multiedge multiplicities and removing self-loops [18,19], i.e.,

Gi j (Ai j ) =
{

1 if Ai j > 0 and i �= j,

0 otherwise.
(24)

The resulting simple graph G is generated with probability

P(G|θ) =
∏
i< j

(1 − e−θiθ j )Gi j e−θiθ j (1−Gi j ), (25)

and we can impose a desired expected degree sequence by
solving the system of equations∑

j �=i

1 − e−θiθ j = k̂i. (26)

These equations also do not admit a general closed-form
solution for θ. We therefore may ask if this model is any
more practical than the maximum-entropy variant of Eq. (4).
As it turns out, it is, but before we see how, let us compare
the properties of this model with the other ones we have seen
so far.

A. Degree correlations

With the exception of the Poisson model, all other models
considered yield samples with some form of degree-degree
correlations. The difference between the ensembles can seen
by the inspecting the average value of the adjacency matrix
entries as a function of the product of the fugacities in each
case, i.e.,

〈Ai j〉 = θiθ j

1 + θiθ j
, (Max-Ent simple graph)

= θiθ j

1 − θiθ j
, (Max-Ent multigraph)

= θiθ j, (Poisson multigraph)

〈Gi j〉 = 1 − e−θiθ j . (Erased Poisson simple graph)

These functions are illustrated in Fig. 1. For θiθ j � 1 all func-
tions approach the same uncorrelated placement of edges as
in the Poisson model with 〈Ai j〉 ≈ θiθ j . For larger values the
simple graph models show a saturation of the edge placement
probability, which results in a disassortative degree correla-
tion, as it prevents an excess of connections to nodes with
larger fugacities. The maximum-entropy multigraph model,
on the other hand, shows a divergence of the number of edges
placed as θiθ j → 1, which results in an assortative degree
correlation, due to the nonlinear accumulation of multiedges

FIG. 1. Average number of edges between nodes as a function of
the product of their fugacities, for the different ensembles, as shown
in the legend.

between nodes with high fugacity.1 (We note that it is some-
times implied in the literature that multigraph ensembles are
uncorrelated. This is only true for models where multiedges
are distinguishable, such as the Poisson and configuration
models, not otherwise.)

For the Poisson multigraph model, the purely linear de-
pendence on the fugacities implies a total lack of correlations
between degrees at the endpoints of each edge, as we have
already seen. The situation changes when multigraphs are
erased, where we observe a similar, although not identical,
saturation in the edge placement probability, which also
results in a disassortative degree-degree correlation among
neighbors.

The difference between the ensembles can be further il-
lustrated by choosing integer-valued imposed degrees that are
independently sampled from a Zipf distribution

P(k|α) = k−α

ζ (α)
, (27)

with ζ (α) being the Riemann zeta function. For values of
α ∈ [2, 3] the variance of this distribution diverges, while
the mean remains finite, therefore serving as a simple model
of globally sparse but locally dense networks. In Fig. 2 we
show how the edges present in one sample of each model are

1This multiedge concentration is reminiscent of the Bose-Einstein
condensation phenomenon in quantum physics, where the number
of particles in the ground state of a Bose gas diverges in a similar
way. Indeed, Eq. (5) for simple graphs and Eq. (8) for multigraphs
follow the Fermi-Dirac and Bose-Einstein statistics, respectively.
Following this analogy, the uniformly sparse graph regime where
both ensembles agree would correspond to the classical Maxwell-
Boltzmann statistics, valid for low densities or high temperatures.
The Poisson multigraph model can be interpreted as an extension
of this classical limit to arbitrary densities. We note however that,
in network science, Bose-Einstein condensation is more commonly
associated with a different phenomenon of growing networks [20].
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FIG. 2. The same as Fig. 1, but showing the values for the edges
of samples of each model with N = 106 nodes, and with the same set
of imposed degrees sampled from the Zipf distribution of Eq. (27),
using (a) α = 2.2 and (b) α = 2.4.

distributed along the curves of Fig. 1: A smaller value of α cre-
ates broader and denser networks, for which the discrepancy
between all models is very large. Although the mean degree
of the generated networks in the case α = 2.2 is only around
3.75, even on a network of N = 106 nodes the probability
of observing an edge between two nodes approaches one for
a significant number of pairs. As the exponent α increases,
the network becomes more homogeneously sparse, and the
fugacities and corresponding edge probabilities become more
similar across ensembles.

The induced degree correlations among neighbors in each
ensemble are shown in Fig. 3, in each case for the same set
of imposed degrees sampled from Eq. (27). Some aspects
of the degree correlations of the erased Poisson model were
considered rigorously in Refs. [21,22], and in the case of the
maximum-entropy simple graph model in Ref. [5]. One im-
portant point to notice is that, although the erased Poisson and
maximum-entropy models for simple graphs are not identical,
they generate a very similar disassortative trend, indicating a
comparable explanatory power for this kind of effect.

A further comparison is seen in Fig. 4 where the degree
assortativity coefficient [3] r ∈ [−1, 1] is shown as a function

100 101 102 103 104 105

k

102

103

104

105

〈k
〉 nn

Poisson multigraph
Max-Ent simple graph
Erased Poisson simple graph
Max-Ent multigraph

FIG. 3. Mean degree of a neighbor of a node of degree k, as a
function of k, 〈k〉nn(k), for the different ensembles considered, with
N = 106 and the same set of imposed degrees sampled from Eq. (27)
with α = 2.2. (The error bars on the 〈k〉nn values are smaller than the
symbols used.)
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FIG. 4. Degree assortativity r as a function of the Zipf exponent
α, for networks with N = 106 nodes sampled from the models
indicated in the legend.

of the Zipf exponent α, defined as

r =
∑

kk′ kk′(mkk′ − qkqk′ )

σ 2
k

, (28)

with mkk′ = ∑
i j Ai jδki,kδk j ,k′/2E being the fraction of edges

between nodes of degrees k and k′, qk = ∑
k′ mkk′ is distri-

bution of degrees at the endpoints of edges, and σ 2
k is its

variance. We see that the same pattern persists for the entire
range of α ∈ [2, 3], with the assortativity values being very
similar between the erased Poisson and maximum-entropy
simple graph models.

The similarity between the erased Poisson and the
maximum-entropy simple graph model makes the former
attractive as an alternative, considering its flexibility, as we
are about to explore in the next section.

B. Reconstructing the erased Poisson model

The ensembles considered previously translate different as-
sumptions about the data into probability distributions, condi-
tioned on desired constraints, and mediated by the maximum-
entropy ansatz. In principle, we should choose the set of
assumptions that most closely matches the data in question.

Although we have argued that the Poisson model is
well motivated in situations where multiedges can be distin-
guished, for simple graphs in particular there is a practical
advantage to using the erased Poisson model, regardless if
it is truly the most adequate mechanistic explanation or null
model. Namely, it allows us to disentangle the edge placement
from the inherent degree correlations, since the latter is only
caused by the erasing of multiedges, and is absent from the
original multigraph. We can do the same even if we only
have the final simple graph at our disposal, by attempting
to reconstructing the multigraph that generated it. If the
latent multigraph does not exhibit degree correlations, we
can conclude those were caused by the erasure procedure, –
which simply reflects the inherent constraints of having to
generate a simple graph, and not some extrinsic propensity
of high-degree nodes to connect to low-degree ones.

In the following we describe a principled and efficient
method to perform such a reconstruction. We approach the
task in a Bayesian way, by considering the posterior distri-
bution of multigraphs A and fugacities θ conditioned on an
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observed simple graph G,

P(A, θ|G) = P(G|A)P(A|θ)P(θ)

P(G)
, (29)

with P(G|A) given by

P(Gi j |Ai j ) =
{

1, if Gi j = Gi j (Ai j ),

0, otherwise,
(30)

with Gi j (Ai j ) given by Eq. (24) and with P(A|θ) being the
Poisson multigraph model of Eq. (16). The distribution P(θ)
is our prior for the fugacities, which for the moment we
will assume to be constant P(θ) ∝ 1, meaning we are fully
agnostic about what kind of model generated the data (we
will revisit this assumption in Sec. IV). Finally, we have the
so-called evidence

P(G) =
∑

A

∫
P(G|A)P(A|θ)P(θ) dθ, (31)

which is an unimportant constant for our present purpose.
With the posterior distribution P(A, θ|G) in place, we can
proceed in a variety of ways, for example by sampling from
it using Markov chain Monte Carlo (MCMC). But instead,
we will proceed in a more efficient manner, by considering
first the most likely fugacities, when averaged over all possible
multigraphs A, i.e.,

θ̂ = argmax
θ

∑
A

P(A, θ|G) = argmax
θ

P(G|θ), (32)

where P(G|θ) is the erased Poisson likelihood of Eq. (25).
Noting that taking the logarithm of the likelihood does not
alter the position of its maximum, and substituting leads to

θ̂ = argmax
θ

∑
i< j

Gi j ln(1 − e−θiθ j ) − (1 − Gi j )θiθ j . (33)

Taking the derivatives of the right-hand side with respect to θ

and setting them to zero yields a system of nonlinear implicit
equations that does not admit an obvious solution in closed
form in the general case. Fortunately, we can obtain a simple
algorithm for solving it, by slightly augmenting our problem,
and obtaining at the same time a conditional posterior distri-
bution over multigraphs P(A|G, θ̂). We do so by employing
Jensen’s inequality on P(G|θ) = ∑

A P(G|A)P(A|θ) in the
form

ln
∑

A

P(G|A)P(A|θ) �
∑

A

q(A) ln
P(G|A)P(A|θ)

q(A)
, (34)

where the equality is achieved by setting

q(A) = P(G|A)P(A|θ)∑
A′ P(G|A′)P(A′|θ)

= P(A|G, θ) (35)

=
∏
i� j

P(Ai j |Gi j, θ), (36)

which is precisely the posterior distribution of multigraphs
conditioned on a particular choice of fugacities, whose entries

can be directly computed as

P(Ai j |Gi j, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θiθ
Ai j
j e−θiθ j

Ai j !

1−δAi j ,0

1−e−θiθ j
if Gi j = 1,

(θ2
i /2)Aii/2e−θ2

ii/2

(Aii/2)! if i = j,

0 otherwise.

(37)

It will be useful to summarize this posterior distribution via
its mean value for each node pair, given by

wi j ≡ 〈
Ai j

〉 =

⎧⎪⎪⎨
⎪⎪⎩

θiθ j

1−e−θiθ j
if Gi j = 1,

θ2
i if i = j,

0 otherwise.

(38)

With this at hand, we then return to the maximization to obtain

θ̂ = argmax
θ

∑
A

q(A) ln
P(G|A)P(A|θ)

q(A)
(39)

= argmax
θ

∑
i� j

∞∑
Ai j=0

q(Ai j ) ln P(Ai j |θ) (40)

= argmax
θ

1

2

∑
i j

wi j ln θiθ j − θiθ j . (41)

The last equation can be solved easily, which yields

θ̂i = di√∑
j d j

, (42)

where

di =
∑

j

w ji (43)

is the expected degree of node i in the multigraph A, averaged
over P(A|G, θ̂). Since we are interested in the self-consistent
values of w conditioned on θ̂, this leads us to the following
expectation-maximization (EM) algorithm, which starts with
some arbitrary choice of θ, and alternates between the follow-
ing steps

(1) In the “expectation” step we obtain the marginal mean
multiedge multiplicities via

wi j =

⎧⎪⎪⎨
⎪⎪⎩

θiθ j

1−e−θiθ j
if Gi j = 1,

θ2
i if i = j,

0 otherwise.

(44)

(2) In the “maximization” step we use the current values
of w to update the values of θ:

θi = di√∑
j d j

, with di =
∑

j

w ji. (45)

Upon convergence, the above EM algorithm is guaranteed
to find only a local optimum of the maximization problem,
therefore we may need to run it multiple times with different
initial choices of θ. However, in all our experiments we
found that the algorithm tends to find the same solution from
any initial starting point, even when this happens to be the
correct solution (in artificially generated examples where this
is known), giving strong evidence that the global optimum is
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FIG. 5. Poisson multigraph reconstruction accuracy as measured
via the similarity of Eq. (46) for simple graphs sampled from the
erased Poisson model with imposed degrees sampled from a Zipf
distribution with exponent α, as a function of the number of nodes
N . Each point was averaged over 100 realizations.

usually found. This algorithm is efficient, since we need only
to keep track of the values for w for the observed edges in
G, in addition to each self-loop. Therefore, the E-step can
be done in O(E + N ) time, and the M-step in O(N ) time,
resulting in an overall O(E + N ) computational complexity.
The algorithm can also be run in parallel easily. The number
of EM iterations required for convergence depends on the
data and initial conditions, but we have successfully run it on
networks with up to 108 edges on a regular laptop computer.
Our C++ implementation of the above algorithm is available
as part of the graph-tool Python library [23].

In Fig. 5 we show how the algorithm behaves in recover-
ing the underlying multigraph of artificial networks sampled
from the erased Poisson model, as measured via the Jaccard
similarity

s(w, A) = 1 −
∑

i j |wi j − Ai j |∑
i j wi j + Ai j

(46)

between the true and inferred multigraphs, with imposed
degrees sampled from a Zipf distribution. For smaller values
of the exponent α, which causes the edge multiplicities to
become larger, the recovery becomes less accurate, but in
all cases it approaches s(w, A) → 1 as the number of nodes
increases, indicating that full recovery is possible asymptoti-
cally as the amount of available data increases.

Since this algorithm gives us a distribution over multi-
graphs, we can use it to investigate whether the degree cor-
relations of an observed simple graph exist as a necessary
outcome of the existing degrees, or if they should be attributed
to something else. In the first scenario, the degree-degree cor-
relations would disappear in the inferred multigraph, whereas
they would persist in the second one. Interestingly, this works
reasonably well even when the observed graph was not sam-
pled from the erased Poisson model. We illustrate this with an
example in Fig. 6, where a simple graph was generated from
a maximum-entropy model with Zipf-distributed degrees, and

100 101 102 103 104 105

k

102

103

104

〈k
〉 nn

Max-Ent simple graph
Poisson reconstruction

FIG. 6. Mean degree of a neighbor of a node of degree k, as
a function of k, for a network with N = 106 nodes sampled from
the maximum-entropy ensemble with imposed degrees sampled from
Eq. (27) with α = 2.2, and its inferred Poisson multigraph, using the
algorithm described in the text.

we inferred from it a corresponding Poisson multigraph. Even
though the inferred multigraph still shows a weak degree cor-
relation between neighboring nodes, since the erased Poisson
model cannot fully account for the structure of the maximum-
entropy model, the overall disassortative trend is completely
absent. Figure 7 shows the degree assortativity values for
both original and reconstructed networks over a range of
α ∈ [2, 3]. Although the reconstructed networks still show
values r < 0, their deviation from zero is barely noticeable in
the figure. As we have seen previously in Fig. 3, these results
further show that the erased Poisson model generates mixing
patterns that, although not identical, are sufficiently similar
to the maximum-entropy simple graph model, allowing us to
correctly conclude that the resulting degree correlations arise
directly from the imposed degrees.

C. Empirical networks

We can use the erased Poisson model to decouple degree
assortativity from the degree constraints by inferring the
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FIG. 7. Degree assortativity as function of the Zipf exponent
α, for networks with N = 106 nodes sampled from the maximum
entropy ensemble with Zipf-distributed imposed degrees, and their
corresponding inferred Poisson multigraphs.
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FIG. 8. Degree assortativity for original simple graph r, and for
the reconstructed multigraph r′ for 816 empirical networks, obtained
from the CommunityFitNet [24] and Konect [25] databases.

underlying multigraph where these properties are not tied to
each other. In Fig. 8 we show the results of applying our
algorithm to 816 networks across different domains, obtained
from the CommunityFitNet [24] and Konect [25] databases,
and comparing the assortativity coefficient computed for the
original network and reconstructed multigraph. For assortative
mixing patterns with r > 0 we do not observe any significant
difference, as this kind of mixing pattern is unrelated to
degree constraints. However, for disassortative values r < 0
we observe a variety of behaviors, where for many networks
the assortativity value is significantly increased in the re-
constructed multigraph, indicating that observed correlations
can be largely associated with the broadness of the degrees.
A prime example of this is the Internet at the autonomous
systems level [28], which has been long considered as a
case where the observed disassortativity is a byproduct of
the broad degree sequence rather than an independent feature
of the network [5,29]. As we see in Fig. 9, we can recover
this result clearly with our reconstruction method, where
the inferred multigraph completely lacks the disassortativity
pattern. Other examples of this phenomenon are shown in
Fig. 10 for the metabolic network of C. elegans [26], the
network of leaked emails of the Democratic National Com-
mittee, and the class dependency graph of a large software
project [27]. We also show the reconstruction results for
the now-extinct online social network Flixter [25], where
users could share their taste on films. This network displays
a strong degree disassortativity which persists completely
in the reconstructed Poisson multigraph, indicating that it
does not in fact arise from the inherent constraints of the
existing degrees, and must therefore be due to some other
mechanism.
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102

103
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〈 k
〉 nn

Original, r = −0.19

Reconstructed,r′ = −0.0017

FIG. 9. Mean degree of a neighbor of a node of degree k as a
function of k, for the internet at the autonomous systems level, both
for the original network and reconstructed multigraph, as shown in
the legend, which includes the degree assortativity coefficient of each
case.

IV. COMMUNITY DETECTION

Another important type of heterogeneous sparsity is com-
munity structure [4], which can be loosely defined as the exis-
tence of groups of nodes with a high probability of connection
to themselves, or also to other groups. Models for networks
with this kind of structure can be obtained by forcing the
number of edges between groups to have specific values. More
precisely, we assume the nodes are divided into B disjoint
groups, with bi ∈ [1, B] denoting the group membership of

FIG. 10. Mean degree of a neighbor of node of degree k as a
function of k, for (a) the metabolic network of Caenorhabditise-
legans [26], (b) the network of leaked emails of the Democratic
National Committee, (c) the class dependency graph of a large
software project [27], and (d) the online social network Flixter [25],
both for the original network and reconstructed multigraph, as shown
in the legend, which includes the degree assortativity coefficient of
each case.
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node i. With this, and in addition to the expected degree
constraints, we have the expected edge counts between groups
given by ∑

A

P(A)
∑

i j

Ai jδbi,rδb j ,s = mrs. (47)

Performing the same calculation as before, i.e., maximizing
the ensemble entropy conditioned on the above constraints in
addition to Eq. (1) we arrive at the model

P(A|λ, θ, b) =
∏
i< j

(λbib j θiθ j )Ai j

λbib j θiθ j + 1
, (48)

in the case of simple graphs, which contains another set
of fugacities λ. The values of the fugacities θ and λ are
determined by solving the following set of equations:∑

j �=i

λbib j θiθ j

λbib j θiθ j + 1
= k̂i,

∑
i j

λrsθiθ jδbi,rδb j ,s

λrsθiθ j + 1
= mrs, (49)

which once more cannot be solved in closed form.
Instead, if we consider multigraphs with distinguishable

multiedges, performing the same calculations as before, we
arrive at the Poisson version of the degree-corrected stochastic
block model (DC-SBM), originally proposed by Karrer and
Newman [8]

P(A|λ, θ, b) =
∏
i< j

(λbib j θiθ j )Ai j e−λbib j θiθ j

Ai j!

×
∏

i

(
λbibiθ

2
i /2

)Ai j/2
e−λbibi θ

2
i /2

(Ai j/2)!
. (50)

As pointed out in Ref. [8], this model is more tractable, and
we can obtain the fugacities directly as

θi = k̂i∑
j k̂ jδb j ,bi

, λrs = mrs. (51)

Rather than the fugacities, in this context we are primarily
interested in obtaining the partition b given an observed
network A, hence we focus on the posterior

P(b|A) = P(A|b)P(b)

P(A)
, (52)

with the marginal likelihood being integrated over the fugaci-
ties

P(A|b) =
∫

P(A|λ, θ, b)P(θ|b)P(λ|b) dθdλ, (53)

If we use noninformative priors

P(θ|b) =
∏

r

(nr − 1)! δ
(∑

i θiδbi,r − 1
)
, (54)

P(λ|b, λ̄) =
∏
r<s

e−λrs/λ̄/λ̄
∏

r

e−λrs/2λ̄/2λ̄, (55)

we can compute the integral for the Poisson model as [30]

P(A|b) = λ̄E

(λ̄ + 1)E+B(B+1)/2
×

∏
r<s ers!

∏
r err!!∏

i< j Ai j!
∏

i Aii!!

×
∏

r

(nr − 1)!

(er + nr − 1)!

∏
i

ki!, (56)

where ers = ∑
i j Ai jδbi,rδb j ,s, and er = ∑

s ers. Although there
are good reasons not to use such uninformative priors [30], the
above calculation illustrates how the Poisson model allows us
to perform computations that would be very difficult with the
maximum-entropy model. Going further, and exploiting the
equivalence with the microcanonical configuration model as
was shown in Ref. [30], it is possible to replace these priors
by nested sequences of priors and hyperpriors that enhance
our capacity to identify small groups in large networks, more
adequately describe broad degree sequences, and uncover
hierarchical modular structures.

Despite these advantages, the Poisson DC-SBM model
inherits all the shortcomings of the Poisson model we consid-
ered previously, when applied to simple graph data. In order
to alleviate these problems, we may therefore also employ
the erased Poisson model for community detection, with a
likelihood

P(G|λ, θ, b) =
∏
i< j

(1 − e−λbib j θiθ j )Gi j e−λbib j θiθ j (1−Gi j ). (57)

This likelihood, however, makes the direct computation of the
marginal likelihood intractable, as it is not easy to perform
the integral over λ and θ. Instead, we proceed in a different
manner, by considering the joint likelihood of the simple
graph G and its underlying multigraph A,

P(G, A|λ, θ, b) = P(G|A)P(A|λ, θ, b), (58)

with P(G|A) given by Eq. (30). In this manner, we can easily
write the joint posterior distribution over the node partition
and multigraph

P(A, b|G) = P(G|A)P(A|b)

P(G)
, (59)

which involves the same marginal likelihood P(A|b) we com-
puted previously. With this posterior at hand, we can proceed
by sampling both the partition b and the latent multigraph A
via MCMC. We do so by starting with some initial choice
for A and b, and performing moves of the partition according
to a proposal probability P(b′|b), and accepting it with the
Metropolis-Hastings [31,32] probability

min

(
1,

P(A, b′|G)P(b|b′)
P(A, b|G)P(b′|b)

)
, (60)

otherwise we reject the move. Likewise, for a current value
of A and b we also perform move proposals for the latent
multigraph with probability P(A′|A) and accept it with the
analogous criterion

min

(
1,

P(A′, b|G)P(A|A′)
P(A, b|G)P(A′|A)

)
. (61)

By alternating between the two kinds of moves, this algo-
rithm will sample asymptotically from the target distribution
P(A, b|G), as long as the move proposals allow us to visit
every possible (A, b) configuration with nonzero probability.
Importantly, when computing the ratios above, it is not neces-
sary to compute the intractable normalization constant P(G),
as it is the same in the numerator and denominator, and hence
cancels out. For the partition move proposal P(b′|b), we use
the targeted move proposals described in Ref. [30]. For the
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multigraph move proposal P(A′|A) we choose an edge (i, j) in
G uniformly at random, and change the corresponding value
of Ai j by summing or subtracting 1 with equal probability,
unless that change would make A′

i j = 0, which is forbidden
since Gi j = 1. This amounts to

P(A′
i j |Ai j ) =

⎧⎪⎨
⎪⎩

1 if A′
i j = 2 and Ai j = 1,

1/2 if A′
i j = Ai j ± 1 and Ai j > 1,

0 otherwise.

(62)

For the DC-SBM model above, a move b → b′ that changes
the group membership of a single node can be done in time
O(ki ), where ki is the degree of that node in G, independently
of how many groups exist in total [30]. The move Ai j → Ai j ±
1 can be done in constant time O(1), as it involves the change
of at most a single value of ers, er , and ki in the likelihood
of Eq. (56) for each endpoint of the edge (which remains true
when the more advanced priors in Ref. [30] are used instead).
Therefore a full sweep of move proposals for each node and
edge in G can be done in linear time O(N + E ), which is the
best one can hope for this problem, and enables the use of
this algorithm for networks with millions of nodes and edges.
A reference C++ implementation of the above algorithm is
available as part of the graph-tool Python library [23].

We emphasize that sampling from the joint posterior
P(A, b|G) gives us direct access to the marginal posterior over
partitions as well,

P(b|G) =
∑

A

P(A, b|G), (63)

which can be obtained with the MCMC algorithm above
simply by sampling from the joint distribution, and ignoring
the inferred multigraph A. So, if we are interested only in
the community detection problem, we are well served by
this approach. However, obtaining the latent multigraph A
also has its uses, as we have seen before, for instance, in
disentangling degree mixing from inherent degree constraints.
We can therefore also extract the marginal distribution over
edge multiplicities in an analogous way

P(A|G) =
∑

b

P(A, b|G). (64)

It is often more convenient to compute the marginal multiplic-
ity distribution over each edge

πi j (m) =
∑
A,b

δAi j ,mP(A, b|G), (65)

or more simply just its mean value

wi j =
∞∑

m=0

mπi j (m). (66)

In the following, we will compare two approaches to
community detection: (1). Using the posterior P(b|A) based
the Poisson multigraph model, considering the simple graph
observed as a possible instance; (2). Using the posterior
P(b|G) based on the erased Poisson model that generates
simple graphs exclusively. The original argument given by
Karrer and Newman [8] to justify the use of the former
approach is that for sparse graphs with an expected number

of edges E that is proportional to the number of nodes N , the
mean parameter of the Poisson distribution will decay as

1

N2

∑
i j

θiθ jλbib j = 2E

N2
= O(1/N ). (67)

If we now consider the probability of observing more than one
edge between two nodes i and j

∞∑
Ai j=2

(θiθ jλbib j )
Ai j e−θiθ jλbib j

Ai j!

= 1 − e−θiθ jλbib j − θiθ jλbib j e
−θiθ jλbib j

= (θiθ jλbib j )
2

2
+ O[(θiθ jλbib j )

3], (68)

we can conclude that it will decay as O(1/N2) as long as the
corresponding parameters lie close to the mean, which itself
decays as O(1/N ). In this case the probability of observing
multiple edges will vanish for large N , and the model will
generate mostly simple graphs. The problem with this argu-
ment is that it breaks down precisely when the network is
heterogeneous and the parameters θ and λ are distributed with
a high enough variance. In this case, despite the vanishing
value of the mean, we can in principle have a sizable fraction
of products θiθ jλbib j that are arbitrarily high. For example, we
could have this product approaching 1 for N node pairs, and
as along as the remaining O(N2) pairs decay as O(1/N ), we
still have the mean also scaling as O(1/N ), while the resulting
graph would have an abundance of multiedges, despite being
globally sparse. Ironically, this is precisely the situation one
should expect if the data possess a very strong community
structure and very broad degree distributions, making the
Poisson model unsuitable. The erased Poisson model, on the
other hand, does not rely on uniform sparsity, and should be
able to better handle theses important scenarios, which we
investigate in the following.

A. Broad degree distributions

We begin illustrating the behavior or the erased Poisson
model with the network of political blogs of Adamic and
Glance [37], which describes the citations between blogs dur-
ing the 2004 U.S. elections. Either version of the model finds
a wealth of information, dividing the network in many groups.
In order to simplify our analysis, we use the known division
between liberal and conservative blogs as an imposed partition
of randomly generated networks, which we sample from the
maximum-entropy DC-SBM of Eq. (48) that preserves the
number of edges that go between nodes of the same and
different groups, as well as the node degrees, when compared
to the real network. This means that, in our analysis, this
division is indeed the true one, instead of only putatively true,
as is the case of the empirical network. If we now employ the
Poisson DC-SBM to the resulting network, we get the parti-
tion into five groups, as shown in Fig. 11(a). Since the degrees
constraints induce disassortative degree-degree correlations,
something that is not expected with the Poisson model, the
inference of that model attempts to account for this pattern by
subdividing each group into subgroups of nodes with similar
degrees, in an attempt to account for this existing mixing
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FIG. 11. Inferred groups for a political blog network generated form the maximum-entropy DC-SBM, inferred using the (a) Poisson
DC-SBM and (b) the erased Poisson DC-SBM, with inferred groups indicated by the node colors, and node degrees by the node sizes. The
layout was obtained with the spring-block algorithm of Ref. [33], which tries to place nodes together if they are connected by an edge. The
“liberal” and “conservative” groups correspond to the visible left (yellow) and right (blue) clusters, respectively. The layout places nodes with
high degree in the center of the figure, which in (a) are clustered into their own separate groups, whereas in (b) they are merged with their true
category.

pattern as specific probabilities of connections between these
extra groups. If instead we use the erased Poisson model,
we uncover correctly only the two planted partitions, as we
see in Fig. 11(b), as this model is capable of incorporating
the induced degree disassortativity intrinsically. Indeed, by
inspecting the inferred latent multigraph, we see that it lacks
a substantial fraction of the disassortativity, as shown in
Fig. 12(b), which then only emerges once the multiedges are
erased.

B. Heterogeneous densities

We turn now to a related, but different scenario where the
Poisson model also gives suboptimal results. We consider the
artificial network composed of a ring of 24 cliques of size

100 101 102 103
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2 × 102
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〉 nn

Original, r = −0.17
Reconstructed,r′ = −0.0073

FIG. 12. Mean degree of a neighbor of a node of degree k as
a function of k, for a political blog network generated form the
maximum-entropy DC-SBM, and the corresponding inferred latent
multigraph.

5. This kind of network was used as an example by Good
et al. [38] of a situation where community detection methods
fail to find the more obvious pattern. Indeed, as was shown
recently by Riolo and Newman [39], inferring the DC-SBM
also yields unsatisfactory results, where adjacent cliques are
merged together, as shown in Fig. 13(a). In Fig. 14(a) we
see the posterior distribution of effective number of groups,
defined as Be = eSe , with

Se = −
∑

r

nr

N
ln

nr

N
, (69)

being the entropy of the membership distribution. For the
DC-SBM above, the posterior distribution fluctuates around
6 groups, falling significantly short of the expected 24.

At first, one might think that this problem is due to an
underfitting of the model, caused by the use of noninforma-
tive priors. As was shown in Refs. [30,40], the use of such
priors incurs a penalty in the posterior log-probability that
grows quadratically with the number of groups, which in turn
means that no more than O(

√
N ) groups can ever be inferred

in sparse networks. This issue is resolved by replacing the
noninformative priors by a deeper hierarchy of priors and
their hyperpriors, forming a nested DC-SBM [28]. The use of
the nested model, which remains nonparametric and agnostic
about mixing patterns, increases the inference resolution by
enabling the identification of up to O(N/ log N ) groups. In a
similar example of a network composed of 64 cliques of size
10, the nested model is capable of identifying all 64 cliques,
whereas the “flat” version finds only 32 groups, composed
each of two cliques [9].

However, when applied to the current example, the use of
the nested Poisson DC-SBM is not sufficient to uncover all 24
cliques. In Fig. 14(b) we see the posterior distribution of ef-
fective group sizes for the nested Poisson model. Although the
mean number of groups increases, it still falls short of the 24.
This indicates that the problem may be not only underfitting,
but also mispecification, i.e., the model is simply not adequate
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(a) (b) (c)

FIG. 13. (a) Network composed of a ring of 24 cliques of size 5, connected to each other by a single edge. The node colors and shapes
correspond to a typical partition sampled from the posterior distribution of Eq. (52). (b) Network sampled from the maximum-likelihood
Poisson DC-SBM obtained from the network in (a) and putting each clique in their own group (as shown by the node colors and shapes).
(c) Fit of the erased Poisson nested DC-SBM to the network in (a), showing a sampled partition from the posterior distribution (node shape
and color), coinciding perfectly with the individual cliques, and the marginal posterior distribution of edge multiplicities (edge thickness).

to describe the data. Indeed a closer inspection reveals that this
is precisely the case. A version of the DC-SBM that should be
able to generate the given number of cliques would be one
where the probability of an edge existing between two nodes
of the same clique would be very close to one. However, the
Poisson model struggles at describing this structure because
it cannot allow for a single edge occurring with such a high
probability, without generating multiple edges as well. As is
illustrated in Fig. 15, the Poisson distribution can generate
the occurrence of a single edge with a probability at most
1/e ≈ 0.368, and even in that case the occurrence of mul-
tiple edges is no longer negligible. This limitation is absent
from the erased Poisson model, which can describe arbitrary
probabilities of single edges. In Fig. 13(b) we show a sample

4 6 8

Be

0

1

2

3

P
ro

ba
bi

lit
y

de
ns

it
y

(a)

5.0 7.5 10.0

Be

0.0

0.5

1.0

1.5

P
ro

ba
bi

lit
y

de
ns

it
y

(b)

5.0 7.5 10.0

Be

0.00

0.25

0.50

0.75

P
ro

ba
bi

lit
y

de
ns

it
y

(c)

22 24

Be

0

25

50

75

P
ro

ba
bi

lit
y

de
ns

it
y

(d)

FIG. 14. Posterior distribution of effective number of groups Be

for the network in Fig. 13(a), obtained with (a) the Poisson DC-SBM,
(b) the nested Poisson DC-SBM, (c) the erased Poisson DC-SBM,
and (d) the nested erased Poisson DC-SBM, the latter showing a
distribution highly concentrated on Be = 24.

of the DC-SBM with parameters chosen so that it replicates
the original network as closely as possible: the nodes are
separated into 24 groups of size 5, the mean number of edges
between nodes of the same group is one, and between adjacent
groups is 1/25. The resulting network is not only riddled
with multiedges and self-loops, but its also shows a far more
irregular structure than the original one. However, through the
lenses of the Poisson model, both networks are difficult to
distinguish, as they have very similar likelihoods. Although
it can be possible to extract useful information even from
mispecified models via a detailed inspection of the posterior
distribution [39]—a powerful feature of Bayesian methods—
this is not a satisfying resolution for such a simple example.
Indeed, what we have is once more a situation where the
network is globally sparse but locally dense, and we should
expect the erased Poisson model to behave better. In fact,
using the nested DC-SBM based on the erased Poisson model
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λ
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Poisson, P (m = 1|λ) = e−λλ

Erased Poisson,P (m = 1|λ) = 1 − e−λ

FIG. 15. Probability of observing a sample m = 1 from the Pois-
son and erased Poisson models, as a function of the parameter λ,
as shown in the legend. The vertical and horizontal lines show the
maximum of the Poisson at λ = 1 and P(m = 1|λ) = 1/e, and the
asymptotic value of P(m = 1|λ) → 1 for the erased Poisson model
as λ → ∞.
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Karate club

Poisson Erased Poisson
Dolphins

Poisson Erased Poisson
Political books

Poisson Erased Poisson

FIG. 16. Inferred group memberships for Zachary’s karate club
network [34], a dolphin social network [35], and co-purchases of po-
litical books [36], using the Poisson DC-SBM and the erased Poisson
DC-SBM. In each network, the latter model reveals a larger number
of groups, due to its increased ability of identifying heterogeneous
densities.

we can uncover all 24 cliques, as it is capable of describing
their probability more accurately. In Fig. 13(c) is shown the
result obtained with the erased Poisson model, together with
the inferred latent multigraph, which has a abundance of
multiedges inside each group that translate into cliques once
erased, with the probability of each edge approaching one.
Importantly, the successful detection of the cliques is only
possible if the erased Poisson model is used together with
the nested priors of Ref. [30], which illustrates the combined
effect of more appropriate model specification with structured
priors that prevent underfitting.

We further illustrate the use of the erased Poisson model
with some further empirical examples in Fig. 16, comprised
of a social network between members of a karate club [34],
an animal social network between bottlenose dolphins [35],
and copurchases of books about american politics [36]. In
each case, using the erased Poisson DC-SBM we obtain a
more detailed division of the network, with a larger number of
groups, when compared to employing the Poisson DC-SBM
directly. The most extreme difference is obtained by the karate
club network, where the Poisson DC-SBM yields a single
group, but the erased Poisson version yields four groups. The
explanation for the difference in each case is the same as for
the ring-of-cliques example considered previously: since the
Poisson DC-SBM is unable to ascribe high probabilities to the
existence of edges, it puts a smaller statistical weight to dense

regions of the network, even when that would be sufficient to
point to the existence of a separate group. The erased Poisson
model does not have this limitation and hence is able to isolate
this kind of structure with more confidence.

C. Modularity and group assortativity

An important pattern in network structure is the degree
of assortativity, or homophily, between node types. This is
commonly measured via the modularity quantity [41], which
counts the excess of edges between nodes of the same type,
when compared to a null model without any homophily, i.e.,

Q = 1

2E

∑
i �= j

(Gi j − 〈Gi j〉)δbi,b j , (70)

where 〈Gi j〉 is the expectation of an edge (i, j) existing
according to the chosen null model, and the normalization
guarantees Q ∈ [−1, 1]. The most often used null model is
〈Gi j〉 = kik j/2E , which corresponds to a Poisson multigraph
model with a maximum-likelihood choice of fugacities θi =
ki/

√
2E . As we have discussed, the Poisson model approaches

the maximum-entropy simple graph model if the degrees
are sufficiently smaller than

√
2E , otherwise this assumption

becomes inadequate to describe null models of simple graphs.
We can use the erased Poisson model as a better alternative
in two different ways, the first of which is by simply using its
expected value 〈Gi j〉 = 1 − e−θiθ j , which yields

Q = 1

2E

∑
i �= j

[Gi j − (1 − e−θiθ j )]δbi,b j , (71)

= 1

2E

⎡
⎣∑

r

err − nr (nr − 1) +
∑
i �= j

e−θiθ j δbi,b j

⎤
⎦, (72)

with 2E = ∑
i j Gi j . The values of θ can be obtained ef-

ficiently with the EM algorithm presented in Sec III B. A
disadvantage of this approach is that the computation of the
last term in the above equation requires O[(N/B)2] opera-
tions, and thus is not very efficient for large networks. The
second approach we describe is faster, and is comprised of
the computation of modularity for the multigraph inferred
from P(A|G, θ̂) using the same EM algorithm (instead of the
simple graph G directly), for which 〈Ai j〉 = θiθ j becomes the
appropriate null model, i.e.

Q = 1

2E ′
∑

i j

(wi j − θiθ j )δbi,b j , (73)

= 1

2E ′
∑

r

ωrr − θ̂2
r (74)

= 1

2E ′
∑

r

ωrr − ω2
r

2E ′ (75)

with 2E ′ = ∑
i j wi j , ωrs = ∑

i j wi jδbi,rδb j ,s, ωr = ∑
s ωrs,

θ̂r = ∑
i θiδbi,r , and θi = ∑

j w ji/
√

2E ′. This quantity can be
computed in time O(E + N ), and thus offers a significant
speed advantage over the first one. The two approaches are
not identical, and we should not expect to obtain the same
value of Q between them in general, but in case the network
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was in fact sampled from the erased Poisson model, we must
have Q ≈ 0 with either computation.

We note that the use of modularity maximization with the
purpose of identifying communities in networks, although a
popular approach, is ill-advised. This is because that method
cannot account for the statistical significance of the node par-
titions found, and can lead to misleading results, such as high-
scoring partitions in fully random graphs [42], nonmodular
networks such as trees [43], has been shown to systematically
overfit empirical data [24], while at the same time it will
fail for networks with obvious community structure [38,44].
Nevertheless, if the partitions are obtained with some other
method (like the one we have described in the previous
section, which suffers from none of the mentioned shortcom-
ings), or originate from network annotations, the value of Q
can be a good description of the existing homophily, and the
corrections above can be used to improve it.

V. CONCLUSION

We have considered the use of the erased Poisson model to
describe simple graphs with different kinds of heterogeneous
sparsity, in particular with broad degree distributions and
community structure. We have shown how this model can
give rise to intrinsic degree-degree correlations that are very
similar to those existing in maximum-entropy models of sim-
ple graphs. We have presented an EM algorithm to infer the
underlying Poisson model from simple graph data, and shown
how it can be used to potentially explain observed disassor-
tative degree-degree correlations, if they arise predominantly
from the imposed degrees. Previously, this could only have
been determined by generating networks from an appropriate
null model, and comparing the assortativity obtained. Our
approach is more constructive, since it yields an inference
of a generative model, rather than simply a comparison with
a null one. This means it is more informative in situations
where the degree constraints can account for only a portion of
the correlations observed, in which case our approach yields
a residual multigraph, with a subtracted contribution of the
degree constraints to the degree correlations, which can be
further analyzed in arbitrary ways.

We have also investigated the use of this model in commu-
nity detection, and shown how it is more adequate to uncover
communities not only in simple graphs with broad degree
distributions, but also when they possess strong community
structure. In the latter case, the erased Poisson model is
capable of combining degree correction with the existence
of edge probabilities approaching one, meaning it can easily
model networks that are globally sparse, but locally dense.
The enhanced explanatory power is achieved by sacrificing
neither mathematical tractability nor algorithmic efficiency.

The erased Poisson model has been used before as a means
to combine multigraph generative models with measurement
models for simple graphs, when performing joint network
reconstruction with community detection in Refs. [45,46],
although these works omitted a detailed analysis of this
modeling approach. Since the erased Poisson model is better
specified for networks with strongly heterogeneous density,
it remains to be determined to what extent it can improve

link prediction and network reconstruction, when compared
to alternatives. We leave this investigation for future work.

APPENDIX: ENSEMBLE EQUIVALENCES

In this section we consider network generative processes
that at first might seem distinct, but in fact are equivalent not
only to each other but also to the Poisson model considered in
the main text.

1. Sequential edge-dropping model

We consider the situation where a random multigraph is
grown by adding E edges one by one to the network in
sequence, and the probability that a given edge is placed
between nodes i and j is given by qi j , with

∑
i< j qi j = 1. In

this case, the probability of observing a final multigraph A is
given by a multinomial distribution

P(A|E ) = E !
∏
i< j

q
Ai j

i j

Ai j!
. (A1)

Now if the total number of edges is also allowed to vary, and
it is first sampled from a Poisson distribution with mean λ,
P(E ) = λE e−λ/E !, we have that the marginal probability will
be a product of independent Poisson distributions

P(A) =
∑

E

P(A|E )P(E ) (A2)

=
∏
i< j

(λqi j )Ai j e−λqi j

Ai j!
. (A3)

If we make the choice qi j = θiθ j/λ and λ = ∑
i< j θiθ j we

recover the Poisson model of Eq. (16), and likewise allowing
for self-loops, we recover Eq. (18).

This “edge-dropping” process is a simple model of a
growing network where the placement of new edges is not
affected by the existing edges. While this assumption is
likely to be violated in a variety of more realistic settings,
the central point here is to notice that it implicitly assumes
a distinguishability of the multiedges, due to the order in
which they appear. Therefore, a maximum-entropy model that
assumes edge distinguishability is the appropriate null model
when edges are sampled individually.

2. Microcanonical configuration model

The configuration or “stub matching” model is a standard
procedure for generating multigraphs with prescribed degree
sequences [47,48]: to each node i is attributed a number ki of
distinguishable “stubs” or “half-edges”, which are then paired
uniformly at random, allowing for multiedges and self-loops.
Since every pairing, – or “configuration,” – occurs with the
same probability, this is a maximum-entropy microcanonical
ensemble of configurations (rather than multigraphs), with the
prescribed degree sequence functioning as a constraint. This
is different from the “canonical” ensembles we have been
considering so far, where the degrees are constrained only
in expectation. Although the configurations are uniformly
distributed, the associated multigraphs are not, since more
than one configuration will map to the same multigraph. We
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can obtain the probability of observing a particular multi-
graph by enumerating the corresponding configurations. With
2E = ∑

i ki half-edges, we can count the total number of
configurations by starting with any arbitrary half-edge, which
can then be paired with 2E − 1 other half-edges. For any of
these choices, we can pick any of the remaining half-edges
which can be paired with any of the other remaining 2E − 3
ones. Proceeding in this way we have that the total number
of pairings is (2E − 1) × (2E − 3) × (2E − 5) × · · · × 1 =
(2E − 1)!!. To account for multigraphs, we observe that for
each node with ki half-edges there are ki! permutations of their
matchings that yield different configurations but correspond
to the same multigraph, if all matched half-edges belong
to different nodes. Otherwise, this over counts Ai j! label
permutations of half-edges matched between nodes i and j,
and likewise Aii!! permutations for self-loops matched for
the same node. Putting all this together, we have that the
multigraphs are distributed according to the ratio

P(A|k) =
∏

i ki!

(2E − 1)!!
∏

i< j Ai j!
∏

i Aii!!
, (A4)

assuming
∑

j Ai j = ki for every node i, otherwise P(A|k) =
0. We note that all generated graphs that happen to be
simple with Ai j ∈ {0, 1} occur with the same probability∏

i ki!/(2E − 1)!!. Therefore if we discard all multigraphs,
the resulting simple graph ensemble has maximum-entropy
(but with a new normalization constant that is intractable
in general [49], and even in simpler cases where all ki are
equal [50]).

For an arbitrary (but in this case necessarily integer) choice
of ki = k̂i, this microcanonical ensemble is not equivalent to
any of the previous canonical ones, since those allow for
fluctuations of the degrees around its imposed expected value.
Indeed, this lack of ensemble equivalence persists even in the
limit N → ∞ [12,13], unlike more typical situations where
the number of imposed constraints is fixed. In the latter case,
asymptotic equivalence between ensembles is expected, but
since the number of constraints given by Eq. (1) is extensive,
i.e., grows with N , this equivalence is never realized.2

In spite of the lack of asymptotic equivalence, an exact
equivalence with the Poisson model does exist once we con-
sider the degrees ki and fugacities θi to be unknown random
variables, generated by their own models conditioned on a
small (nonextensive) number of constraints. For the Poisson
model in particular, this scenario is relevant when we observe
a network sampled from it, but have no direct information on
which values of θ were used to generate it.

We begin with the microcanonical model, and assume that
the degrees are sampled uniformly at random, constrained
only on their total sum, 2E . Since the number of different
degree sequences is

(2E+N−1
2E

)
, the uniform probability is

P(k|E ) =
(

2E + N − 1

2E

)−1

, (A5)

2Strictly speaking, the results of Refs. [12,13] refer to maximum
entropy ensembles of simple graphs with hard and soft constraints,
but the main arguments are also valid for the configuration and
Poisson models.

assuming
∑

i ki = 2E , otherwise P(k|E ) = 0. We then as-
sume that the total sum is a sample from a Poisson distribution
with mean λ, P(E |λ) = λE e−λ/E !. This gives us a total
marginal distribution

P(A|λ) =
∑

E ′

∑
k′

P(A|k′)P(k′|E ′)P(E ′|λ) (A6)

= (2λ)E e−λ
∏

i ki!∏
i< j Ai j!

∏
i Aii!!

(N − 1)!

(2E + N − 1)!
, (A7)

which is nonzero for every A.
Now turning to the Poisson model, we assume without loss

of generality the reparametrization θi = √
2λκi, with

∑
i κi =

1 and λ ∈ [0,∞], such that Eq. (18) becomes

P(A|κ, λ) = (2λ)E e−λ
∏

i κ
ki
i∏

i< j Ai j!
∏

i Aii!!
. (A8)

We then assume that κ is sampled uniformly at random from
the simplex

P(κ) = (N − 1)! δ
(∑

i κi − 1
)
. (A9)

Computing the marginal distribution, we obtain

P(A|λ) =
∫

P(A|κ, λ)P(κ) dκ (A10)

= (2λ)E e−λ
∏

i ki!∏
i< j Ai j!

∏
i Aii!!

(N − 1)!

(2E + N − 1)!
, (A11)

which is identical to the marginal obtained with the micro-
canonical model.

The above equivalence means that these two distinct gen-
erative processes, involving either the configuration model
or the Poisson model, yield exactly the same marginal dis-
tribution over multigraphs. A direct consequence of this is
that, when all we observe is a single network A, there is
no information contained in it that allows us to determine
whether it came from one of the two models. In statistical
terminology, we say these models are not identifiable.

Combining all of the above, we have that the following
generative processes are fully identical:

(1) Poisson model:
(a) The relative fugacities κ are sampled uniformly at

random from Eq. (A9).
(b) Given the expected number of edges λ, the fugaci-

ties are given by θi = √
2λκi, and the network is sampled

from the Poisson model of Eq. (18).
(2) Sequential edge dropping:

(a) The total number of edges is sampled from a Pois-
son distribution with mean λ.

(b) The relative fugacities κ are sampled uniformly at
random from Eq. (A9).

(c) The network is sampled from the edge dropping
model of Eq. (A3), with probabilities qi j ∝ κiκ j (and al-
lowing for self-loops).
(3) Configuration model:

(a) The total number of edges is sampled from a Pois-
son distribution with mean λ.

(b) The degrees are sampled uniformly at random from
the set that preserves the total number of edges.
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(c) The half-edges are paired uniformly at random.
The above serves to demonstrate that we can arrive at

the Poisson model from several simple intuitive assumptions
about the network formation mechanism. These are all “null”
models of network formation, since they are not meant to re-
alistically explain how networks in the real world are formed,

instead they contain only the smallest set of ingredients neces-
sary for a particular pattern; in this case the expected degrees
of the nodes. What they all have in common is that, during
the network formation, potential multiple edges are treated as
individual elements, which is what lies behind the eventual
equivalence with the Poisson model.
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