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Abstract
In this paper we develop a framework to analyze the behavior of contagion and spreading
processes in complex subpopulation networks where individuals have memory of their
subpopulation of origin. We introduce a metapopulation model in which subpopulations are
connected through heterogeneous fluxes of individuals. The mobility process among communities
takes into account the memory of residence of individuals and is incorporated with the classical
susceptible-infectious-recovered epidemic model within each subpopulation. In order to gain
analytical insight into the behavior of the system we use degree-block variables describing the
heterogeneity of the subpopulation network and a time-scale separation technique for the
dynamics of individuals. By considering the stochastic nature of the epidemic process we obtain
the explicit expression of the global epidemic invasion threshold, below which the disease dies out
before reaching a macroscopic fraction of the subpopulations. This threshold is not present in
continuous deterministic diffusion models and explicitly depends on the disease parameters, the
mobility rates, and the properties of the coupling matrices describing the mobility across
subpopulations. The results presented here take a step further in offering insight into the
fundamental mechanisms controlling the spreading of infectious diseases and other contagion
processes across spatially-structured communities.
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1. Introduction
In recent years, reaction-diffusion processes have been used as a successful modeling
framework to approach a wide array of systems that, along with the usual chemical and
physical phenomena [1, 2], includes epidemic spreading [3–10], human mobility [6–9], and
information and social contagion processes [11–16]. This paradigm is extremely useful in
the case of populations characterized by a highly fragmented environment in which the
population is structured and localized in relatively isolated discrete patches or
subpopulations connected by mobility of individuals. In this case, the spatial structure of
populations is known to play a key role in the system’s evolution and the reaction-diffusion
dynamics is integrated in a metapopulation modeling scheme in which different
subpopulations are coupled together by the mobility or migration patterns of individuals
[17–20]. Classic metapopulation dynamics focuses on the processes of local extinction,
recolonization and regional persistence [21, 22] as the outcome of the interplay between
migration processes and population dynamics, and has been successfully applied to
understand the epidemic dynamics of spatially-structured populations with well-defined
social units (e.g., families, villages, towns, cities, regions) connected through individuals’
mobility [3–9, 23–28]. The metapopulation dynamics of infectious diseases has generated a
wealth of models and results that consider both mechanistic approaches that take the
movement of individuals explicitly into account [9, 29–34] and effective coupling
approaches wherein the diffusion process is expressed as a force of infection coupling
different subpopulations [6, 8, 35–39]. Recently, the metapopulation approach has been
implemented in data-driven computational models for the large-scale analysis of the
geographical spreading of infectious diseases [28, 40–45].

In large-scale systems, the metapopulation approach amounts to a particle-network
description in which each subpopulation populated by a certain number of individuals is
connected to a set of other subpopulation by mobility flows. The particle-network
framework has stimulated the broadening of reaction-diffusion models in order to deal with
complex network substrates and complex mobility schemes, which has in turn allowed for
the uncovering of new and interesting dynamical behaviors as well as providing a rationale
for the understanding of the emerging critical points underpinning some interesting
characteristics of techno-social systems [46–49]. In particular, it has been shown that along
the local epidemic threshold, which depends only on the disease parameters and is
responsible for the epidemic outbreak within each subpopulation, structured populations
may exhibit a global invasion threshold [47, 48, 50–52] that determines whether the
metapopulation system is globally invaded by the contagion process. This novel threshold
depends on the mobility rates and patterns of individuals and cannot be uncovered by
continuous deterministic models as it is related to the stochastic effects of the reaction-
diffusion process that describe the contagion process.

Metapopulation epidemic models, especially at the mechanistic level, are based on the
spatial structure of the environment and the detailed knowledge of transportation
infrastructures and movement patterns. However, the recent accumulation of large amounts
of human mobility data [53–59] from the scale of single individuals to that of entire
populations presents us with new challenges related to the high level of predictability and
recurrence [60–62] found in the mobility and diffusion patterns in real data. For instance,
commuting mobility – denoted by recurrent bidirectional flows among locations – dominates
the human mobility network at the scale of census areas defined by major urban areas by
one order of magnitude [59]. Highly predictable or recurrent mobility patterns do not find an
easy representation in the particle-network framework as the framework is based on
reaction-diffusion processes that in most cases exploit Markovian diffusion properties [47,
48, 63]. The description of mobility processes with memory and their importance in
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epidemic processes have been put forward in detail in the seminal paper of Ref. [7]. The
effect of recurrent and predictable mobility patterns of individuals on the onset of the global
invasion behavior of contagion processes is just recently being studied both analytically and
numerically [64–67].

Here we develop a framework based on a time-scale separation technique to analyze the
behavior of contagion and spreading processes on a network of locations where individuals
have memory of their location of origin. We focus on the prototypical example of the
spreading of biological agents in populations characterized by bidirectional commuting
patterns. We assume that individuals of a subpopulation will visit any one of the connected
subpopulations with a per capita diffusion rate σ. As we aim at modeling commuting
processes in which individuals have a memory of their location of origin, displaced
individuals return to their original subpopulation with a per capita return rate τ. The mobility
parameters σ and τ influence the probability that individuals carrying infection or
information will export the contagion process to nearby subpopulations. If the diffusion rate
approaches zero then the probability of contagion of neighboring subpopulations goes to
zero as there are no occasions for the carriers of the process to visit them. On the other hand
if the return rate is very high then the visiting time of individuals in neighboring populations
is so short that they do not have time to spread the contagion in the visited subpopulations.
This implies the presence of a transition [47, 48, 50–52] between a regime in which the
contagion process may invade a macroscopic fraction of the network and a regime in which
it is limited to a few subpopulations. The presented results extend and generalize the
analysis of [47, 48, 64, 65] and we include in the analytical treatment the heterogeneity of
the subpopulation network and find an explicit expression for the threshold separating a
regime in which the spreading phenomenon affects a macroscopic fraction of the system and
a regime in which only a few locations are affected. The invasion threshold depends on the
mobility parameters, providing guidance on how to control disease spreading by
constraining mobility processes. The results are confirmed by mechanistic Monte Carlo
simulations for the infection dynamics in synthetic metapopulation systems in which each
single individual is tracked in time to account for the discreteness of the processes involved.
Heterogeneous connectivity patterns among subpopulations are modeled and different
values of the parameters involved are considered to validate the theoretical results. The
theoretical approach presented in this paper extends and generalizes the results presented in
Ref. [64] opening the path to the inclusion of more complicated mobility or interaction
schemes and at the same time provides a general framework that may be used not just as an
interpretative framework. Understanding the effect of mobility and interaction patterns on
the global spreading of contagion processes can then be used to enhance or suppress
spreading by adjusting the basic parameters of the system in the appropriate ways.

The paper is organized as follows. Section 2 introduces the basic formalism for recurrent
mobility patterns and the time-scale separation approximation that defines mixing
subpopulations. Section 3 generalizes the formalism to the case of complex subpopulation
networks by using a mean-field degree-block variables description equivalent to a mean-
field description that includes the network heterogeneity. Section 4 incorporates the disease
spreading into the mobility processes. Stochastic effects and discrete descriptions of the
processes are considered with a tree-like approximation for the analysis of the invasion
dynamics at the level of subpopulations. The effects of diffusion properties on the invasion
dynamics are analyzed and related to the existence of an invasion epidemic threshold for the
metapopulation system. In Section 5 we report extensive mechanistic Monte Carlo
simulations which confirm the analytical findings of the previous sections.
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2. Mobility processes with memory and commuting networks
In order to describe the mobility process induced by the commuting pattern of people among
subpopulations let us consider a metapopulation system with V distinct subpopulations, each
of which has a population size Ni (i = 1, …, V). The subpopulations form a network in which
each subpopulation i is connected to a set of other subpopulations ν(i). The edge connecting
two subpopulations i and j indicates the presence of a flux of commuters. We assume that
individuals in subpopulation i will visit any one of the connected subpopulations with a per
capita diffusion rate σi. As we aim at modeling commuting processes in which individuals
have memory of their residence, displaced individuals return to their original subpopulation
with a per capita rate τi. The simple case of two connected subpopulations is shown in Fig.
1. In the case of each subpopulation i connected with ki other subpopulations we assume that
each commuting individual can visit a specific subpopulation j with rate σij with the obvious
condition that Σj∈ν(i) σij = σi. The rate σij accounts for different attractiveness of each
subpopulation and may depend on variables such as the population Nj, the actual distance,
and other demographic or economic factors. We will provide two basic cases in which the
rate σij depends on the number of individuals at origin and destination subpopulations in
analogy with the classic gravity law [68, 69] used in transportation sciences. For the sake of
mathematical simplicity, however, we neglect the impact of actual distance between the
origin and destination subpopulations, which is a key ingredient of gravity laws used to
describe mobility fluxes among spatially structured populations.

At any moment in time, each member of subpopulation i is either in the subpopulation of
residence or outside and visiting one of the neighboring subpopulations j. By using the
approach developed in [7, 9], we may group the members of i according to the location in
which they are actually present at a given time t, Nii(t) and Nij (t) with j ∈ ν (i) (see Fig. 1).
The rate equations for the population sizes of different subgroups can be readily written by
explicitly taking into account the mobility rates along the edges of the subpopulation
network. This system of rate equations has a characteristic relaxation time that can be
obtained by solving the differential equations, as reported in A. In particular, it is possible to
show under the general assumption of σi ≪ τi that the relaxation characteristic time is 
and that the mixing subpopulations reads as

(1)

This implies that in the regime σi ≪ τi, {Nij (t)} represent a small perturbation to the overall
subpopulation size Ni.

From the above considerations it appears that most of the system complexity is encoded in
the subpopulation connectivity matrices that determine the σij and the corresponding
populations at the equilibrium (see A). A wide range of networks that represent activity and
interaction patterns of individuals [70, 71], transportation fluxes, and population movements
on local and global scales [53–59] have been found to exhibit complex features encoded in
large-scale heterogeneity, self-organization, and other properties typical of complex
systems. In particular, air-travel patterns between urban areas [54, 55] and commuting
patterns in the scale of intra- and inter-urban areas [53, 56–59] have been shown to exhibit
connectivity patterns varying over orders of magnitude. In order to provide empirical
evidence of the connectivity patterns observed in real commuting networks we analyze the
commuting fluxes in several countries. In Fig. 2 we display the cumulative distributions of
the number of connections per administrative unit and the flux of commuters on each
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connection in the United States and France. The networks exhibit important variability in the
number of connections per geographical area, spanning three to four orders of magnitude.
Similarly, the number of commuters on each connection is highly heterogeneous, distributed
in a wide range of four to six orders of magnitude. These properties, often mathematically
encoded in a heavy-tailed probability distribution, have been shown to have important
consequences for dynamical processes on contact networks [72–77] as well as on
subpopulation networks [46–48], altering the threshold behavior and the associated
dynamical phase transition. It has been shown [47, 48] in particular that topological
fluctuations in subpopulation networks favor global spreading of infectious diseases by
lowering the global epidemic threshold and suppressing the phase transition at the infinite
size limit of the network.

3. Mobility processes with memory in heterogeneous networks
In order to gain analytic insight into the case of subpopulation networks with highly
heterogeneous connectivity patterns we rely on the assumption of statistical equivalence of
subpopulations with similar degree. This is a mean-field approximation that considers all the
subpopulations with same degree as statistically equivalent, thus allowing the introduction
of degree-block variables that depend only upon the subpopulation degree. While this is an
obvious approximation to the system description, it has been successfully applied to many
dynamical processes on complex networks [46–48].

Imagine a random subpopulation network with given degree distribution P(k) and denote the
number of subpopulations with k connections by Vk. By using the statistical equivalence of
subpopulations with the same degree k, we can express the average population in each node
with degree k as a degree-block variable,

(2)

where the sum runs over all the subpopulations with degree k, and attribute it to all such
nodes. The above degree-block variable defines a mean-field approximation within each
degree class, while relaxing the overall homogeneity assumption valid in homogeneous
systems.

In the following we will consider that the degree-block variable N̄k has a prescribed
functional form identifying the stationary distribution of the population within the system,
which does not change over time. In other words we assume that any mobility time scale is
much shorter than the demography time scale of the population. For the sake of analytical
calculation we will assume the functional form

(3)

where N̄ = Σk N̄kP(k) is the average number of individuals per node in the subpopulation
network. This expression is obtained as the stationary population distribution in the case of
simple random diffusive processes where the diffusion rate of individuals along each link
leaving a node of degree k has the form 1/k [48]. Moreover, the empirical data from various
sources suggest similar population scaling as a function of the connectivity to other
subpopulations [45, 54, 78]. While the population N̄k of each node is assumed to be fixed,
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each individual in a subpopulation of degree k is assumed to commute to a neighboring
subpopulation of degree k′ at rate σkk′ and to return to the origin of her trip at rate τk. We thus
also assume that the only dependence for the mobility rates is through the degrees of the
nodes.

Following the same approach in the previous section we partition the individuals of a
subpopulation with degree k according to classes identified by the degree of the
subpopulation in which they are present at a given time t. Namely we define N̄kk(t) as the
average number of individuals of any subpopulation k present in the subpopulation k and
N̄kk′ (t) as the average number of individuals of any subpopulation k present in the
subpopulation k′. It is worth noting that N̄kk′ (t) is also a degree-block variable evaluated
over all the connections k → k′. The rate equations defining the commuting dynamics among
subpopulations can be formalized by using the variables N̄kk(t) and N̄kk′ (t). Considering Eq.
(3) for N̄k, the set of differential equations leads to the equilibrium solutions

(4)

(5)

as detailed in B. In the above expressions ρk is the ratio of per capita total diffusion rate to
return rate of residents of a subpopulation with degree k,

(6)

The expressions (4–5) are valid for the stationary states and are good approximations to the
system description under the general assumptions that σk ≪ τk and that the system can
equilibrate in a time interval larger than . Analogously to the calculation originally
presented by Keeling and Rohani [9], these expressions allow us to consider that the
subpopulation k has an effective number of individuals N̄kk′ in contact with the individuals
of the neighboring subpopulation k′ in a quasi-stationary state that is reached whenever the
time scale of a second dynamical process that we study is larger than . This is extremely
important in the case of disease dynamics, for which when the time scale of the disease is
large enough compared to  one can generalize the quasi-stationary state expressions for
all population compartments and obtain the effective force of infection or the number of
individuals exposed to infection in the neighboring subpopulations. In the next section we
will lever on this approximation to obtain explicit analytical conditions for the occurrence of
epidemic outbreaks involving a finite fraction of subpopulations in the thermodynamic limit,
the so-called ‘invasion threshold’ [47, 48, 50–52].

4. Epidemic spreading and the invasion threshold
Here we want to consider that an infectious disease has been introduced in one or a tiny
number of subpopulations. For the sake of analytical simplicity we assume the usual
susceptible-infectious-recovered (SIR) model [77] for the disease. The SIR compartmental
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model classifies at any time t each individual by one of the disease compartments:
susceptible (S); infectious (I); recovered (R). Susceptible individuals acquire infection in the
case of contact with an infectious individual at a per capita rate β. An infectious individual
permanently recovers at a rate μ, and from then on is immune to the disease and is not
contagious. In a completely susceptible subpopulation, the spreading of the disease is
determined by the basic reproduction ratio R0, which is defined as the average number of
secondary (infectious) cases generated by the introduction of a single typical infectious
individual [77]. Assuming homogeneous mixing of the population, the basic reproduction
ratio is given by R0 = β/μ. When R0 > 1 the infectious disease spreads inside the
subpopulation and causes an appreciable fraction of the population to acquire the infection
during its entire progression.

In the case of metapopulation models, however, the spreading of the disease is determined
not only by the local parameter R0, but by the diffusion process and the topology of the
underlying network as well. This can be readily understood in the case of no mobility across
subpopulations since the disease cannot invade other subpopulations and therefore remains
constrained to a single subpopulation. In the case of a very small diffusion of individuals the
disease generally dies out, depleting the susceptible pool of individuals before it can
generate an epidemic in neighboring subpopulations. On the contrary, in the case of
sustained mobility across subpopulations many infectious individuals can export the disease
to other subpopulations thus generating a global outbreak in the metapopulation system.
This implies that there must be a second reproductive number at the subpopulation level R*
that depends on the mobility parameters and defines a threshold for the epidemic invasion of
a finite fraction of subpopulations [47, 48, 50–52]. Here we want to investigate the
dependence of R* on the commuting dynamics of individuals, thus taking into account the
non-Markovian nature of the mobility process.

Imagine to introduce an infectious disease to a single subpopulation of degree k and size N̄k.
Given that the local threshold condition is satisfied (R0 > 1), the epidemic will spread
globally in the metapopulation systems if each infected subpopulation is able to trigger the
start of an epidemic in at least one other subpopulation. This amounts to the derivation of a
subpopulation reproductive number that expresses the average number of infected
subpopulations generated by a typical infected subpopulation in a fully susceptible
metapopulation system. We may describe the early stage of the disease spreading at the level
of the metapopulation system as a branching process [47, 48, 50, 79, 80]. The process starts
with a set of initially infected subpopulations { }, each of which during the course of the
epidemic transmits the disease to a set of its non-infected neighboring subpopulations
defining the set { } at the next generation. Let us denote the number of diseased
subpopulations with degree k at the nth generation by  and derive the relation between
subsequent generations  and . If we consider the case that we are just above the local
epidemic threshold, R0 − 1 ≪ 1, and that there are no correlations between the degrees of
connected nodes, then it is possible to show that

(7)

where λk′k is the number of infectious individuals which can be generated and sent by a
diseased subpopulation (source) with degree k′ to a non-diseased subpopulation (target) with
degree k and we made use of the fact that the probability of triggering an outbreak in the
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non-diseased subpopulation is  [81]. (see C). In order to write an explicit form of
the above expression we need to explicitly define λk′k. This quantity can be expressed in
terms of the number of individuals living in one of the subpopulations and visiting the other
by

(8)

where α is the fraction of individuals that is affected by the disease by the end of the SIR
epidemic and can be approximated by  for R0 ≃ 1 [77]. The first term on the
right-hand side of λk′k accounts for the total visits of infectious people from the source to the
target subpopulation, while the second term accounts for the visits of individuals from the
target to the source subpopulation during which they acquire infection and carry the disease
back to their origin. If the time scale of the disease in each individual μ−1 is much larger
than the time scale of the visits to neighbors τ−1 (i.e., μ−1 ≫ τ−1), we can then use the
stationary solutions for N̄k′k and N̄kk′ in Eq. (5). Furthermore we are assuming that there are
no restrictions on the mobility of infectious people. This is generally not true even though
for many diseases like influenza [82, 83] it is well known that a large fraction of clinical
cases keep their regular habits as well as infectious asymptomatic cases. For other diseases
this may not be a realistic assumption, but the following calculations can be performed by
considering exposed or latent individuals as the disease carriers as long as the characteristic
time of these disease states is larger than the mobility time scale.

In the following we will assume that the return rate τk is independent of the subpopulation
degree, i.e., τk = τ. This implies that the time scale of commuting is basically the same across
all the subpopulations, a reasonable assumption as the return rate is mostly defined by
universal features such as work hours per day. For the commuting rates we instead assume
the form

(9)

where the denominator corresponds to the total average population of subpopulations in the
neighborhood. This term just represents a normalization factor so that the total commuting
rate per capita is the same σk = σ across all the subpopulations. The above relation states that
the total number of individuals commuting between subpopulations k and k′ is proportional
to the product of the two populations. This is a simple case of the gravity law [68, 69] used
in transportation studies. We use this form for the sake of mathematical simplicity, but more
complicated functions of populations can be considered both analytically and numerically.
We should note however that more realistic models consider also the actual distances
between subpopulations [59, 84] in order to describe mobility fluxes among spatially
structured populations.

Using all the assumptions above, the dynamical behavior of the iterative system (7) is
determined by the branching ratio
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(10)

where ρ ≡ σ/τ is the ratio of commuting to return rate, as shown in C. In the above
expression f is a function only of the moments of the degree distribution of the
subpopulation network,

(11)

The infectious disease will spread globally in the metapopulation system only if R* > 1. This
is equivalent to defining a subpopulation reproductive number [47, 48, 50–52] that in
structured metapopulation systems is the average number of infected subpopulations
generated by a typical infected subpopulation in a fully susceptible metapopulation system.
Thus, by setting R* = 1, we can define an epidemic threshold relation for the mobility ratio
ρ,

(12)

below which the infection remains confined to a small number of subpopulations. In an
infinite metapopulation system the threshold is defined rigorously and the fraction of
infected subpopulations is zero below the threshold and finite only if the mobility
parameters set the ratio ρ above the threshold value.

The threshold value is defined for the ratio between the rates characterizing the mobility
process. We can therefore obtain two different threshold conditions on the mobility
dynamics if we fix one of the two parameters σ and τ, and let the other parameter free. The
threshold relation for σ is σc = ρc τ,

(13)

This intuitively states that the rates of diffusion to nearby subpopulations has to be large
enough (σ > σc) to guarantee the spreading of the disease. Interestingly, however, we can
also define the threshold relation for τ−1, ,

(14)

that tells us that the global spreading of the disease can be achieved by reducing the return
rates of individuals – in other words by extending the visit times of individuals in nearby
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subpopulations ( ). However, this last condition breaks down when τ−1 gets much
larger and becomes comparable to the disease time scale, thus breaking the time-scale
separation assumption used here. In Fig. 3, we assume μ−1 very large, and draw the phase
diagram separating the global invasion regime from the extinction regime in the σ-τ−1 plane,
with the global epidemic threshold curve defined by the relation R* = 1.

Another very interesting feature of the above threshold value ρc is the explicit effect of the
network topology encoded in the moments of degree distribution 〈k〉, 〈k2〉, etc. As has been
already observed in the Markovian diffusion case, the heterogeneity of the network favors
the global spread of the epidemic by lowering the threshold value. Indeed, for heavy-tailed
degree distributions P (k) ~ k−γ with γ > 1 and kmin ≤ k ≤ kmax, the nth moment scales as

 if n ≥ γ − 1 and kmax ≫ kmin. This means that for n ≥ γ − 1, the nth moment of the
degree distribution tends to diverge at the infinite size limit of the network, as in this limit
kmax → ∞, virtually reducing the threshold to zero. In particular, if the exponent γ < 5, then
f (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) tends to diverge in the limit of infinite network size, which in turn
pushes the threshold value ρc to zero, as reported in D. Even at finite size, however, the
threshold value is generally smaller the higher the network heterogeneity is (see D for
various examples). In Fig. 3 we compare the epidemic threshold curves in the space of the
mobility parameters for a Poisson network and a heavy-tailed network with degree
distribution P (k) ~ k−2.1.

While the previous R* and threshold conditions have been obtained in the case of a very
simple σkk′ resulting in σk = σ independent of the subpopulation index, very similar
expressions can be obtained in more complicated mobility schemes. For instance, we can
consider the case

(15)

that assumes that the per capita mobility rate is rescaled by the number of individuals in the
subpopulation [9], thus leading to σk that decreases as N̄k increases. This behavior accounts
for the effect introduced by large subpopulation sizes; the overall per capita commuting rate
outside of the subpopulation generally decreases in large populations as individuals tend to
commute internally. In this case we can repeat the above calculations, finally obtaining

(16)

The above expression recovers global epidemic threshold conditions very close to those
obtained previously, supporting the general robustness of the presented results. In Fig. 4 we
draw the phase diagram separating the global invasion regime from the extinction regime in
the σ-τ−1 plane, with the global epidemic threshold curve defined by the relation R* = 1 for
the case of Poisson and heavy-tailed networks. Also, in this case the global epidemic
threshold is a function of the mobility parameters and the network topology.

It is worth stressing again that the previous expressions are derived under the assumption of
equivalence of degree-block variables, valid only at the limit in which a small fraction of the
subpopulations in the system is affected and in which R0 − 1 ≪ 1 and τ−1 ≪ μ−1. However,
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it is extremely relevant that metapopulation systems intrinsically have two epidemic
thresholds in the case of mobility processes with memory. The emergence of a global
epidemic is first constrained by the intrinsic epidemic threshold within each subpopulation,
R0 > 1. If the epidemic process satisfies this condition, then each time an infectious
individual seeds an epidemic within a subpopulation there is a finite probability that a
macroscopic fraction of the population will be affected by the outbreak. While this condition
guarantees the intra-population spreading of the epidemic, the inter-population spreading is
controlled by the coupling among subpopulations as quantified by the rates of the
commuting dynamics. The global invasion threshold condition R* > 1 provides an estimate
of the diffusion and return rates of individuals above which the epidemic is able to affect a
macroscopic fraction of subpopulations defining the metapopulation system.

5. Stochastic Simulations
In the following we provide extensive numerical simulations to support the theoretical
picture described above. We present in detail the mechanistic numerical simulations where
each single individual is tracked in time, during both the infection dynamics and the
diffusion processes, and the synthetic subpopulation networks. We report results from
Monte Carlo simulations in a variety of different cases and compare them with the analytical
findings.

5.1. Computational model and synthetic subpopulation networks
We construct the network of V subpopulations from a pool of N̄V people. Population size Ni
assigned to each subpopulation i is chosen at random from a multinomial distribution with
probability proportional to ki, which ensures that the metapopulation system obeys Eq. (3).
In order to compare with theoretical calculations, the subpopulation network structure has
been generated by wiring the subpopulations according to two different random graph
topologies:

• Erdős-Rényi graphs [85] have been synthetized by assigning a link between each
pair of nodes with probability 〈k〉/(V − 1), where 〈k〉 is a prescribed average node
degree;

• Networks with power-law degree distribution, P (k) ~ k−γ with kmin ≤ k ≤ kmax,
have been generated by an uncorrelated configuration model [86, 87]. All the scale-
free networks have been generated by setting γ = 2.1 and kmin = 2.

For the sake of comparison, the average degree of Erdős-Rényi graphs has been set to that of
scale-free networks.

As detailed in E, we adopt mechanistic numerical simulations in which each individual is
tracked in time during both the commuting and the infection dynamics. The rate σij at which
a resident of subpopulation i commutes to a neighboring subpopulation j ∈ ν(i) assumes Eq.
(15):

(17)

Each resident in subpopulation i leaves her origin and visits subpopulation j with probability
σij Δt, where Δt is the time interval considered. A commuter in subpopulation j returns back
to her permanent subpopulation i with probability τΔt. Inside each subpopulation we
consider an SIR epidemic model in which each individual is classified by one of the discrete
disease states at any point in time. The rate at which a susceptible person in subpopulation i
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acquires the infection, the so-called ‘force of infection’ λi, is determined by interactions with
infectious individuals. The force of infection λi(t) acting on each susceptible individual in
subpopulation i at time t has been assumed to follow the mass-action principle

(18)

where β is the transmission rate of infection and  is the prevalence of infectious
individuals in the subpopulation. Given the force of infection λi(t) in subpopulation i, each
person in the susceptible compartment (S) contracts the infection with probability λi(t)Δt and
enters the infectious compartment (I). Each infectious individual permanently recovers with
probability μΔt and enters the recovered compartment (R).

5.2. Numerical results
The epidemic invasion threshold at the metapopulation level is determined by reproduction
ratio R0, commuting ratio ρ, and the architecture of the commuting networks. In the
following we present extensive numerical simulations in order to demonstrate these
dependencies and verify the analytical result of Eq. (16).

Simulations have been initialized with I(0) = 10 infectious individuals, seeded randomly in a
single subpopulation of degree kmin, while the rest of the population is assumed to be
susceptible to infection. Since we aim at determining the global invasion threshold, we have
let the metapopulation system progress until the infection dies out. In the results we present
here all the realizations resulting in at least one diseased subpopulation have contributed to
the statistical analysis unless stated otherwise. For each set of parameters we have generated
at least 2, 000 system realizations. Since the subpopulation networks and dynamical
processes on them are subject to fluctuations, we have sampled at least 10–20 network
realizations and 100–200 dynamical realizations on each of them.

Let us first turn our attention to the effects of ρ and R0 on the global attack rate as shown in
Fig. 5. We can clearly see the dependence of the critical value of ρ on R0, consistent with the
analytical result of Eq. (16). The lower the basic reproduction ratio the higher the
commuting ratio needed for the infection to spread successfully at the metapopulation level.
Another observation is that if ρ is far from its critical value (below or above), then the global
attack rate is not altered by further changes in ρ. Hence we can conclude that the attack rate
is determined only by local parameters in subpopulation systems coupled with commuting.

In order to uncover the dependence of invasion threshold on the individual mobility rates
numerically, we have simulated epidemics on homogeneous and heterogeneous
subpopulation networks. In Fig. 6 we display the variation in epidemic size as a function of
σ and τ−1. Consistent with the phase diagrams of Fig. 4, the smaller the commuting rate the
longer the duration of visits needed to enable the infection to invade an appreciable fraction
of subpopulations. We can also easily notice the one order of magnitude difference in the
critical values of σ and τ−1 as the degree distribution of subpopulation networks changes.

We have stressed the importance of network topology on the spreading of infectious agents
at the metapopulation level. In order to verify the analytical result of Eq. (16), in Figs. 7–9
we compare homogeneous and heterogeneous subpopulation networks. In Fig. 7 we display
the distribution of epidemic sizes as a function of ρ. We are performing stochastic
simulations and, as it is well known also for the single population, the threshold condition
R* > 1 on the subpopulation reproductive number is not a sufficient condition for an
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outbreak. If we start with a single infected subpopulation, stochastic fluctuations may lead to
the extinction of the epidemic with a probability that is larger the more R* approaches the
threshold from above. By considering the same expression obtained in the single population
case and by using a coarse grained perspective on the subpopulation spreading the
probability of observing a global outbreak is  [81]. In Fig. 8 we show that the
probability of having a macroscopic outbreak is null below the values close to the global
threshold observed in the epidemic size plot. Above the threshold the probability increase
slowly as we start in all simulations with a single diseased subpopulation. The probability of
outbreak approaches a step function at the threshold by increasing the initial number of
diseased subpopulations. For the completeness of comparisons we also display the average
epidemic size as a function of ρ in Fig. 9. One readily notices an increase by more than one
order of magnitude in the critical value of ρ as we move from a heavy-tailed to a Poisson
degree distribution. The heterogeneity in the degree distribution favors the spreading process
at the metapopulation level, leading to ρc → 0 at the infinite size limit.

6. Conclusions
In this paper we have set a mathematical framework to investigate the conditions of global
epidemic invasion in the case of subpopulations coupled with recurrent mobility patterns.
On one hand we have extended the mathematical framework of degree-block variables [47,
48] to gain insight into the impact of a non-Markovian mobility process on epidemic
extinction/persistence, while on the other hand we have extended the time-scale separation
approach of Ref. [9] to complex settings in which subpopulations exhibit heterogeneous
demographic and mobility properties.

The basic reproduction ratio is responsible for an epidemic to take off within a single
subpopulation. Our analytical approach however derives the expression of a global invasion
threshold parameter that depends on the disease parameters, the mobility parameters and the
network architecture. Once the network structure and the disease dynamics are fixed, there
exists a critical value of the mobility ratio below which the disease dies out before reaching
an appreciable fraction of subpopulations. This indicates the importance of both of the
commuting and return rates. In other words, the time individuals spend in temporary
subpopulations is as important as the rate at which they visit a neighboring subpopulation.
The network architecture also has substantial impact on the spreading dynamics. We have
shown that the heterogeneity in the commuting matrices favors global spreading by lowering
the critical values of the threshold parameters. In principle, the epidemic threshold is
suppressed at the infinite size limit of the subpopulation network. Given that real commuting
networks are highly heterogeneous, this has important consequences on the dynamical
processes and explains the ineffectiveness of mobility restrictions in the containment of
emergent infectious diseases [88].

Although our theoretical contribution provides a first theoretical framework for the analysis
of global threshold phenomena in systems with recurrent mobility patterns, there are still
theoretical and practical issues to address. We have assumed that the mobility rates only
depend at most upon the population sizes of the origin and destination subpopulations. In
realistic cases, however, the rates may also depend on other social and economic factors as
well as the geographical distance between communities. We have also considered a very
simplistic case of the dynamics within each subpopulation, ignoring possible intra-
population heterogeneities such as different levels of susceptibility and infectiousness [89],
or heterogeneous mixing among individuals [90, 91]. All these factors could introduce the
need for more sophisticated theoretical approaches. While most of the studies in defining
epidemic thresholds have been focused on single populations, it is clear that more attention
has to be devoted to the study of spreading in structured populations. In this case the
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understanding of the invasion threshold is crucial to the analysis of large-scale spreading
across communities and subpopulations. Accurate data on human mobility patterns have
been increasingly available in recent years, enabling us to gain insight into the statistical
laws governing their properties. Given that the spreading of human infectious diseases is
only possible through movements of individuals across different geographical regions, it is
crucial to explore the consequences of different types of movement patterns for the
dynamical processes like epidemic spread. The theoretical framework presented here is thus
very important for the development of realistic computational approaches in the study of
structured metapopulation systems as well, which are good candidates for capturing
fundamental aspects of interacting human communities.

A. Time-scale separation and stationary population
Mobility and infection dynamics detailed in previous sections have been assumed to operate
at different time scales. In particular we have restricted our calculations to a regime in which
the commuting is much faster than the infection dynamics. In the following we consider the
temporal progression of subpopulation sizes and evaluate the relaxation time to an
equilibrium configuration.

The rate equations governing the spatial distributions Nii(t) and Nij (t) of residents of
subpopulation i can be readily written by explicitly taking into account the diffusion rates
along the edges of the subpopulation network. For each subpopulation i the diffusion
equations describing the system dynamics are

(19)

(20)

The first equation evaluates the variation of Nii(t) as the net balance of individuals diffusing
away or returning to the subpopulation i according to the rates σi and τi, respectively. The
second equation considers the change in the population size Nij(t) as the net balance of
individuals of subpopulation i leaving to and returning from subpopulation j. Using the
relation for the total population size of subpopulation i,

(21)

we can derive the closed expression

(22)

The solution of this first order differential equation is
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(23)

where the constant Cii is determined by the initial condition Nii(0), leading to

(24)

We can similarly solve the differential equation for the population size of the residents of
subpopulation i present at subpopulation j, obtaining

(25)

The relaxation times of Nii(t) and Nij (t) to their equilibrium configurations are thus (τi +
σi)−1 and , respectively. The former term is dominated by  if the relation τi ≫ σj holds.
In the case of commuting, σi = Σi∈ν(i) σij, which equals the daily total commuting rate per
resident of subpopulation i. Such the rate is always smaller than 1 since only a fraction of
the local population commutes, and it is typically much smaller than the typical return rate τi
≃ 3 − 10 day−1 of such visits. Therefore the relaxation characteristic time can be safely
approximated by . Hence for  we can approximate the population sizes Nii(t) and
Nij (t) with their equilibrium values, and recover the Eq. (1) reported in the main text. This
approximation, originally introduced by Keeling and Rohani [9], allows us to consider each
subpopulation i as having an effective number of individuals Nij in contact with the
individuals of the neighboring subpopulation j. In practice, this is equivalent to consider an
infinite time-scale separation between the commuting time scale and the other time scales in
the problem (e.g., infection dynamics).

In the case of influenza-like illnesses, the typical time-scale separation between τi and the
compartmental transition rates is close to one order of magnitude or even larger. Eq. (1) can
then be generalized in the time-scale separation regime to all traveling compartments X
obtaining the general expressions

(26)

while Xii(t) = Xi(t) and Xij (t) = 0 for all the other compartments which are restricted from
traveling. While the approximation holds exactly only in the limit τi → ∞, it is good enough
as long as τi is much larger than the typical transition rates of the disease dynamics.

Balcan and Vespignani Page 15

J Theor Biol. Author manuscript; available in PMC 2013 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. Stationary population in heterogeneous networks
In our mean-field description the total number of individuals within a subpopulation of
degree k is given by

(27)

where the sum in the second term accounts for the average total number of residents of
subpopulation k visiting any of its neighbors. This term is proportional to the number of
neighbors k and the average number of residents N̄kk′ traveling on each connection k → k′.
Thus the sum is performed over all the possible connections through the degrees weighted
by the conditional probability P (k′|k) that represents the conditional probability that any
given edge departing from a node of degree k is pointing to a node of degree k′ [92]. The
rate equations defining the commuting dynamics among subpopulations can be defined
using the variables N̄kk(t) and N̄kk′ (t) as

(28)

(29)

where σk = kΣk′ σkk′P (k′|k) expresses the per capita diffusion rate for individuals in a
subpopulation of degree k. In this case we also have considered that the diffusion rate σkk′ is
averaged over all possible k′ according to the probability P (k′|k) that a given edge departing
from a node of degree k is pointing to a node of degree k′. The above set of equations leads
to the equilibrium condition

(30)

and using the expression of Eq. (27) we obtain the following equilibrium expressions

(31)

(32)

Considering in the above expressions the functional form of Eq. (3) for N̄k leads to Eqs. (4–
5).

Balcan and Vespignani Page 16

J Theor Biol. Author manuscript; available in PMC 2013 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



C. Branching process and epidemic invasion threshold
The expression for the number of infected subpopulations with degree k at the nth
generation reads as

(33)

where each diseased subpopulation of degree k′ at the n − 1th generation may seed its k′ − 1
non-infected neighbors (all of its neighbors minus the one from which it got the infection).
Here λk′k is the number of infectious seeds that are introduced into a fully susceptible

population, and the probability of observing an outbreak in this case is  [81]. The
probability that the neighboring subpopulation has not already been infected in the earlier

generations is . In the early stage of the epidemic we can assume that

. We will also consider the case that we are just above the local
epidemic threshold, R0 − 1 ≪ 1, so that the outbreak probability can be approximated by

(34)

In the following we will ignore the degree correlation between neighboring nodes. In this
case the conditional probability P (k′|k) does not depend on the originating node, i.e., P (k′|k)
= k′P (k′)/〈k〉 [92]. This relation simply states that any edge has a probability of pointing to a
node with degree k′ that is proportional to the degree of the node to which it points. By using
this form of the conditional probability we obtain Eq. (7).

In order to write an explicit form of the above expression we need to explicitly define λkk′. If
the time scale of the disease in each individual μ−1 is much larger than the time scale of the
visits to neighbors τ−1 (i.e., μ−1 ≫ τ−1), we can then use the stationary solutions for N̄kk′ and
N̄k′k in Eq. (5). If we also consider the approximate expression for α in the SIR case for R0 ≃
1, then we obtain

(35)

If we substitute this expression for λk′k in Eq. (7) we obtain the explicit expression

(36)

that depends only on the precise definition of the commuting rates σkk′ and τk. In the
following we will assume that τk = τ and σk = σ in all the subpopulations. For the commuting
rate σkk′ on each connection k → k′ we instead assume the form of Eq. (9). In this case by
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defining ρ ≡ σ/τ we can write the basic branching process equations at the metapopulation
level as

(37)

In order to write a closed form of the above iterative process we introduce the variables

 and  whose next generation equations are defined as

(38)

where the matrix G is

(39)

and c is a constant, defined by the following expression:

(40)

The dynamical behavior of the system is determined by the largest eigenvalue R* of the
matrix G, leading to Eq. (10).

D. Impact of heterogeneity on epidemic invasion
Remember that Eq. (11) encodes the dependence of global epidemic invasion threshold R*
on the topology of subpopulation networks. In the following we consider three different
uncorrelated random network topologies.

Heavy-tailed degree distribution—We would here like to turn our attention to the
scaling of f (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) with system size for heavy-tailed degree degree
distributions P (k) ~ k−γ with γ > 1 and kmin ≤ k ≤ kmax. For very large system sizes, and in
the case that 1 < γ < 2, f scales as

(41)

In the case that 2 < γ < 3, the second moment 〈k2〉 in the denominator and higher moments
in the numerator dominate, leading to the scaling relation:
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(42)

In the range 3 < γ < 4, only the third moment 〈k3〉 in the numerator dominates, thus

(43)

In the range 4 < γ < 5, only the fourth moment 〈k4〉 in the numerator dominates, leading to

(44)

The above expressions state that for any heavy-tailed degree distribution with exponent γ <
5, f (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) tends to diverge in the limit of infinite network size, which in turn
pushes the threshold value ρc to zero. If γ > 5, then f (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) has a finite value.

Poisson degree distribution—Now let us consider a Poisson degree distribution with
average degree λ. By using the generating function, Mk(τ) = eλ (et−1), we can calculate the
nth moment as

(45)

We only need to know the first four moments in order to calculate f, which are 〈k〉 = λ,

(46)

Then f is

(47)

The global invasion threshold parameter in this case is

(48)

Finally the critical mobility ratio is given by
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(49)

Equal degrees—If all the nodes have the same degree λ, then the nth moment of degree
distribution is simply 〈kn〉 = λn. In this case, f is

(50)

The global epidemic threshold parameter R* is then

(51)

Notice what this expression tells us about the system: For any λ ≤ 1, global epidemic spread
is not possible (as in this regime R* ≤ 0). If λ > 1, then the critical value of mobility ratio ρc
is

(52)

If we assume that ρ is fixed, then we can also calculate the critical value of λ above which
the epidemic will spread globally:

(53)

E. Infection and commuting dynamics
Since all the individuals with the same three indices (X, i, j) are identical in terms of the
dynamical processes, we are going refer to the number of such individuals at time t by Xij

(t). Then, by definition, the instantaneous compartment size  in subpopulation j can be
expressed as

(54)

and the total number of individuals as . The number of individuals in each
compartment X with a residence in i and present in j is subject to discrete and stochastic
dynamical processes defined by disease and transport operators. The disease operator 
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represents the change due to the compartment transition induced by the infection dynamics,
and the transport operator ΩX represents the variation due to mobility.

The term  can be written as a combination of a set of transitions { (X, Y)}, where (X, Y)
represents the number of transitions from compartment X to Y and is simulated as an integer
random number extracted from a multinomial distribution. Then the change due to infection
dynamics reads as

(55)

As a concrete example let us consider the temporal change in the infectious compartment.
There is only one possible transition from the compartment, which is to the recovered
compartment. The number of transitions is extracted from the binomial distribution

(56)

which is determined by the transition probability

(57)

and the number of individuals in the compartment Iij (τ) (its size). This transition causes a
reduction in the size of the compartment. The increase in the compartment size is due to the
transitions from the susceptible to infectious compartment. This is also a random number
extracted from the binomial distribution

(58)

given by the chance of contagion

(59)

and the number of attempts equal to the number of susceptibles Sij (t). After extracting these
numbers from the appropriate distributions, we can calculate the total change (I) in the
infectious compartment as

(60)

Transport operator ΩX expresses the total change in compartment sizes due to the
commuting of permanent residents of subpopulation i back and forth. The variation in Xij
can be decomposed into  and  as
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(61)

The first term  represents an increase that is caused by the departing residents of
subpopulation i to visit subpopulation j. The  is a random number extracted from the
multinomial distribution

(62)

determined by the probability of commuting to subpopulation j

(63)

and the number of such trails Xii(t). The second term  corresponds to a reduction in
Xij and is due to the return trips from subpopulation j to permanent subpopulation i. The

 is also a random number extracted from the binomial distribution

(64)

given by the probability of returning home

(65)

and the size of the compartment Xij (τ). We have assumed that the infection does not alter
people’s behavior, i.e., all the compartments are identical in their mobility. Recognize that
the stochastic state variables {Sij (τ), Iij (τ), Rij (τ)} define a multivariate Markov chain [93–
95] in which the present state of the system is determined only by the state of the system in
the previous time step.
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Highlights

• We model the contagion spreading mediated by recurrent mobility patterns.

• We characterize analytically a phase transition between two regimes of
spreading.

• We derive the threshold values in mobility rates that ensure the global
spreading.
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Figure 1.
Illustration of commuting and subdivision of population. At any time each subpopulation is
occupied by its own residents plus visitors from its neighbors. For instance, the population
in subpopulation i is divided between individuals who reside and are present in the
subpopulation (Nii) and those who are residents in subpopulation j but present in
subpopulation i(Nji). Different classes of people move between connected subpopulations
along the edges at the rates shown.
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Figure 2.
Statistical properties of commuting networks in the United States and France. Cumulative
distributions of the number of connections per administrative unit and the number of
commuters on each connection are displayed. The networks are highly heterogeneous in the
number of connections per geographical area as well as in the flux of individuals on each
connection.
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Figure 3.
Phase diagram on the σ-τ−1 plane for the case of Eq. (9) in heterogeneous and homogeneous
subpopulation networks. The phase diagram separating the global invasion from the
extinction regime is shown on the σ-τ−1 plane assuming Eq. (9) for commuting rates. The
solid lines correspond to the solution R* = 1 of Eq. (10), above which the infection spreads
at the metapopulation level as indicated by the shaded areas. We can easily see an increase
of about one order of magnitude in the critical values of mobility rates as we switch from a
heavy-tailed to a Poisson degree distribution. Networks have the same average degree and
contain V = 104 subpopulations in which the heavy-tailed network assumes P (k) ~ k−2.1.
Each subpopulation accommodates a degree-dependent population of N̄k = N̄k/〈k〉
individuals with N̄ = 104. Moreover the disease is characterized by R0 = 1.25 and μ−1 = 15
days.
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Figure 4.
Phase diagram on the σ-τ−1 plane for the case of Eq. (15) in heterogeneous and
homogeneous subpopulation networks. The phase diagram separating the global invasion
from the extinction regime is shown on the σ-τ−1 plane assuming Eq. (15) for commuting
rates. The solid lines correspond to the solution R* = 1 of Eq. (16), above which the
infection spreads at the metapopulation level as indicated by the shaded areas. The diagrams
should be compared with Fig. 3.
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Figure 5.
Average global attack rate as a function of ρ and R0 in homogeneous subpopulation
networks. The figure codes with color the average fraction of individuals infected by the
outbreak in the space of ρ and R0. For smaller values of R0 larger values of ρ are needed for
the infection to spread at the global scale. Once ρ is well below or above its critical value its
precise value does not affect the attack rate. In order to vary ρ, we have fixed the return rate
τ at 1/day and changed the value of the commuting rate σ. Networks are made of V = 104

subpopulations, each of which accommodates a degree-dependent population of N̄k = N̄k/〈k〉
individuals with N̄ = 104. The infectious period is set to μ−1 = 3 day.
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Figure 6.
Average epidemic size as a function of σ and τ−1 in heterogeneous (left) and homogeneous
(right) subpopulation networks. Each figure shows via a color map the average percentage
of subpopulations affected by the outbreak in the space of σ and τ−1. The lower the
commuting rate the longer the visiting time is needed for the infection to spread to a finite
fraction of subpopulations. The figure should be compared with the phase diagrams of Fig.
4. Networks are composed of V = 104 subpopulations, each of which with a degree-
dependent population of N̄k = N̄k/〈k〉 residents with N̄= 104. Disease is characterized by R0 =
1.25 and μ−1 = 15 day.
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Figure 7.
Distribution of epidemic sizes in heterogeneous (left) and homogeneous (right)
subpopulation networks as a function of ρ. Each color map shows the probability of
observing a fraction of subpopulations affected by the outbreak as a function of commuting
ratio. Each figure readily shows a critical point of ρ, below which most of the epidemics are
confined to a few number of subpopulations. Above the critical point most of the
realizations affect almost the entire set of subpopulations. In order to highlight the
differences with respect to network topology, realizations resulting in epidemics confined to
less than ten subpopulations have been excluded from the analysis of size distributions. The
critical value of the commuting ratio differs more than one order of magnitude as we switch
from a heavy-tailed to a Poisson degree distribution. Since the precise value of the return
rate does not alter the results, we have set τ−1 = 1 day and changed σ in order to vary ρ. Both
networks contain V = 105 subpopulations, each of which accommodates a degree dependent
population of N̄k = N̄k/〈k〉 inhabitants with N̄ = 103. The disease is characterized by R0 = 1.5
and μ−1 = 5 day.
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Figure 8.
Probability of invasion of at least 1% of the subpopulations in heterogeneous and
homogeneous networks as a function of ρ. Figure shows the fraction of realizations in which
at least 1% of the subpopulations are invaded by the epidemic process as a function of
commuting ratio. For clarity, the data points corresponding to zero values of probability
have been excluded from the figure. We have set τ−1 = 1 day and changed σ in order to vary
ρ. Both networks contain V = 105 subpopulations, each of which accommodates a degree
dependent population of N̄k = N̄k/〈k〉 inhabitants with N ¯= 103. The disease is characterized
by R0 = 1.5 and μ−1 = 5 day.
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Figure 9.
Average epidemic size in heterogeneous and homogeneous subpopulation networks as a
function of ρ. Figure displays the average fraction of subpopulations affected by the
outbreak as a function of commuting ratio. We have set τ−1 = 1 day and changed σ in order
to vary ρ. Both networks contain V = 105 subpopulations, each of which accommodates a
degree dependent population of N̄k = N̄k/〈k〉 inhabitants with N̄ = 103. The disease is
characterized by R0 = 1.5 and μ−1 = 5 day.
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