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Integrative analysis of pathway deregulation in obesity
Francesc Font-Clos1, Stefano Zapperi1,2,3,4 and Caterina A.M. La Porta 5

Obesity is a pandemic disease, linked to the onset of type 2 diabetes and cancer. Transcriptomic data provides a picture of the
alterations in regulatory and metabolic activities associated with obesity, but its interpretation is typically blurred by noise. Here, we
solve this problem by collecting publicly available transcriptomic data from adipocytes and removing batch effects using singular
value decomposition. In this way we obtain a gene expression signature of 38 genes associated to obesity and identify the main
pathways involved. We then show that similar deregulation patterns can be detected in peripheral markers, in type 2 diabetes and
in breast cancer. The integration of different data sets combined with the study of pathway deregulation allows us to obtain a more
complete picture of gene-expression patterns associated with obesity, breast cancer, and diabetes.
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INTRODUCTION
Obesity is increasing worldwide, with impressive data showing
that about 10% of children are overweight or obese in USA and
Europe. From the medical point of view, obesity is overtaking
smoking as the leading cause of premature death. The risk of
many diseases, including cancer, autoimmune diseases and type 2
diabetes, is increased in obese subjects.1 In fact, obesity
contributes in about more than 70% of diabetes cases2 and it
has been seen associated to some types of tumors, such as breast
cancer.3

Well established cases of Mendelian forms of obesity approxi-
mately account for only 5% of the severely obese cases.4 In the
case of common obesity, recent genome wide association studies
have investigated possible relations between single nucleotide
polymorphism and Body Mass Index (BMI).5 Despite the sheer
amount of data and the effort devoted to the task, none of the
resulting genetic loci have real predictive power. In particular,
genetic contributions do not account for most BMI variations
between subjects which are likely due to lifestyle and environ-
mental factors.5

A more refined and complete picture of the genetic aspects
associated with obesity can be obtained by integrative
approaches.6–9 For instance in ref. 6, the authors employed a
method combining gene-expression and DNA variations to
discover drivers of complex traits. In this way, the authors were
able to identify and validate in mice new genes involved in
susceptibility to obesity.6 Other results are based on network
analysis8 and allowed identification of genes and metabolic
pathways associated with obesity in mice.9

While there is clinical and epidemiological evidence of a link
between obesity and some types of cancer, there is still not a
robust gene expression signature pointing in this direction. Gene
expression data provides a vivid picture of the alteration in
regulatory activities taking place in cells, and finding a transcrip-
tomic signature would help to better understand the relationship
between obesity and cancer. To this end, several distinct studies

have reported transcriptomic data in cells derived from a limited
set of subjects with reported BMI, highlighting genes with
significant differences in expression level.10–18 However, due to
the high variability between patients and the limits of in vitro
models, a clear picture of a possible signature is still not available.
An important factor for success in this task is to reduce the
massive amount of noise which is unavoidable in any transcrip-
tomic data set: Typical studies have access to a limited numbers of
samples, in the 10–102 range, and try to reveal a clear signature
from a large set of genes, typically in the order of 104. Finding
significant patterns in a large dimensional and noisy data set is
complicated and often leads to large differences in the results
reported in each study.
Here, we propose to alleviate the noise problem in gene

expression data by combining different data sets obtained from
the literature. Extracting useful information by merging data sets
stemming from different experiments is, however, a challenging
task due to batch effects: each experiment introduces a bias in the
data that is due to technical processing and unrelated to
biological factors. This systematic source of variation masks any
biological differences when comparing samples coming from
distinct batches. In the present paper we eliminate batch effects
using the method of singular value decomposition (SVD)19 and
further we reduce the noise by computing pathway deregulation
scores (PDS) for the resulting data.20 The combination of these
two steps allows for a dramatic noise reduction and reveals gene
expression patterns that would otherwise be inaccessible when
focusing on individual genes in a single batch. Using this
approach, we find a robust signature of 38 genes with a statistical
significance of 5σ, the confidence level required in particle physics
to announce a discovery, that is able to discriminate between
obese and lean subjects from adipocyte transcriptomes. We can
associate this signature to a single score that correlates very well
with BMI also in other independent transcriptomic data.
From the biological point of view, the 38 genes of the signature

are interesting: it includes genes involved in the interaction
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between cells and the extracellular matrix and factors involved in
inflammation. The signature includes also genes involved in
typical correlated adverse symptoms of obese subjects, such as
those linked to the central nervous system, the digestive system
and fertility.
Next, we investigate our transcriptomic signature by comparing

data from breast cancer tissue with healthy breast tissue and find
similar pathway deregulation in breast cancer and obesity,
confirming the strong association between the two. Our score
also correlates very well with diabetes in subjects with similar BMI.
Furthermore, we investigate if we are able to find the same
signature using the transcriptomes obtained from monocytes.
Finally, we have also investigated if bariatric surgery is able to

affect gene expression profiles associated with the signature both
in adipocytes and monocytes. Our analysis clearly shows that
bariatric surgery does not affect gene expression, at least after
3 months. In sum, our signature provides a complete picture of
gene expression in obesity, breast cancer, and diabetes, suggest-
ing possible interesting targets for therapeutic intervention and
indicating that adipocytes are a reliable tissue for clinical studies in
obese subjects.

RESULTS
Transcriptomic signature of obesity in adipocytes
We find a robust transcriptomic signature of obesity by integrating
four adipose tissue gene expression data sets (batches 1–4, see
Supplementary Table 4) via a two-step SVD filtering process. The
technical details of this process are discussed in the Methods
Section, but we briefly sketch its functioning here. Through the
use of linear algebra operations (i.e., SVD filtering), it is possible to
identify and remove most batch effects: the part of the variability
of the data that is not of biological origin.21 Indeed, Fig. 1a shows
that samples from the same batch are initially similar to each other
(marked with dark red coloring corresponding to high correla-
tions), while samples from different batches are different from
each other (white or blue coloring, corresponding to no correlation
or anti-correlation, respectively). Due to this batch effect it would
not be possible to simply merge batches 1–4. After applying our
SVD-filtering method, however, batch-effects are mostly elimi-
nated and samples do not cluster by batch any more (see Fig. 1b),
but instead by BMI value (Fig. 1c): samples with the same BMI
value tend to be correlated (red coloring), while samples with
different BMI values tend to be anti-correlated (blue coloring).

Fig. 1 Merging different data sets leads to a strong signature. a, b, c: Visualization of the batch-effects removal process. Heatmaps showing
correlations among samples before a and after b, c the application of our two-step singular value decomposition (SVD) filtering process, see
Methods for details. Red indicates positive correlation, while blue indicates negative correlations. Samples are grouped by batch in panels a, b
and by Body Mass Index (BMI) status in panel c. Correlations are computed using only the first seven principal components to enhance
visualization. d Significance of the obesity score coefficients. The 200 genes with highest coefficient (in absolute value) in the first principal
component of Batch1–4 after SVD filtering (black and gray line) and in a random vector (solid blue line), see Methods for details. The dashed blue
line marks the 5-σ significance threshold used to extract the 38 genes of our obesity signature. The 4 blue shaded regions (ranging from darker,
more probable, to lighter, less probable), mark increasing intervals of 5ν, where ν is the standard deviation of each individual ranked gene in a
randomized score. e Obesity score at different BMI status. Obesity score boxplots for patients categorized either as lean or obese for Batch1–4.
Notice that this batch is also used to construct the score. For validation data, see Figure 2
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These correlations, however, are a combination of the expres-
sion of all genes. To further investigate which genes are most
responsible for these correlations, we compute the first principal
component of the merged data, which in practice is a vector
where each gene has a coefficient. We then rank genes by the
absolute value of their coefficient, compare with the same
procedure applied to a random vector, and select those genes
whose coefficient is above a 5σ threshold (FDR equivalent: 1.90 ×
10−3), as shown in Fig. 1d. In this way, we identify 38 genes and
their associated coefficients as a transcriptomic signature of
obesity. We compare our coefficients with the BMI-association
summary statistics released from the Twins UK dataset in ref. 22,
and verify that all genes except one in the obesity score show
changes in the same direction (up/down regulated) in the Twins
UK dataset, see Supplementary Figure 2. In summary, to each
adipose tissue sample we can assign an obesity score, defined as a
linear combination of the (log2) expression of the genes in the
signature.
Supplementary Figure 1 summarizes our results, ranking all the

38 genes in the signature in terms of fold change of their
expression with respect to the control case (i.e., obese vs. lean).
We also compare our results with the original papers where
individual batches where studied. We can see that while some of
the genes were discussed in some of the papers, the most
significant genes we found here were not the focus of those
papers and were mostly just mentioned in the supplement. The
largest overlap is found with the results of ref. 10 where, however,
over 600 genes were reported as significantly changed.
A key feature of our approach is that the coefficients of the

obesity score (Table 1) are not the result of a fit that yields the best
correlation with BMI in the training data (batches 1–4). Instead, the
lean/obese categorical information is used to choose which
eigengenes to filter out (see Methods for details), but the values of
the coefficients are the result of plain SVD. This is a technical but
crucial point, because it implies that our methodology is less
prone to suffer from over-fitting issues, and hence renders the
signature highly robust. To test this claim, we gather additional
validation data sets (batches 5–7), totaling N = 238 validation

samples, and compute its obesity scores. Figure 2 displays our
main result: Remarkably, the obesity score is well-correlated with
BMI in batch 6 (R = 0.59, p = 2.41 × 10−6) and batch 5 (R = 0.47, p =
3.29 × 10−6), and moderately correlated with BMI in batch 7 (R =
0.27, p = 2.48 × 10−2). The correlation with batch 3 is shown only
for comparison, as batch 3 is part of the data used to construct the
score and hence cannot be used to validate the score.
Some of the batches we use in our analysis report also the

gender of each subject (see Supplementary Table 4). We use those
data to check if the signature we find is gender-specific by
computing male-only and female-only signatures (see Fig. 3).
Using the data of batches 1–4, we cannot reject (p-value 0.87) the
null hypothesis of a gender-independent obesity score.
In summary, we extract a signature of obesity by merging

batches 1–4 via a two-step SVD-filtering method, and validate it
using batches 5–7. Our signature of obesity is composed of only
38 genes, and assigns a numerical obesity score to each sample.
The obesity score gives high correlation with BMI in batch 3, and
good correlations with BMI in batches 5–7.

Pathway deregulation in obesity adipocytes and breast cancer
tissues
We perform gene set over-representation analysis to identify
relevant pathways using the 38 genes of the obesity signature and
pathways from several databases, see Methods for details. In this
way, we obtain a list of 16 pathways that contain at least
two genes from the signature (unadjusted p-values range from
1.90 × 10−7 to 3.47 × 10−3, see Supplementary Table 3. Family-level
p-value for the set of 16 pathways equals 0.012, see Methods for
details). We then compute PDS for these 16 pathways (nine shown
in Fig. 4) using both batches 1–4 as well as batch 9, which
corresponds to the breast cancer cohort of TCGA.23 In short, PDS
are a way to quantify the global deregulation of a pathway in
terms of the expression of its genes (see Methods for details), with
respect to a reference sample. We take the lean group as
reference sample for batch 1–4, and the normal tissue group for
batch 9.

Table 1. The 38 genes in the obesity score, and their associated coefficients

Rank Entrez ID Gene symbol Coefficient Rank Entrez ID Gene symbol Coefficient

1 1278 COL1A2 0.131414 20 7045 TGFBI 0.056923

2 80763 SPX −0.126199 21 25878 MXRA5 0.055820

3 761 CA3 −0.088910 22 2982 GUCY1A3 0.055620

4 219348 PLAC9 0.074152 23 2335 FN1 0.055548

5 25975 EGFL6 0.073139 24 7076 TIMP1 0.055335

6 2014 EMP3 0.070109 25 5396 PRRX1 0.054843

7 6696 SPP1 0.068951 26 4069 LYZ 0.052908

8 1397 CRIP2 0.067884 27 8076 MFAP5 0.051032

9 1490 CTGF 0.067408 28 3512 JCHAIN 0.048567

10 22822 PHLDA1 0.066730 29 10402 ST3GAL6 −0.046569

11 1880 GPR183 0.065863 30 3429 IFI27 0.045810

12 171024 SYNPO2 0.065466 31 83442 SH3BGRL3 0.045708

13 1520 CTSS 0.064611 32 712 C1QA 0.044201

14 80114 BICC1 0.063828 33 474344 GIMAP6 0.044113

15 115207 KCTD12 0.062233 34 9457 FHL5 0.043849

16 151887 CCDC80 0.059890 35 8470 SORBS2 0.043746

17 22918 CD93 0.059141 36 7037 TFRC 0.043140

18 389136 VGLL3 0.058799 37 1291 COL6A1 0.042982

19 8542 APOL1 0.058107 38 57863 CADM3 0.042899

Note: Genes are ranked by the absolute value of the coefficient
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Figure 4a shows that all 16 pathways are deregulated in batches
1–4. More relevantly, it also shows that most pathways
deregulated in obese patients are also deregulated in breast-
cancer patients. Notice that in Fig. 4a samples are sorted by
increasing PDS value, and hence clustering of the lean/obese or
normal/tumor groups along a pathway indicates a strong
deregulation. This result might support the claim that the pathway
deregulation in breast cancer shares some elements with that of
obesity. We would expect, however, the former to be broader and
more intense, to the point of shadowing the later when combined.
This is something that can be further investigated by inspecting
samples of breast cancer from lean and obese subjects. Indeed,
when computing PDS scores for batch 8 (404 samples of breast
tumor with associated BMI data), we do not find significant
changes in our score comparing obese with lean subjects.
Unfortunately, we do not have associated normal tissue samples
for batch 8, so the deregulation of tumor with respect to normal
tissue cannot be verified in this case. As a further verification, we
plot lean/obese and normal/tumor samples after a PCA transfor-
mation, see Supplementary Figure 5. In the case of Hs
Inflammatory Response Pathway, compared to lean samples
obese samples are closer to tumor samples, in agreement with
the important role played by inflammation both in obesity and in
cancer.

Obesity signature and type 2 diabetes in adipocytes
More than 70% of obese subjects also suffer from diabetes.2 To
assess whether our signature correlates not only with obesity but
also with diabetes, we consider the data in batch 6 for which
available clinical data includes BMI, fasting plasma insulin (FPI) and
fasting plasma glucose (FPG). Figure 5b, d shows that our score
correlates not only with BMI, but also with FPG (R = 0.59, p =
4.12 × 10−3) and FPI (R = 0.46, p = 2.88 × 10−2) when considering
only overweight subjects with roughly the same BMI. For the case
of FPG, Fig. 5c shows very clearly how the obesity score increases
(marked with increasingly darker blue points) both when BMI
increases (horizontal axis, left to right) and when FPG increases
(vertical axes, bottom to top). Notice that BMI and FPG are not
correlated in this case (R = 0.14, p = 0.29), and so we can conclude
that our transcriptomic signature captures changes in two
independent clinical traits.

Transcriptomic signature of obesity and type 2 diabetes in
monocytes and the effect of bariatric surgery
To asses if our signature is tissue-specific, and in particular to asses
if a trace of our obesity signature could be detected in monocyte
samples, we first analyze data from batch 10,24, see Supplemen-
tary Table 4 for details.24 This data set consists of paired
subcutaneous adipose tissue (AC) and peripheral monocyte (MC)

Fig. 2 The obesity score correlates with BMI. Scatter plots (black solid dots) and linear least-square regression fits (red lines) of the obesity score
against BMI, for batch 3 a, batch 5 b, batch 6 c and batch 7 d. P-values are computed for validation data sets via two-sided null hypothesis of
0 slope. Batch 3 was also used to construct the score and is shown only as reference, while batches 5, 6, and 7 are independent validation data
sets. Data is binned using percentiles and displayed with 95% confidence intervals (CI) red error bars, with a red dot marking the mean value of
each bin. The red solid line is the fitted regression line, and the red shaded area corresponds to 95% CI of the regression line, computed via
bootstrap.
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samples of 18 obese women, before and 3 months after bariatric
surgery. As is clear in Supplementary Figure 3a, most of the genes
in the signature display large changes in expression between AC
and MC, with fold-change values as high as 10. In contrast,
changes due to surgery lead to more moderate values, see also
Supplementary Figure 6. This is in part to be expected, as gene
expression is known to highly depend on tissue.
To further investigate these differences, we compare fold-

change values of the obesity score genes with those of the rest of
the genes. Supplementary Figure 6 shows that, indeed, the genes
of the obesity score have fold-change values comparable to
the rest of the genes (p = 0.49 for adipocytes, p = 0.17 for
monocytes) when one looks at the effects of surgery (Supple-
mentary Figure 6a, b), and that in contrast, they are significantly
different (p = 1.61 × 10−6 before surgery, p = 8.21 × 10−7 after
surgery) when one looks at differences between adipocyte and
monocyte samples. In other words, most of the genes in our
obesity score have tissue-specific expression patterns, and do not
show important changes due to bariatric surgery. We have also
computed a “monocytes obesity signature” using batch 12 for the
sake of comparison. We find a set of 104 genes, of which two are

in our original (AC) obesity score. Only one out of these two genes
was already detected with our AC-MC co-expression data, see
Supplementary Figure 3c. This suggests that the transcriptomes of
monocytes and adipocytes are very well separated.

DISCUSSION
Recent literature shows an increase in the risk of some types of
cancer, such as breast cancer, in obese subjects.3 It is, however,
still unclear why obesity is associated to these diseases and if
there is a gender-dependent effect in this association. It is also
unclear if bariatric surgery, currently a very common procedure for
severely obese subjects, might have any systemic effects, in
particular in reducing the risk of developing cancer.
In the present paper, we approach these questions from the

point of view of big data. One of the main problems to face is the
fact that each biological study is intrinsically limited, be it due to
the small numbers of patients involved or due to the hetero-
geneity of conditions and drug treatments among patients.
Combining data from different studies should alleviate these
problems but the presence of batch effects prevents

Fig. 3 The obesity signature is not gender-dependent a Venn diagram of male/female signatures. b Venn diagram of a representative
example of random A/B signatures, showing that the overlap obtained with male/female groups is qualitatively similar to that obtained with
random A/B groups of the same sizes (see Methods Section in main text for details). c Null distribution of number of overlapped genes,
showing that the overlap of 18 genes in the real male/female signature is compatible (p= 0.874) with the null hypothesis of gender-
independent signature. d Scatter plots for batches 5 and 6, using all samples (left column), female-patient samples only (middle column) or
male-patient samples only (right column). The figure shows that the association between the obesity score and BMI is statistically significant in
both male-only and female-only populations (notice that the reported p-values in the male-only and female-only panels are lower than their
all-gender counterparts, but this is due to the decreased number of samples).
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straightforward merging of different data sets. Here, we solve the
problem by combining SVD filtering with pathway deregulation
analysis. In this way we reveal a robust transcriptomic signature of
38 genes that are differentially expressed in adipocytes coming

from obese and lean subjects. Interestingly, the signature appears
to be specific to the biological condition of obesity and is not
linked to the gender of the subjects. The robustness of the
signature has been confirmed on four independent data sets
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totaling almost 300 validation samples, as well as comparison with
gene-level summary statistics from the Twins UK database.22

Additionally, when we compare subjects with similar BMI,
between 25 and 30, we find that the score also correlates with
the level of FPI or FPG, supporting the view that obesity is related
to important complications such as type 2 diabetes.
A closer look at the genes of the signature reveals links to

inflammation and immunity and well-known complications of
obesity such as type 2 diabetes or fertility. From the three down-
regulated genes (ST3GAL6, C12orf39, and CA3), ST3GAL6 is
particularly interesting since a recent paper shows that the altered
N-glycosylation of TNF-alpha treated adipocytes correlate with
regulation of specific glycosyltransferases, such as the down-
regulation of ST3GAL6 sialyltransferase.25 Therefore, adipose
inflammation associated with obesity modulates protein glycosy-
lation, leading to an important biological deregulation.25 This kind
of deregulation could lead to a broad effect on the biology of the
cells. Carbonic anydrase III muscle specific (CA3), highly expressed
in skeletal muscles, is also expressed by adipocytes.26 Interestingly,
Lynch and colleagues show a decrease of adipose tissue CA3 in
obese Zucker rats.26 Interestingly, these rats show peripheral
insulin resistance, and adipose tissue hyper-responsiveness to the
actions of insulin.26 To examine the possible role of insulin in
obesity-dependent loss of adipose tissue CA3, Lynch and
colleagues treat the obese Zucker rats with streptozotocin to
induce diabetes, showing that the level of CA3 increases.26

Therefore from a therapeutic point of view, both ST3GAL6 and
CA3 appear to be new and interesting possible targets for the
treatment of obesity. If we look carefully at the role of the
remaining 35 up-regulated genes in our signature, it is possible to
identify some interesting genes that could be used as target for
possible therapeutic interventions, while others are generically
involved in many biological functions. In particular, CCDC80 and
EMP3 are involved in the control of proliferation. The remaining 35
genes are all up-regulated. Among them we find Cathepsin S
(CTSS) and GTPase of the immunity-associated protein 6 (GIMAP6),
which are involved in inflammation and immunity: CTSS is a gene
encoding for Catepsin S, a lysosomal cysteine proteinase that may
participate in the degradation of antigenic proteins to peptides for
presentation on major histocompatibility complex (MHC) class II
molecules. Cathepsins S circulating levels have been found to
correlate with BMI and triglycerides.27 Changes in weight due to
dietary or bariatric surgery modulate either CTSS adipose tissue
expression or Cathepsin S systemic circulating levels.28 GIMAPs
(GTPases of the immunity-associated proteins), a family of small
GTPases expressed prominently in the immune systems of
mammals and other vertebrates, are known to play a role in
modulating autophagy.29 We also find two biomarkers of the
cerebral nervous system: CADM3 a synaptic cell adhesion
molecule30 and SORBS2. An association between obesity and
various neurological disorders has already been reported, includ-
ing sleep apnea, anxiety, manic depressive disorders, increased
risk of developing cerebrovascular accident, and other neurologi-
cal disorders.31 Another interesting factor that is present in our
signature is the transferrin receptor. It is known that iron
homeostasis in obesity is impaired and in fact our signature

highlights a key regulator of iron homeostasis.32 Finally, it is well
known that fertility could be negatively affected by obesity.33 In
our signature we find the FHL-5 gene which encodes a protein
coordinately expressed with activator of cAMP-responsive ele-
ment modulator (CREM) known to confer a powerful transcrip-
tional activation function. In particular, CREM is known to act as a
transcription factor essential for the differentiation of spermatids
into mature spermatozoa. To conclude our analysis, there are also
other genes which are more generic and are involved in many
biological processes from inflammation, to cell proliferation to
remodeling of the extracellular matrix.
By connecting genes to pathways, we find a set of 16 pathways

(Supplementary Table 3) that can be grouped into three main
categories: adhesion molecules which are involved in the
interaction with the extracellular matrix and related intracellular
signals (i.e., PI3K-AkT pathway); inflammation that can be involved
in tumor development; and pathways connected to typical
symptoms of obesity, from salivary secretion to digestive
problems.
It is interesting to compare our signature with the results of

integrative approaches.7, 9 In ref. 7, the authors identify causal
genes for obesity in mice using a probabilistic Bayesian network
approach that integrates DNA variation and expression data. They
use liver and adipose co-expression data together with genetic
loci related to obesity traits to identify a network of candidate
genes, some of which were later experimentally confirmed as
obesity causal genes using transgenic and knockout mice on fat
diets.9 Focusing on the subset of their candidate genes that we
could map to human genes present in our data, we find that
COL1A2, EMP3, CTSS, BICC1, IFI27, SH3BGRL3, and COL6A1 are
both in our obesity signature and in the their list of candidate
genes (p = 4.10 × 10−3, hypergeometric test), supporting the
consistency of our results with respect to previous integrative
approaches.
We also explore the possibility to use transcriptomes obtained

from peripheral monocytes, instead of adipocytes, and we find
that tissue specific effects do not allow to reach any conclusions
from monocyte sample. This highlights the well-known fact that
transcriptomic signatures are generally tissue-specific, and special
care must be taken when used against diverging tissues.
In conclusion, we show that a combined analysis of gene

expression data present in the literature allows to draw a clear
picture of the deregulation associated with obesity and the
relations with type 2 diabetes and cancer. Interesting markers
come out from our analysis and they can easily be used for
prognostic purposes and followed during specific drug or dietetic
regiment. The strength of our work comes from the use of
appropriate filtering and noise reduction methods that allow to
mitigate batch effects. This general strategy can be naturally
extended to other pathological conditions, providing a clear
avenue to analyze the massive amount of data accumulating in
the biomedical literature. Improvement on our results could be
obtained using larger cohorts and more precise measurements of
the fat mass, such as those obtained by Dual-energy X-ray
absorptiometry (DEXA) or echoMRI.

Fig. 4 Deregulation of pathways in obese and cancer patients. a Samples sorted by Pathway Deregulation scores (PDS) display strong
clustering both for obesity data (batches 1–4), as well as cancer data (batch 9). b Projection of batches 1–4 samples, shown with red (obese)
and green (lean) dots, onto the principal curve (black line) that is used to define PDS, see Methods. We show three pathways (nine in
Supplementary Figure 4) from the 16 found to be significantly over-represented in the 38 genes of the obesity score. For the purposes of this
visualization only, all data is further projected onto its first two principal components, PCA0 and PCA1. Axis labels display the ratio of
explained variance. c Heatmap for PDS of all KEGG pathways. Each pixel represents the value of the PDS (from blue, low PDS, to red, high PDS)
for a each sample (row) and pathway (column). Pathways are hierarchically clustered according to similarity of expression in obesity samples.
Samples are sorted by their obesity score. Green/red labels in the right indicate lean/obese categories. Black labels in the bottom mark the nine
KEGG pathways from the 16 selected using the obesity score. The panel shows that these pathways tend to cluster together and are among
the most highly deregulated.
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METHODS
Batch effects removal
We use the SVD technique introduced in ref. 19. SVD correction consists in
transforming the space of N-genes ×M-arrays to a new space of
L-eigengenes × L-eigenarrays with L =min{M, N}. In practice, one has
L =M because the number of genes almost always exceed the number of
samples available.
The SVD decomposition of a matrix X can be written as follows:

X ¼ UΣVT (1)

where Σ is a diagonal matrix with entries λ1 > λ1 >… λL > 0. The column
vectors u1,…,uL of U are linear combinations of genes, called eigengenes,
while the row vectors v1,…,vL of V

T are linear combinations of arrays, thus
called eigenarrays. Eigengenes might be associated with a biological
process, while eigenarrays would correspond to cellular phenotypes. The
idea behind SVD-correction is to filter out those eigengenes that are
inferred to correspond to batch effects rather than to a true biological
process. See ref. 19 for details.
We adapt and apply this technique for the more involved situation we

are interested in, that of merging K batches with expression matrices X(1),
…,X(k). In particular, we have developed our own two-step SVD batch-
effect removal method, as follows:

1. 1st SVD-filtering Step: For each data set k = 1,…,K, filter out the first
‘� 1 eigengenes u kð Þ

1 ; ¼ ; u kð Þ
‘�1 that do not contain useful information

for our phenotype of interest, obtaining a modified expression matrix
X̂ kð Þ,

X̂ kð Þ ¼ X kð Þ �
X‘�1

i¼1

λ
kð Þ
i u kð Þ

i � v kð Þ
i

� �
(2)

Notice that the value of ‘ is k-dependent, ‘ � ‘ kð Þ .
2. Merging Step: Merge the K matrices X̂ kð Þ . Notice that after step 1, the

columns of X̂ kð Þ still represent genes. Thus the matrices can be aligned
without further complications, creating a new matrix Y,

Y ¼ X̂
1ð Þ
; ¼ ; X̂

Kð Þh iT
(3)

3. 2nd SVD-filtering Step: Filter out the first ‘� 1 eigengenes
u1; ¼ ; u‘�1 that do not contain useful information for our phenotype
of interest in the newly created matrix Y, obtaining thus a new
expression matrix Ŷ ,

Ŷ ¼ Y �
X‘�1

i¼1

λi ui � við Þ (4)

In both SVD-filtering steps, the value(s) of ‘ is set to

‘ � argmaxi � log pKSi
� �� � ¼ argmini pKSi

� �
(5)

where pKSi is the p-value of a 2-sample Kolmogorov–Smirnov test
comparing the expression of the i-th eigengene between lean and obese

Fig. 5 The obesity score correlates with fasting plasma glucose (FPG) and fasting plasma insulin (FPI) in overweight patients. a, c Scatter plot
of FPI a and FPG c vs. BMI for all patients in Batch 6. Each point corresponds to a patient and is colored according to its obesity score. b, d
Regression plot of obesity score vs. FPI in panel b and vs. FPG in panel d, showing only patients from Batch 6 categorized as overweight.
P-values are computed via two-sided null hypothesis of 0 slope. Data is binned using percentiles and displayed with 95% CI red error bars, with
a red dot marking the mean value of the in each bin. The red solid line is the fitted regression line, and the red shaded area corresponds to 95%
CI of the regression line, computed via bootstrap.
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samples. In practice, the expression values of the i-th eigengene among
samples corresponds to the i-th row of the matrix UTX.
The whole process can be summarized as follows:

X kð Þ
n oK

k¼1
�!SVD�filtering

X̂
kð Þn oK

k¼1
�!merging

Y �!SVD�filtering
Ŷ; (6)

In plain words, the first filtering step makes sure that the phenotype of
interest (obesity in our case) is “the strongest effect” on each of the
batches. After merging, batch effects appear, and the second filtering step
removes all eigengenes whose strength (measured by the corresponding
eigenvalue λ) is larger than the eigengene that better discriminates the
phenotype of interest (measured by a KS test).

Obesity score
We define the obesity score S as

S �
Xn

k¼1

αi kð ÞXji (7)

where αi(k) is the coefficient of k-th largest absolute value of the first
principal component of batches 1 to 4, after batch-effects have been
removed, Xji is the log2 expression level of gene i in sample j in any batch.
We fix a value of n = 38 by imposing that all genes included in the score
are beyond a 5σ range with respect to the coefficients of a random vector.
This corresponds to a p-value of 5.70 × 10−7 (FDR equivalent: 1.90 × 10−3).
See Table 1 for the list of the 38 genes and their associated coefficients,
and Supplementary Figure 1 for a summary of their main characteristics
among the different batches. Obesity scores are displayed as mean-
centered values in all figures.
In summary, the obesity score is defined as the a linear combination of

the log2 expression of 38 genes. These 38 genes and their coefficients are
computed only once, using batches 1 to 4 after removing batch effects,
and kept fixed for the rest of the analysis.

Calculation of pathways over-represented in score genes
To determine pathways significantly over-represented in the set of 38
genes in the obesity score, we use a hypergeometric null model. In
particular, given a pathway with K genes, we compute its associated p-
value as the probability of finding k or more of its genes in a random
choice of n = 38 genes among a total of N = 13684 available genes. To
compute the value of K, we only take into account the 13684 genes that
result from merging batches 1 to 4, as these are the ones available when
the score is defined. We restrict to pathways with k≥ 2, finding a total of 16
pathways. Next, we assign a family-level p-value to this set of 16 pathways
by empirically computing the distribution of the number of pathways with
at least two genes in common with the obesity score. The p-value of 0.012
reported in the main text and in Supplementary Table 3 corresponds then
to the probability of finding 16 or more pathways with at least two genes
in common with the score, under the null hypothesis and indicates that, as
a whole, the set of 16 pathways is statistically significant.

Calculation of PDS
PDS were first introduced by Drier et al., 201320 as a way of quantifying the
overall deregulation of a given pathway, with respect to a reference
sample. They are computed by fitting a non-parametric, non-linear one-
dimensional curve through the “middle” of the transcriptomic data, in the
subspace generated by the genes of that pathway. In practice, this is
usually done via the principal curve algorithm,34 although other procedures
would be acceptable. We follow the steps carefully explained in ref. 20,
except for the following modification: the value of 0 is placed at the mean
value of the reference sample, instead of at the extremal point of the
curve. This modification can alter the values as computed in ref. 20 only by
a linear shift, and makes the results more robust to the variability of the
reference sample.

Code availability
A repository with all code used to generate the results of this paper
is available at https://github.com/ComplexityBiosystems/obesity-score. A
sandalone python package implementing the SVD batch-effects removal
method is also available, see https://github.com/ComplexityBiosystems/
SVDmerge

Data availability
All relevant data are available at the Gene Expression Omnibus (GEO)
under accession numbers GSE2508, GSE26637, GSE27949, GSE48964,
GSE62117, GSE64567, GSE33526, GSE78958, GSE65540, GSE66306, and
GSE32575 (see Supplementary Table 4 for details). In addition, data for
batch 11 was obtained from the Bgee Gene Expression Database35 and can
be publicly accessed at http://bgee.org/. Summary statistics from the Twins
UK dataset used in Supplementary Figure 2 can be accessed at http://
expression.kcl.ac.uk/phenoexpress/1/.
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