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We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it
induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric
for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is
operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum
Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically
available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that
the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some
general results in Gaussian channel estimation that are the continuous-variable analogs of previously known
results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of
ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental
and computational implications. It limits the complexity of optimal experimental setups for channel estimation
and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging
algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher
information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables
for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
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I. INTRODUCTION

The theory of quantum channels provides a broad con-
ceptual and mathematical framework to describe physical
transformations on quantum states. Progress in quantum infor-
mation technology is bringing long-standing questions related
to quantum channels to the front line of research. Topics such
as dissipation-assisted quantum computation [1], quantum
teleportation [2], quantum memories [3], and quantum state
engineering [4,5] all have in common that they deal with
quantum channels in one way or another. One major question
that has recently received a significant amount of attention is
the definition of a distance among quantum channels [6–8].
The main motivation for such notion is the identification of a
gold standard [7] against which all quantum processes could
be compared, which would unify and systematize the way in
which errors are treated and quantified. In [8], a reasonable,
physically motivated set of requirements for such a distance
was introduced and some particular cases fulfilling most of
them were identified. However, despite recent progress in the
field [9], many questions remain open.

A similarly motivated program, as developed between
the late sixties and the early nineties, regarded the problem
of defining distances among quantum states. The resulting
theory is today well encompassed within the framework of
information geometry [10–12]. In particular, this approach
addresses questions regarding the distinguishability and the
estimation of sets of quantum states. These questions led to the
notions of quantum fidelity [13], Bures distance, and quantum
Fisher information (QFI) [14–19]. As a result, the manifold
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of quantum states is endowed with a local Riemannian metric
tensor which is physically motivated and serves as the gold
standard for comparing quantum states. Additionally, the
metric allows one to define the Bures distribution [11,20,21],
the quantum analog to the Jeffreys’ prior [22], which, among
other applications, provides an operationally motivated prior
distribution for Bayesian tomography and estimation tech-
niques [23].

There exists in the literature a number of proposals for
defining a distance for quantum channels. Most notably,
the Jamiolkowski process distance [8], based on the Choi-
Jamiolkowski isomorphism [24], and the completely bounded
trace norm [8,25] establish a distance between two channels
S1 and S2 by considering the distance d(ρ1,ρ2) between the
respective images of an arbitrary probe state ρ under the
action of the channels ρi = (Si ⊗ I)ρ. Such distance is then
maximized over all possible probe states ρ in order to obtain
a fundamental measure of distinguishability between S1 and
S2. The completely bounded trace norm is arguably the most
appropriate choice for both physically motivated reasons and
practical considerations: Indeed, it has been recently shown
that it can be computed in polynomial time in the dimension
of the system upon which the channels act [9]. Despite this
and other significant contributions, existing distance measures
are inadequate to address a number of relevant situations.
In particular, defining a distance on a manifold instead of
a metric tensor hinders the task of defining natural prior
distributions over the set of channels. Moreover, most of the
existing distances are hard, if not impossible, to compute
in infinite-dimensional systems such as continuous variables
[26,27]. Additionally, in a number of situations, arbitrarily
good distinguishability between any two infinite-dimensional
channels can be achieved if one allows for a large enough
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amount of resources [28], thus rendering the direct approach
of optimization [9] useless unless some restrictions on the
resources (regularization) are enforced.

In the present work we address the problem of defining
a metric tensor on the set of n-mode Gaussian channels C

[32], and we study the ensuing physical consequences. The set
of Gaussian channels can be regarded as a manifold once a
proper parametrization X : O → C is established, where O ⊆
Rd is an open subset in a d-dimensional real vector space. The
set C = {S(X)} can be equipped with a Riemannian metric
following the spirit of the statistical distance [33] and the Bures
distance. Considering any two infinitesimally close quantum
channels S1 ≡ S(X) and S2 ≡ S(X + dX), a metric tensor J

provides the infinitesimal distance between them as

d2(S1,S2) = Jµν(X)dXµdXν, (1)

where J(X) � 0. We use Einstein’s summation convention,
that is, an index appearing once as a sub-index and once as a
super-index is automatically contracted.

As pointed out in [8] some physically motivated require-
ments should be imposed. Namely, the metric should meet the
following criteria.

(a) Stability. The metric should be invariant under the
addition of ancillary modes, namely, d2(S1,S2) = d2(S1 ⊗
I,S2 ⊗ I), where I corresponds to the identity channel on
an arbitrary number of ancillary modes.

(b) Measurability. This amounts to saying that, once the
metric is defined, the channel parameters can be determined
by experimental means.

(c) Computability. The metric J(X) should be computable.
This requirement is obviously unclear for the existing propos-
als when addressing infinite-dimensional channels.

(d) Physical meaning. The metric should have a clear
operational meaning. This is certainly the case if the metric is
derived from distinguishability considerations.

Other requirements (symmetry, nondegeneracy, and the
triangle inequality) are guaranteed by any distance stemming
from a metric tensor. The chaining condition imposed on [8]
is not immediate to translate into the metric approach, and we
do not address it in the present work. Finally, a purely formal
requirement is in order for any well-defined metric tensor.

(e) Covariance. The metric tensor has to transform co-
variantly under a reparametrization. Namely, if we perform
the change X → X′(X), with dX′µ = �µ

ν (X)dXν , the metric
tensor has to transform as Jµν(X) = J′

λσ (X′)�λ
µ(X)�σ

ν (X) so
that the distance d(S1,S2) is invariant under reparametrization.

As mentioned earlier, some physical constraint on the probe
states needs to be imposed in order to guarantee that the metric
is well defined. We assume that this constraint is given in the
form of a real-valued function φ(ρ) � φ�, where the specific
form of φ is not of particular relevance. This function may
have a practical motivation, and thus be chosen according
to technical considerations, or may be used to regularize the
divergencies that appear when resources are unlimited; we
will refer to it as a resource budget. From now on we tacitly
assume that all quantities we define depend implicitly on the
given choice of φ.

The article is organized as follows. Section II introduces
the Bures-Fisher metric, a concept central to our work,
together with some of its properties. Section III defines our
channel metric and derives some of its main properties,
namely, covariance and stability, as well as showing that
it can be computed with arbitrary precision, provided that
one can compute QFI matrices for all Gaussian probe states.
In doing so, we generalize some results known previously
for finite-dimensional channels into the constrained Gaussian
setup. In Sec. IV we derive explicit formulas for obtaining
the QFI matrices for dissipative channels. Section V provides
some remarks and stresses the main questions left open,
as well as the near-future applications of our results to
the estimation of relevant channel properties such as bath
couplings, temperature, and squeezing. The mathematical
details are reported in five technical appendices.

II. THE BURES-FISHER METRIC

The main motivation for defining a metric in the manifold
of Gaussian channels C is to obtain a parametrization-
independent measure of distinguishability on C. By expressing
distances by means of a metric tensor we also obtain a notion
of density of channels. Such density thus provides a measure
of how many different channels can be distinguished in a
neighborhood of a pointS(X) with a given amount of resources
φ�. Such distinguishability-derived density is captured by the
Jeffrey’s prior [22] in the case of probability distributions
and the Bures prior [14,17] for the set of quantum states.
These densities play a central role in the theory of Bayesian
estimation [23].

Given two channels S1 and S2 and a specific probe state ρ0,
the maximal statistical distance [33] attainable by any quantum
measurement between the states resulting from the action of
the channels, ρ = S1ρ0 and σ = S2ρ0, is given by the Bures
distance [13,14]

d2
B(ρ,σ ) = 2(1 −

√
F (ρ,σ )), (2)

where

F (ρ,σ ) = tr
√√

ρσ
√

ρ (3)

is the quantum fidelity. For infinitesimally close channels,
S1 = S(X) and S2 = S(X + dX), the Bures distance can be
expressed as

d2
B(ρ,σ ) = 1

4J (X|ρ0)µνdXµdXν, (4)

where J (X|ρ0) is the QFI matrix of the model {ρ(X) =
S(X)ρ0} [15,16,18,19]. The QFI matrix can be computed from
the symmetric logarithmic derivatives (SLD) �µ, which are
the Hermitian operators that satisfy the equation

∂µρ(X) = �µ(X) ◦ ρ(X), (5)

where we have introduced the symmetric product for operators,
A ◦ B = 1

2 (AB + BA). The QFI is then

Jµν(X) = tr[ρ�µ ◦ �ν], (6)

where we have dropped the explicit X dependency in ρ and
�µ. The SLDs play an important role in the theory of quantum
inference [19].
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The QFI has been reviewed a number of times in the
literature, from which we emphasize [11,12,34,35]. It enjoys
several useful properties:

(i) The SLD has zero expectation,

tr[ρ�µ] = tr[ρ ◦ �µ] = ∂µtrρ = 0. (7)

(ii) The QFI is real, symmetric, and positive semidefinite,

θµJµν(X)θν = tr[ρ(θµ�µ)2] � 0, (8)

which follows from ρ � 0 and (θµ�µ)2 � 0.
(iii) The SLD and the QFI are covariant quantities. Given a

parameter θ (X) such that ∂θρ(X) = θµ∂µρ(X), we can define
the SLD associated with θ as �θ = θµ�µ. We can equally
define the QFI associated with θ as Jθ = θµJµνθ

ν .
(iv) The QFI is monotonic under completely positive, trace-

preserving (CPTP) maps. Writing J (ρ)µν = tr[ρ�ρ
µ ◦ �ρ

ν ],
we have

J (ρ) � J (Eρ), (9)

where E is any CPTP map. In particular, if E is a unitary map,
it holds that J (ρ) = J (Eρ).

Apart from these properties, the QFI plays a central role in
the theory of quantum statistical inference by placing a lower
bound on the attainable variance of any unbiased estimator of
the parameters X [15,16,19,34–36].

III. A CHANNEL METRIC

In this section we define our proposed channel metric and
study its properties. Analogously to Eq. (4), we expect that
the distance between neighboring channels can be expressed
as in Eq. (1). This is a requirement that is not met by all
distance measures, and it is yet unclear that a straightforward
extrapolation of the statistical distance applied to channels
will fulfill such expectation. Thus, instead of focusing on
maximizing the statistical distance, we search for a metric
tensor that provides an upper bound to it. Namely,

(1) J(X) should provide an upper bound to the Bures
distance between states attainable within some resource budget
φ�.

Following these considerations, and sticking to our defini-
tion of ρ and σ , we impose the following condition on J(X),

d2
B(ρ,σ ) � 1

4J(X)µνdXµdXν, (10)

for any possible dX and any chosen probe state ρ0 fulfilling
φ(ρ0) � φ�. Imposing this for any dX implies that

J (X|ρ0) � J(X) ∀ρ0 s.t. φ(ρ0) � φ�. (11)

Notice, however, that this condition is not sufficient to uniquely
specify J(X). In general, one would expect that the distance
established between two points is not unnecessarily large.
However, a tight bound for dB(X,X + dX) for any dX

may not be expressible in the form of Eq. (1). This is
because minimizing the distance between a pair of points
S(X) and S(X + dX) may not automatically minimize the
distance between S(X) and another S(X + dX′). This can
be formalized as follows. Let C be the set of achievable
QFI matrices for a given channel and resource budget φ�.
There may exist several matrices which are tight upper bounds

to C, namely, that they are upper bounds, and no smaller
matrix exists which is also an upper bound. This is a direct
consequence of the partial-ordered nature of matrices. There
is, however, a natural way to precisely specify J(X) while
respecting all the above criteria. One expects that

(2) The volume element specified by J(X) should be
minimal.

This translates into imposing that
√

det J(X) is minimal.
Thus, our metric corresponds to an upper bound on the

attainable QFI for any set of Gaussian quantum channels C,
tested with Gaussian probe states fulfilling some regularization
condition φ(ρ0) � φ� and providing the smallest possible
volume element in the manifold of channels. Restricting to
the Gaussian domain yields a manageable parametrization of
the probe states and allows one to obtain explicit formulas
for the QFI. In addition, the geometry induced by our metric
has an immediate practical interpretation. It is a bound to
the distinguishability attainable by Gaussian states. Moreover,
recent analysis [37] suggests that entangled Gaussian states
are as sensitive as single-mode de-Gaussified states [38] in
quantum statistical inference. This claim has yet to be proven.

As a first approach to the problem of defining a channel
metric it is relevant to discuss the Jamiolkowski distance
introduced in [8]. It is well known that the Jamiolkowski
isomorphism [24] can be used to encode a d-dimensional
quantum channel S into a d2-dimensional quantum state
σS = (S ⊗ 1)�, where � is a maximally entangled state.
One may consider that distinguishability between σS1 and σS2

be related to the distinguishability between S1 and S2. The
state �, however, is not likely to comply with any physically
motivated resource restriction φ. Instead, one must consider
the attainable distinguishability within the limits imposed
by φ.

We proceed, in the next subsections, to formally define
the metric tensor J(X) based on the previously announced
criteria (1) and (2) and prove the covariance, stability, and
computability properties.

A. Defining J(X)

Given a parametrized family of n-mode channels C =
{S(X)}, let us define the quantum model M[C|ρ] = {ρ(X) =
S(X)ρ0}, that is, the parametrized set of all possible quantum
states resulting from an initial probe ρ0, under the action of
the set of channels C. The associated QFI is

Jµν(S(X)|ρ0) = tr[ρ(X)�µ ◦ �ν], (12)

where �µ are the associated SLDs. This corresponds to the
situation depicted in Fig. 1(a).

Consider next the m-completed channel as S�m(X) =
S(X) ⊗ Im, where Im represents the identity channel on m

ancillary modes. We thus obtain the m-completed set C�m =
{S�m(X)}. Given an (n + m)-mode probe state ρ we can define
a new quantum model, M[C�m|ρ0] = {ρ�m(X) = S�m(X)ρ0}.
The QFI for the new model is

Jµν(S�m(X)|ρ0) = tr
[
ρ�m(X)��m

µ ◦ ��m
ν

]
, (13)

where ρ�m(X) = S�m(X)ρ0 is the probe state under the action
of the m-completed channel, and the SLD’s ��m

µ obviously
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(a)

S S(X)

ρ
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(b)

S

S(X)n
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m
{ ρ S�m(X)

Λ�m
θ

A

B

FIG. 1. (Color online) Measurement schemes (a) without ancillas
and (b) with ancillas, combined with the most general possible
measurement. Scheme (b) includes (a) and, hence, must be equally
or more efficient than (a).

correspond to the model M[C�m|ρ0]. The extension of C to
C�m is depicted in Fig. 1(b).

Now we turn to the constraint φ. Let us denote the n modes
upon which the channels S(X) act as ak, k ∈ {1, . . . ,n}, and
are collectively referred to as A, while the ancillary modes
are denoted by bk, k ∈ {1, . . . ,m}, collectively denoted as B.
We may find it useful to consider yet another set of modes,
collectively denoted as C. We define the acceptable constraints
as those that only involve the reduced density operator in
modes A, ρA = trĀρ, namely,

φ(ρ) ≡ φ(ρA). (14)

This choice is physically motivated by the fact that relevant
resources should only involve degrees of freedom accessible
to A. A natural choice for the function φ could be the
average photon number in A, φ(ρ) = tr[ρ

∑
k a

†
kak], which

has been used previously as a comparison reference for several
estimation problems. Nevertheless, our results are general and
not restricted to this particular choice.

Finally let C(S(X)|φ�) = {J (S(X)|ρ)|φ(ρ) � φ�} be the
set of all QFI achievable by any Gaussian state fulfill-
ing the constraint φ(ρ) � φ�, and let Cpure(S(X)|φ�) =
{J (S(X)|ρ)|φ(ρ) � φ�,ρ2 = ρ} be the corresponding set
when restricting to pure states. Let C be any set of positive
semidefinite bounded matrices, and J ∈ C. Define the func-
tion M(J ) = {j � J } to be the set of all upper bounds to
J and M(C) = ∩J∈CM(J ) to be the set of all upper bounds
common to all matrices in C.

We are now in the position to introduce the metric for the
set C. Let S be a channel in C. The metric at point S is

J(S) = arg inf
{j∈M(C(S�n|φ�))}

det j, (15)

that is, the matrix with the smallest determinant that is greater
or equal to all possible QFI achievable by any 2n-mode
Gaussian probe state fulfilling the constraint φ(ρ) � φ�. This
is a positive semidefinite matrix and certainly qualifies as a
metric. It is measurable in the sense that it is a function
of the parameters X which are themselves measurable [see
Sec. IV A]. Notice that in very pathological cases, there may be
more than one solution to the minimization problem. These are

highly symmetric and unlikely situations which we do not deal
with. We dedicate the following subsections to discussing the
most relevant properties of J and providing an approximation
method to compute it.

The idea behind this definition is to provide an upper bound
to the achievable Fisher information for any parameter of
interest, under the constraint φ(ρ) � φ�. While any matrix
greater than those in C(S�n|φ�) would certainly qualify as an
upper bound, the partial-ordered nature of matrices prevents
one from having, in the general case, a well-defined supremum.
Instead, the minimization of the determinant in Eq. (15) aims
at reducing the volume element to a minimum while still
providing an upper bound to the attainable Fisher information.

B. Covariance

Notice that under a reparametrization X → X′(X) we have

�µ → �µ′ = �µ�
µ

µ′ , (16)

where �
µ

µ′ ≡ ∂Xµ/∂X′µ′
, where primed indices refer to the

new coordinates and unprimed indices correspond to the
old coordinates, as is customary in the notation of general
relativity. Equation (16) in turn implies that the QFI is a
covariant quantity,

Jµν → J ′
µ′ν ′ = Jµν�

µ

µ′�
ν
ν ′ . (17)

Let us denote this transformation law in shorthand notation
J → �TJ�. All elements in C(S�n(X)|φ�) transform in the
same way under a given reparametrization. Accordingly, the
set M(C(S�n(X)|φ�)) also transforms covariantly. Namely, for
any matrix j ∈ M(C(S�n(X)|φ�)) we have

�T j� ∈ M(C(S�n(X′)|φ�)), (18)

and vice versa.
Finally the determinants of all elements in M(C(S(X′)|φ�))

are just those of M(C(S(X)|φ�)) multiplied by a factor
det �T �. Therefore, assuming that under parametrization X

the minimum was achieved for J, the new minimum under
parametrization X′ will be achieved by J′ = �T J� [J′

µ′ν ′ =
Jµν�

µ

µ′�
ν
ν ′], as required.

C. Stability

The stability requirement has been discussed previously in
the literature [6,8]. We dedicate this section to proving that
J(S) is invariant under the addition of ancillas, namely,

J(S ⊗ I) = J(S), (19)

where I is the identity channel on an arbitrary number n′ of
modes. We remark that, while adding ancillary modes, we still
require the constraints φ to act on the original set of modes.
Observe that

J(S ⊗ I) = arg inf
{j∈M(C(S�(n+2n′ )|φ�))}

det j. (20)

Observe that if X ⊆ Y then M(Y ) ⊆ M(X). Given two sets
of positive semidefinite matrices X and Y , we say X � Y

if and only if for any ∀y ∈ Y∃x ∈ X such that x � y. This
binary relation is reflexive (X � X) and transitive (X � Y

062326-4



INFORMATION GEOMETRY OF GAUSSIAN CHANNELS PHYSICAL REVIEW A 81, 062326 (2010)

(a)

S

SA S−1
A

SBC

|ψ〉

n
{

m
{

(b)

S

SBC S−1
BC

n
{

m
{ |ψ〉

S(X)
Λ�m
θ

FIG. 2. (Color online) (a) The Schmidt decomposition theorem
ensures that, in an (n + m)-mode state (m > n), one can locally bring
m − n modes to the vacuum. Therefore, for any pair (|ψ〉,�θ ) of
n + m modes there exists a pair (SBC |ψ〉,S†

BC�θSBC) of 2n-modes
which performs equally well. The remaining modes can be traced
out of SBC |ψ〉 leading to a generalized measurement. The optimal
generalized measurement on the 2n-mode state is given by the
corresponding SLD, ��n

θ .

and Y � Z ⇒ X � Z). Also X � Y ⇒ M(X) ⊆ M(Y ). We
will say that two sets are equivalent (X � Y ) if and only if
M(X) = M(Y ).

Let n be the number of modes upon which S acts. The proof
consists of two main steps.

1. We first show that the set of QFI matrices attainable
using pure probe states with m > n ancillary modes is
equivalent to those attainable with pure probes using only
n ancillary modes.

2. We then show that the set of QFI matrices attainable with
(n + m)-mode states (m > n) is equivalent to those attainable
with pure (n + m)-mode states.

Proof of 1. Consider an (n + m)-mode setup such as the
one in Fig. 1(b) (m > n). The Schmidt decomposition-like
theorem [39–42] states that, given an (n + m)-mode pure
Gaussian state |ψ〉ABC separated into parties A (n modes
through the channel), B (n modes), and C (m − n modes),
one can always reduce the system to n pairwise squeezed
states between A and B, and m − n vacuum states in C by
means of local symplectic transformations on A (SA) and
joint symplectic transformations on B and C (SBC) [Fig. 2(a)].
Therefore, for any pure Gaussian state |ψ〉ABC there is another
2n-mode state |ψ2n〉AB such that

SBC |ψ〉ABC = |ψ2n〉AB|0〉⊗(n−m)
C . (21)

Defining E as Eρ = SBCρS
†
BC and noting that S�(n+m)Eρ =

ES�(n+m)ρ we have, following from the unitary invariance of
the QFI,

J (S�m||ψ〉ABC) = J (S�m|E |ψ〉ABC). (22)

Moreover, using S�m(ρ ⊗ |0〉〈0|⊗(m−n)) = (S�nρ) ⊗
|0〉〈0|⊗(m−n) together with Eq. (21) and the additivity of

the QFI [obviously J (I||0〉⊗(m−n)) = 0] we have

J (S�m|E |ψ〉ABC) = J (S�m||ψ2n〉⊗|0〉⊗(n−m))

= J (S�n||ψ2n〉AB), (23)

while φ(|ψ〉) = φ(|ψ2n〉). This shows that Cpure(S�m|φ�) ⊆
Cpure(S�n|φ�), which combined with the trivial inverse inclu-
sion yields

Cpure(S�m|φ�) = Cpure(S�n|φ�), ∀m > n, (24)

and therefore

M(Cpure(S�n|φ�)) = M(Cpure(S�m|φ�)), ∀m > n. (25)

�

This makes it clear that all Cpure(S�m|φ�) with m � n are
equivalent. This result has a similar flavor to the well-known
fact that maximally entangled states are optimal for estimation
of d-dimensional unitary operations and several other finite-
dimensional channels [43], which means that a d-dimensional
ancilla is sufficient. In our case, maximal entanglement will
in general be forbidden by the resource constraint φ�, but
nevertheless the ancilla need not be larger than the system
itself.

Proof of 2. Notice that for any (n + m)-mode QFIJ (S�m|ρ)
(m � n) there exists an (n + m + m′)-mode pure state |ψ〉
such that J (S�(m+m′)||ψ〉) � J (S�m|ρ). To see this, one
simply needs to construct a pure (n + m + m′)-mode Gaus-
sian state |ψ〉 such that trC |ψ〉〈ψ | = ρ, with C denoting
the purifying extra (m′) modes [Fig. 3(b)]. Since S�mρ =
trCS�(m+m′)|ψ〉〈ψ | the monotonicity of the QFI under CPTP
maps [44] guarantees that

J (S�(m+m′)||ψ〉) � J (S�m|ρ). (26)

Notice that the constraint φ(ρ) is not affected by this
construction, as long as it depends only on the reduced
state ρA = trĀρ, since φ(ρ) = φ(|ψ〉). This shows that the
optimal probe states can always be taken to be pure,
provided that one enlarges sufficiently the set of ancillary
modes. Therefore Cpure(S�(m+m′)|φ�) � C(S�m|φ�) yielding
M(Cpure(S�(m+m′)|φ�)) ⊆ M(C(S�m|φ�)).

Using Eq. (25) we can, furthermore, say that
M(Cpure(S�m|φ�)) ⊆ M(C(S�m|φ�)). On the other hand,
it is trivial that Cpure(S�m|φ�) ⊆ C(S�m|φ�), yielding
M(C(S�m|φ�)) ⊆ M(Cpure(S�m|φ�)). Consequently,

M(Cpure(S�m|φ�)) = M(C(S�m|φ�)). (27)

This concludes the proof. �

This result is also a Gaussian version of previously known
results for the estimation of finite-dimensional channels [45].
The added value of this result is that the restriction to pure
states can be made while preserving the Gaussian character of
the probe states as well as respecting the resource budget φ�.

All these results imply that M(C(S�(n+2n′)|φ�)) =
M(Cpure(S�(n+2n′)|φ�)) = M(Cpure(S�n|φ�)), so that Eq. (20)
reduces to

J(S ⊗ I) = arg inf
{j∈M(Cpure(S�n|φ�))}

det j = J(S). (28)

Summarizing, we have shown that any Gaussian state of 2n

modes (or more) can be reduced to a 2n-mode Gaussian pure
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(a)

S

S(X)
Λ�n
θ

ρ S�n(X)

(b)

S

S(X)
Λ�n
θ

ρ

S�n(X)

(c)

S

S(X)

Λ�m
θ

|ψ〉

S�m(X)

FIG. 3. (Color online) Measurement schemes (a) with a thermal
state in a 2n-mode setup. (b) Equivalent setup with a pure state
containing ancillary modes that are not measured. (c) The optimal
measurement including the ancillary modes. Obviously, the setups in
(a) and (b) are equivalent, while the setup in (c) has more freedom
and includes (b). Consequently Ja = Jb � Jc.

state which performs equally well or better than the original.
The stability property thus follows.

D. Computing J(X)

We now turn to the problem of computing the metric J(X).
Take S as the channel for which the metric needs to be
computed, under the constraint φ � φ�. Let C� = C(S�n|φ�).
The problem can be written as

minimize det j (29)

subject to j � J ∀J ∈ C�. (30)

This can be cast as a semi-infinite programming problem
[46], where there are finitely many variables but infinitely
many inequalities to satisfy. In the following we provide
an approximation method by discretizing the problem into
a convergent sequence of convex programming problems.
Despite the apparently untractable nature of the problem,
consistent approximations can be computed from the following
prescription: Generate a finite subset of constraints by sam-
pling a subset Cn ⊂ C� of n random QFI matrices from C�.
Let Jn be the solution to the discretized problem with matrices
in Cn. Then Jn can be computed following standard convex
optimization methods. In fact, the problem of computing Jn

can be recast as the problem of finding the Löwner-Jones

2 1 1 2
2

0.3

0.2

0.1

0.1

0.2

0.3

N 2

FIG. 4. (Color online) Illustration of the problem for the model
X = (γ,N,0,0) at the point (γ,N ) = (0.1,1), tested with Gaussian
states fulfilling φ(ρ) = tr[a†a ρ] = 0.2. The thick-dashed (black)
outermost ellipse that bounds all the inner ones corresponds to the
metric J. The inner ellipses correspond to the points XJ −1X =
1, ∀J ∈ C�. The various inner ellipses correspond to the different
distribution of the available energy among single mode squeezing
(red), two-mode squeezing (green) and displacement (blue). Ellip-
soids corresponding to the QFI’s for different probe states are drawn
with matching Red-Green-Blue color scheme.

ellipsoid of a union of ellipsoids [47] (see Fig. 4), for which
efficient methods exist.

We show in Appendix A that this approximation method
converges to the true value J. More precisely, we show that for
any ε > 0 there exists a sufficiently large n such that Pr(‖Jn −
J‖ > ε) < k exp(−n), where ‖ · ‖ is the operator norm.

This iterative method assumes that one can generate any
QFI matrix in C�. This is indeed a nontrivial task. In principle,
QFI matrices can always be computed numerically for finite-
dimensional quantum systems, but in the case of infinite
dimensions, a general method does not exist. In the following
section we concentrate on a particular class of channels and
provide closed analytic formulas for the QFI matrix.

IV. EXPLICIT FORMULAS FOR DISSIPATIVE CHANNELS

We dedicate this section to the issue of measurability and
computability stated in the Introduction. In principle the SLD is
defined for any possible modelS(X)ρ, and thus the parameters
X are always measurable. Similarly, the QFI is always defined
and can be obtained from the second derivatives of the quantum
fidelity F (ρ(X),ρ(X′)) with respect to X′ at X′ = X [17].
Therefore, the matrix J (X) is always defined. However,
computing the QFI in the general case can be extremely
challenging. Generic formulas can be found in the literature,
but obtaining explicit expressions often requires knowledge
of the eigenbasis of S(X)ρ. On the other hand, brute force
evaluation of the SLD amounts to solving a Sylvester equation
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[48]. Several algorithms exist for performing such a task
numerically. Unfortunately, this is of little use in the case of
infinite dimensions.

In this section we develop explicit formulas for the compu-
tation of the SLD and the QFI of dissipative channels probed by
arbitrary Gaussian probe states. Dissipative Gaussian channels
are of the form

S(X) = expG(X), (31)

where

G(X) =
n∑

k=1

γk

2
(NkL[a†

k] + (Nk + 1)L[ak]

+M∗
k D[ak] + MkD[a†

k]), (32)

with L[o]ρ = 2oρo† − o†oρ − ρo†o and D[o] = 2oρo −
o2ρ − ρo2, and a

†
k and ak are creation and annihilation

operators in mode k, satisfying the commutation rela-
tions [ai,a

†
j ] = δij . We have used the shorthand nota-

tion X ≡ ⊕n
k=1 xk = (γ1,N1,ReM1,ImM1,γ2, . . .) while xk

stands for xk = (0, . . . ,0,γk,Nk,ReMk,ImMk,0, . . . ,0), with
nonzero parameter values only in mode k. We have chosen
to work with (ReM,ImM) rather than (M,M∗) to ensure
hermiticity of the SLD. These are the most general Gaussian
dissipative channels, where the {γ, . . . ,γk} parameters can be
regarded as coupling strengths, N corresponds to the mean
photon number of the reservoir modes, and the M’s are their
squeezing parameters. Notice that this parametrization can
be taken beyond the natural interpretation of the parameters,
for example, by setting γ = C − A and N = A /(C − A )
one can account for amplification processes where A , B,
and C are the gain, saturation, and decay rate, respectively,
in the linear regime (B = 0) [49]. Moreover, the squeezing
parameters M can accommodate phase sensitivity in the
amplification process.

The dynamics of an arbitrary state ρ undergoing the
most general Gaussian dissipative evolution, in the interaction
picture and within the Markovian approximation, can be
described by the master equation [50]

dρ

dt
= G(X)ρ, (33)

and evolves, after a time t , from state ρ0 to ρ = exp[tG(X)]ρ0.
For all practical purposes the coupling constants always appear
as γkt , thus the time t can be absorbed in the coupling constants
γk , allowing one to take t = 1 without loss of generality.

There are several ways to compute the QFI. As stated
previously, one consists of computing the Hessian of the
fidelity. This, however, does not provide information about
the optimal observables, namely, the SLD’s �µ’s. Hence, we
take here the longer route by first computing the SLDs. This
settles the issue about measurability, as we explicitly provide
the optimal observables to estimate the value of Xµ. Then the
QFI is immediately given by their covariance matrix. In order
to preserve the clarity, we introduce notation by reviewing
some well-known facts about Gaussian states.

At variance with the previous sections, where we have
made explicit the distinction between the channel modes A
and the ancillary modes B and C, we now treat all modes

indistinctly. Considering channels with ancillas only amounts
to considering parameter spaces of the form

X =
n−m⊕
k=1

xk ⊕ �0, (34)

where �0 = ⊕m
k=1(0,0,0,0). We thus we have n bosonic

modes with annihilation operators ak fulfilling the canonical
commutation relations [ai,a

†
j ] = δij , all other commutators

being zero. We arrange all operators into a vector χ =
(a1,a

†
1,a2,a

†
2, . . .). The commutation relations are expressed

as

[χi,χj ] = �ij , (35)

where � = ⊕n
k=1 ω, and ω is the symplectic matrix

ω =
(

0 1
−1 0

)
, ωT = −ω, ω2 = −1. (36)

Equivalently, the canonical operators Qk and Pk are arranged
in the vector R = (Q1,P1,Q2,P2, . . .), related to χ by Ri =
Hi

jχ
j , where H is the unitary transformation

H = 1√
2

n⊕
k=1

(
1 1
−i i

)
, (37)

and with commutation relations [Ri,Rj ] = i�ij =
Hi

i ′H
j

j ′�i ′j ′
.

A Gaussian state is defined as a state with Gaussian
characteristic function [51], which is fully described by the
first moments 〈Ri〉 and by the covariance matrix (CM) �ij :

〈Ri〉 = tr[ρRi], (38a)

�ij = tr[ρ(Ri − 〈Ri〉) ◦ (Rj − 〈Rj 〉)]. (38b)

Williamson’s theorem [52] ensures that a Gaussian state can
always be expressed as a thermal state under the action of a
symplectic transformation S and a displacement operator D,

ρ = DS

(
n⊗

k=1

ρνk

)
S†D†, (39)

with

ρνk
= Z−1

k exp(−βka
†
kak), (40)

where Zk is a normalization factor and the βk are inverse
temperatures. The thermal state has zero first moments 〈Ri〉 =
0 and a covariance matrix �

ij

th = tr[(
⊗n

k=1 ρνk
)Ri ◦ Rj ],

�th = 1

2

n⊕
k=1

νk12, νk = coth(βk/2). (41)

In order to deal with states with nonzero first moments, it
is convenient to define the displaced bosonic operators χ̃ i =
DχiD† = χi − 〈χi〉. The displaced canonical operators R̃i

are defined likewise. With this, the CM reads

�ij = tr[ρR̃i ◦ R̃j ]. (42)

Symplectic transformations are linear in the creation and
annihilation operators and preserve the commutation relations

S†χiS = ui
jχ

j , (43a)

ui
i ′u

j

j ′�
i ′j ′ = �ij , (43b)
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where u is a matrix representation of the symplectic transfor-
mation S. The latter equation is often written as

u�uT = �, (44)

and we will use the fact that

uT � = �u−1. (45)

In analogy with (43a), the canonical operators transform
according to

S†RiS = Hi
ju

j

k [H †]kl R
l ≡ si

jR
j , (46)

where we have defined s = HuH †, fulfilling the same relations
(44) and (45). From (42) and (46), the transformation rule for
the CM under a symplectic transformation ρ → UρU † takes
the explicit form

�
U−→ s�sT , (47a)

�ij U−→ si
i ′s

j

j ′�
i ′j ′

, (47b)

and from Eqs. (39) and (47a) we have � = s�ths
T .

It is worth stressing at this point the doubly contravari-
ant character of the covariance matrix �. Although the
matrix equation (47a) suggests otherwise, it is clear from
Eq. (47b) that both indices transform in the same way. In
order to construct functions of the covariance matrices with
proper transformation rules, we find it suitable to define the
covariant-contravariant version by lowering one index with the
symplectic matrix [39]. Let us introduce the symplectic matrix
with lower indices �ij ≡ �ij , so that �ij�jk = −δi

k . Define
the 1-1 covariance tensor �̃i

j as

�̃ = �� or �̃i
j = �ik�kj . (48)

With this definition we see that, at variance with Eqs. (47a)
and (47b), under a symplectic transformation

�̃
U−→ s�̃s−1. (49)

Products of 1-1 tensors enjoy proper transformation rules:

[AB]ik = Ai
jB

j

k , (50)

s(AB)s−1 = (sAs−1)(sBs−1). (51)

Tensor products A ⊗ B are 2-2 tensors with indices

[A ⊗ B]ijkl = Ai
kB

j

l . (52)

Moreover powers of a k-k tensor transform in the same way
as T ,

[T n]i1...ik
j1...jk

= T
i1...ik
r ′

1...r
′
k
T

r ′
1...r

′
k

r ′′
1 ...r ′′

k
· · · T r

(n−1)
1 ...r

(n−1)
k

j1...jk
(53)

(s⊗kT (s−1)⊗k)n = s⊗kT n(s−1)⊗k. (54)

The identity k-k tensor is 1⊗k , with [1]ij = δi
j . Finally the

inverse of a tensor T is defined as

T −1 ≡
∑
m

(1⊗k − T )m (55)

Due to the antisymmetry of � it is important to be consistent
in the way that indices are lowered and raised. Indices are
lowered by contracting with the first index of �ij and raised

by contracting with the second index of �ij , so that �ij =
�̃i

k�
jk = �il�lk�

jk = �ilδ
j

l .
Finally, given a probe state ρ0, the action of the channel is

ρ(X) = S(X)ρ0, S(X) = expG(X), (56)

and the derivatives of ρ with respect to the channel parameters
Xµ can be neatly expressed as

∂µρ(X) = Dµρ(X), (57)

where Dµ are superoperators whose expressions are given in
Appendix B.

A. Symmetric logarithmic derivatives

From now on we consistently drop the dependency on X and
assume throughout that we are considering a particular point
S(X) ∈ C. The common structure of the D superoperators,

Dµρ = αµ,ij [χiρχj − (χjχi) ◦ ρ], (58)

comes in very handy for computing the SLDs in a general
manner. From Eqs. (5) and (57), these satisfy the equation,

Dµρ = �µ ◦ ρ. (59)

Using χjχi = χi ◦ χj − 1
2�ij we have

Dµρ = αµ,ij

[
χiρχj − (

χi ◦ χj − 1
2�ij

) ◦ ρ
]
. (60)

Combining this with Eq. (59) we get

αµ,ijχ
iρχj = [

�µ + αµ,ij

(
χi ◦ χj − 1

2�ij
)] ◦ ρ. (61)

This is a particular form of the Sylvester equation [48] Y =
Z ◦ ρ, which, for ρ > 0, has the formal solution

Z = 2
∫ ∞

0
e−vρY e−vρdv. (62)

Therefore,

�µ = αµ,ij

[
2
∫ ∞

0
e−vρχiρχje−vρdv − (

χi ◦ χj − 1
2�ij

)]
.

(63)

We show in Appendix C that∫ ∞

0
e−uρχiρχje−uρ du

= [H † ⊗ H †]iji ′j ′

(
{[f (�̃) ⊗ 1 + 1 ⊗ f (�̃)−1]−1}i ′j ′

kl

×
(

R̃k ◦ R̃l + i

2
�kl

)
+ {[1 + f (�̃)]−1}i ′i ′′R̃i ′′ 〈Rj ′ 〉

+ {[1 + f (�̃)−1]−1}j ′
j ′′ 〈Ri ′ 〉R̃j ′′ + 1

2
〈Ri ′ 〉〈Rj ′ 〉

)
, (64)

where �̃ = �� is the 1-1 covariance tensor of ρ and

f (x) = x − i/2

x + i/2
. (65)

Finally, defining

α̃µ,ij = αµ,i ′j ′ [H † ⊗ H †]i
′j ′

ij (66)
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allows one to express the SLD as

�µ = α̃µ,ij

(
[L(0)] ij

kl�
kl + [L(1)]ijk R̃k + [L(2)]ijklR̃

k ◦ R̃l
)
,

(67)

where

L(0) = i
{
[f (�̃) ⊗ 1 + 1 ⊗ f (−�̃)]−1 + 1

21 ⊗ 1
}
, (68a)

[L(1)]ijk = {2[1 + f (�̃)]−1 − 1}ik〈Rj 〉
+ {2[1 + f (�̃)−1]−1 − 1}jk〈Ri〉, (68b)

L(2) = 2
{
[f (�̃) ⊗ 1 + 1 ⊗ f (−�̃)]−1 − 1

21 ⊗ 1
}
. (68c)

Here we have used the fact that f (x)−1 = f (−x).
Notice that this expression overcomes the main difficulty

in evaluating the QFI for Gaussian channels of continuous
variable systems, namely, expressing the SLD in a manageable
form. In our case, the problem is reduced from working in
an infinite-dimensional Hilbert space to dealing with finite-
dimensional vector spaces, where the tensors L(0), L(1), and
L(2) are defined. More importantly, these tensors depend
exclusively on the covariance matrix and the first moments
of the quantum state output from the channel, which have a
simple relation to the channel parameters [53]. This will not
only provide a means for evaluating the channel metric J, but
it will also allow the evaluation of the performance of several
channel measurement schemes [37].

We conclude this subsection by commenting on possible
difficulties when computing SLDs for singular states. This
situation can arise when the CM of ρ in Williamson form
contains a vacuum mode. This is the case, for instance, when
probing a zero-temperature channel (N = 0) with a two-mode
squeezed vacuum. In general the SLD is not defined on the
kernel of ρ, that is, P�P is undetermined by Eq. (5), where P

is the projector on ker ρ. Let P[�] = � − P�P . By measur-
ing �ν on the state ρ(X + dX) = ρ(X) + ρ(X) ◦ �µdXµ it
is easy to see that tr[ρ(X + dX)�ν] = tr[ρ(X + dX)P[�ν]].
This is the freedom available in defining SLDs for singular
ρ’s. However, Eqs. (67) and (68) were derived from Eq. (59)
by means of expression (62) which assumes that the density
operator is nonsingular. Thus, these expressions can yield to
divergencies for P�µP . These are not observable divergencies
and can be regularized by introducing a small temperature
ε in the probe state ρ0, projecting � with P , and finally
taking the limit ε to zero. There may be, on the other hand,
observable divergencies. This situation often arises when one
explores the vicinity of the boundary of the manifold. The
classical Fisher information is well known to diverge in many
statistical models, the most prominent case being the binomial
distribution when p → 0 or 1, giving rise to Poissonian
statistics. Analogously, the Bures distance for mixed qubit
states is well known to diverge in the limit of pure states, giving
rise to interesting and counterintuitive effects in Bayesian qubit
estimation [54]. A similar effect in quantum statistics has been
reported in a particular Gaussian channel [X = (γ,0,0,0)],
when the parameter γ → 0 [55].

B. The quantum Fisher information matrix

The expression of the SLD, Eq. (67), allows for the
computation of the QFI, Eq. (6). The full derivation of the most

general QFI is given in Appendix E, Eq. (E13). We reproduce
here the resulting expression:

Jµν(X) = α̃µ,i ′j ′ α̃ν,k′l′
(
[L(1)]i

′j ′
i [L(1)]k

′l′
k �ik + [L(2)]i

′j ′
i ′′j ′′

× [L(2)]k
′l′

kl [D]i
′′j ′′

ij (�ik�jl + �il�jk)
)
. (69)

It should be noted that the tensors appearing in Eq. (69) depend
on �̃, the covariance tensor of the output state. In order to
finally evaluate the QFI one needs to express �̃ in terms of the
initial quantum state �0 and the channel parameters X. The
corresponding relation is well known in the literature [53,56]
but we repeat it here for completeness. Arranging the channel
parameters X in the asymptotic covariance matrix �ch,

�ch =
⊕

k

(
1
2 + Nk + ReMk ImMk

ImMk
1
2 + Nk + ReMk

)
, (70)

and defining the coupling matrix,

� =
⊕

k

e− γk
2 12, (71)

we have

� = �(�0 − �ch)� + �ch, (72)

where �0 is the CM of the initial state and � is the CM of the
state going out of the channel.

Equations (69), (70), (71), and (72) provide a systematic
way to compute the QFI for any channel S(X) and any
input state ρ0. Remarkably, this expression is exact and
analytical. However, despite the significant simplification of
the problem—namely, from an infinite dimensional operator
equation (59) to a finite-dimensional matrix expression,
Eq. (69)—explicit analytical expressions are too complex to
be of any use, except for very simple channel models.

V. CONCLUSION AND OUTLOOK

Summarizing, for any resource constraint φ(ρA) � φ� we
have defined a metric tensor on the manifold of Gaussian
channels. We have proven that the metric is stable under the
addition of ancillas and provided a method for computing
numerical approximations, by using convex optimization
methods. The resulting distance is an upper bound to the
attainable Bures distance between states resulting from the
action of the channel onto any given initial Gaussian state
fulfilling the constraints, and it allows one to establish a
systematic way to measure distances between channels in order
to quantify imperfections in quantum information implemen-
tations. Moreover, the metric tensor minimizes the volume
element assigned at any point of the set of Gaussian channels.
This density can be used as an analog of the Jeffrey’s (Bures)
prior distribution for points in the simplex (density matrices)
in Bayesian estimation methods. Our results are a step toward
the identification of a useful notion of distance among bosonic
channels, which are the basis mathematical framework of
quantum communication devices with continuous variables.

Additionally, our approach has provided several results
which are of relevance to the field of quantum estimation
theory. We have derived closed formulas for computing the
QFI of any estimation method that uses Gaussian states and
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dissipative Gaussian channels. Moreover, for each one of the
channel parameters we have obtained closed expressions for
the corresponding optimal observables associated with each
one of the parameters (symmetric logarithmic derivatives).
Moreover, we have proved that by enlarging sufficiently the
number of ancillary modes, the optimal probe states for
estimating Gaussian channels are always pure.

These findings should be of immediate use in sev-
eral practical situations. The most prominent of them is
entanglement-enhanced metrology of Gaussian channels. A
first relevant application of our results is the evaluation of
Gaussian protocols for parameter estimation in dissipative
Gaussian channels, such as decay rate, temperature, or degree
of squeezing in engineered baths [37]. The stability proof
in Sec. III C establishes the maximum number of ancillary
modes to be considered for any of these situations. Indeed,
such proof is very general and can be extended to several
metrology problems, limiting the number of ancillary modes
required for optimality and thus restricting the number of
setups that need to be explored when designing optimal
metrology protocols. In the spirit of the Choi-Jamiolkowski
theorem, our arguments show that estimation of single-mode
channels cannot be enhanced by multipartite entanglement
as compared to bipartite entanglement, at least within the
Gaussian framework.

Moreover, the approach taken here may be extended
to derive SLDs for other related problems, such as phase
estimation under decoherence and phase diffusion, which can
be expressed quite naturally in phase space and that would
otherwise be difficult to address due to the infinite dimensional
character of continuous variable systems.

Our work leaves open several questions and possible
extensions. Obviously, obtaining explicit analytic expressions
for the channel metric would be the ultimate achievement.
However, this seems to be out of reach unless some significant
advances are made. In particular we point out three relevant
missing points: (a) a clear criterion for the determination of
a set of optimal probe states for any given choice of φ; (b) a
general form of the QFI for all Gaussian channels, not only the
dissipative ones; and (c) an analytic expression for the metric in
the high resource limit (properly regularized). Concentrating
our attention on the regularization schemes, we can point out
some interesting questions: What classes of constraints φ will
always be saturated by the optimizing states? Considering a
related problem, preliminary numerical results [37] show that,
in the single-mode bosonic lossy channel, at zero -temperature,
with constraints of the form φ(ρ) = tr[a†aρ], an entangled
two-mode squeezed state of the probe and ancilla modes with
mean photon number 〈n〉 in the channel mode will perform
equally well to any other state with n average photons. If the
result of this preliminary analysis is confirmed, it is unlikely
to be a coincidence. Finding the reasons behind this surprising
match is an interesting problem worth deeper investigation.

Naturally, these are not the only open questions, and
in particular, extending our work to non-Gaussian channels
and/or non-Gaussian probes would be of utmost importance.
There is, in fact, nothing peculiar in our defining scheme
that relies crucially on the Gaussianity of the channels and/or
the probe states. The metric could thus be defined on more
general sets of channels and probe states. It is, however, the

restriction to Gaussian channels and states that allows us to
provide computational formulas and prove that our metric
satisfies the basic requirements listed in the Introduction,
especially the stability property. This does not mean that
non-Gaussian extensions will not fulfill the requirements.
Indeed, it would be an interesting result if a counterexample to
stability could be found in the large set of non-Gaussian states
and channels. It would mean that some estimation protocols
can be improved by considering multipartite setups, when only
one part (mode) undergoes the channel action. This would be
an effect exclusively of continuous variable systems which
cannot occur in finite dimensions.

Finally, a question remains unanswered regarding the way
in which channels are combined. Throughout the text we have
assumed that the channel is tested a large number, N, of times,
independently; that is, a given probe state is prepared, sent
through the channel and measured, and the process is repeated
N times. The number of trials is immediately regularized
and thus does not enter in the discussion. However, in the
quantum scenario, regularizing N leaves no room for chaining
channels together; so that, for instance, a state may be sent
twice through the channel before being measured or entangled
states may be used in the simultaneous testing of a single
channel and a doubly chained channel. It is evident that a
large number of degrees of freedom is not exploited in our
approach. However, our framework yields the most natural
bounds, which can be obtained in the iid (“independent and
identically distributed”) case, when no correlation is admitted
between different samples. A very relevant and interesting
open question is whether such sophisticated schemes can
enhance the precision of quantum estimation and quantum
metrology setups.
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APPENDIX A: CONVERGENCE OF THE
APPROXIMATION ALGORITHM

We show here that the approximation method given in
Sec. III D does converge to the true value of the metric
J. Throughout this appendix we make extensive use of the
Hausdorff distance dH (·,·) [57], which defines a distance
among subsets of a metric space W . In our case W is
the set of positive semidefinite matrices, equipped with the
operator norm distance d(x,y) = ‖x − y‖, where ‖x‖ is the
operator norm ‖x‖ = sup|�v|=1 |x�v|. Define the ε-ball centered
at a point x as the set of points within a distance ε of
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x, Bε(x) = {x ′|d(x,x ′) < ε}. Then, the ε-neighborhood of a
subset X is the union of all ε-balls of X, Bε(X) = ∪x∈XBε(x).
Then, the Hausdorff distance is defined as

dH (X,Y ) = inf{δ|X ⊂ Bδ(Y ) and Y ⊂ Bδ(X)}. (A1)

Let us first show some preliminary facts about the randomly
generated sets of constraints, Cn.

Theorem. Assuming that the set C� = C(S|φ�) of QFI
matrices associated with a given channel S [within the
corresponding probe state restrictions φ(ρ) � φ�] is bounded,
we have the following property: For any ε > 0 the probability
Pr(dH (Cn,C

�) � ε) decreases exponentially with n.
Proof: Since the set C� is bounded it can be covered by a

finite number k of ε/2-balls centered at points {yi ∈ C�}, i =
1, . . . ,k, thus C� ⊆ Bε/2({yi}). If

Bε/2({yi}) ⊂ Bε(Cn), (A2)

then C� ⊆ Bε/2({yi}) ⊂ Bε(Cn). Since also Cn ⊂ C� ⊂
Bε(C�) we have that Eq. (A2) implies dH (Cn,C

�) � ε.
We now compute an upper bound to the probability that

Eq. (A2) is true. To each random selection x ∈ Cn we assign
the point y ∈ {yi} which is closest to x. Since d(x,y) < ε/2,
then Bε/2(y) ⊆ Bε(x). Let ni be the number of points of Cn

assigned to ball Bε/2(yi). A sufficient condition for Eq. (A2) to
hold is ni �= 0∀i (all points in {y} have been assigned at least
one point x ∈ Cn). Thus,

ni �= 0 ∀i =⇒ dH (Cn,C
�) � ε. (A3)

Consequently,

Pr(dH (Cn,C
�) � ε) � Pr(ni �= 0 ∀ i). (A4)

Let pi be the probability that a random sample x is assigned
to point yi . The probability that after n samplings a number
n1, . . . ,nk of points has been assigned to each ball is given by
the multinomial distribution

Pr(n1, . . . ,nk) = n!

n1! · · · nk!
p

n1
1 · · · pnk

k .

We now bound the complementary probabilities

Pr(dH (Cn,C
�) > ε) � Pr(∃i s.t. ni = 0)

=
∑

n2,...,nk �=0

Pr(0,n2, . . . ,nk) + perm.

+
∑

n3,...,nk �=0

Pr(0,0, . . . ,nk) + perm.

+ · · · + Pr(0,0, . . . ,0,n) + perm.,

(A5)

where perm. represents all permutations among arguments of
the multinomial distribution and it is implicit that summation
is over all nk values such that

∑
k nk = n. We can now upper

bound Pr(∃i s.t. ni = 0) by completing the sums to include
indices equal to zero and by using the multinomial theorem:

Pr(∃i s.t. ni = 0) � (p2 + p3 + · · · pk)n + perm.

+ (p3 + · · · + pk)n + perm.

+ · · · + pn
k + perm.

= (1 − p1)n + perm.

+ (1 − p1 − p2)n + perm.

+ · · ·
+ (1 − p1 − p2 − · · · − pk−1)n + perm.

(A6)

To conclude we can further upper bound this quantity by
replacing each term (·)n by the maximum value (1 − mini pi)n

and counting the number of terms
∑k−1

l=1

(
k

l

) = 2k − 2,

Pr(∃i s.t. ni = 0) � (2k − 2)(1 − min
i

pi)
n. (A7)

Notice that this is exponentially decreasing with n. Thus,
we have that for any ε > 0 the probability Pr(dH (Cn,C

�) > ε)
decreases exponentially with n. This means that by picking
enough samples we have dH (Cn,C

�) � ε with arbitrarily high
probability. �

Let x ∈ X be a positive semidefinite matrix within a set X.
Define M(x) as the set of all upper bounds to x, and define
M(X) as the set of upper bounds to all elements in X, that is,
M(X) = {m|m � x ∀ x ∈ X}. We call M(X) the set of feasible
points to the optimization problem.

Lemma. Given two matrices x and y such that d(x,y) < δ,
it holds that x − δ1 < y < x + δ1.

Proof. Define � = y − x. Then ‖�‖ = d(x,y) < δ. More-
over −‖�‖1 � � � ‖�‖1, so that −δ1 < � < δ1. Thus,

x − δ1 < y < x + δ1. (A8)

�

Theorem. The map M : X �→ M(X) is continuous in the
Hausdorff distance. Namely, for any ε > 0, there exists a δ > 0
such that dH (X,Y ) < δ ⇒ dH (M(X),M(X)) < ε.

Proof. For any ε > 0, take δ < ε. We prove constructively
by showing that if dH (X,Y ) < δ it follows that M(X) ⊂
Bε(M(Y )) and M(Y ) ⊂ Bε(M(X)), which in turn implies that
dH (M(X),M(Y )) < ε.

We have to show that a ∈ Bε(M(Y )) ∀a ∈ M(X). Take any
element a ∈ M(X) and construct b = a + δ1. It must follow
that (i) b ∈ M(Y ) and (ii) d(a,b) < ε. (i) Since dH (X,Y ) < δ,
then for all y ∈ Y we have an x ∈ X such that d(x,y) < δ and,
by the lemma, x + δ1 > y. Thus, b = a + δ1 > x + δ1 > y

for all y ∈ Y . Thus b ∈ M(Y ). (ii) d(a,b) = δ < ε. This proves
that M(X) ⊂ Bε(M(Y )). The exact same reasoning with X

and Y interchanged shows the converse; thus dH (M(X),
M(Y )) < ε. �

The last two theorems combined show that, given any ε >

0, one can always generate a set of feasible points M(Cn)
which has Hausdorff distance from M(C�) smaller than ε with
arbitrarily high probability, that is, Pr(dH (M(Cn),M(C�)) <

ε) � 1 − k exp(−n). Define the function

f (X) = arg inf
x∈X

det x. (A9)

It only remains to prove that Jn = f (M(Cn)) approaches J as
M(Cn) approaches M(C�). Let us remark that, by construction,
M(C�) ⊂ M(Cn). As said in the text, we assume that the solu-
tion to the real problem J = f (M(C�)) is nondegenerate. This
means that det(J + �) > det J whenever J + � ∈ M(C�) and
‖�‖ �= 0.
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Theorem. Assuming that the miminum of {det y|y ∈ Y } is
nondegenerate, the map {f (Xn)} converges to f (Y ) in the
Hausdorff distance whenever {Xn|Xn ⊃ Y∀n} converges to
Y . Namely, for any ε > 0, there is a δ > 0 such that if Y ⊂ X

and dH (X,Y ) < δ then ‖f (X) − f (Y )‖ < ε.
Proof. Let x� = f (X) and y� = f (Y ). Consider an open

ball of radius d < ε/2 around y�, and let � be the smallest
gap between determinants of points in Y outside Bd (y�) and
det y�, that is,

� = inf
y /∈ Bd (y�)

y ∈ Y

det y − det y�. (A10)

By the nondegeneracy assumption, � > 0. Consider the
function

h(δ) = n(‖y�‖ + D + δ)n−1δ, (A11)

where D is the maximum distance between points in the
boundary of Y . Clearly h is monotonically increasing and
h(0) = 0. Let

δ < min
(
h−1(�),ε/2

)
. (A12)

By assumption X ⊂ Bδ(Y ) and Y ⊂ X. Let y ∈ Y be the
closest point to x�. It is easy to see that y must lie in the
boundary of Y , since if it did not there would be a ball Bτ (y) ⊂
Y and y ′ = y − τ‖x� − y‖1 ∈ Bτ (y) ⊂ Y would have ‖y ′ −
x�‖ = (1 − τ )‖y − x�‖, which contradicts the assumption that
y is the closest point to x� in Y .

We know that ‖x� − y‖ < δ. Let y = y� + �. By the
triangle inequality,

‖x� − y�‖ � ‖�‖ + δ. (A13)

Also, since Y ⊂ X we have det x� � det y�; thus

det y − det y� � det y − det x�. (A14)

Moreover (see [48]),

det y − det x∗ � n max(‖y‖,‖x�‖)n−1‖x� − y‖. (A15)

We can further simplify this by noticing that ‖x�‖ = ‖y +
(x� − y)‖ � ‖y‖ + ‖x� − y‖ � ‖y‖ + δ; thus max(‖y‖,
‖x�‖) � ‖y‖ + δ � ‖y�‖ + ‖�‖ + δ, so we have

det y − det x∗ � n(‖y�‖ + ‖�‖ + δ)n−1δ. (A16)

Notice that ‖�‖ = ‖y − y�‖ is the distance between two
points in the boundary of Y and thus ‖�‖ � D, so that

det y − det x∗ � h(δ). (A17)

On the other hand, let us show by contradiction that ‖�‖ <

d. Suppose y /∈ Bd (y�). By Eq. (A17), the monotonicity of h,
and the definition of δ, we have

det y − det x� � h(δ) < �, (A18)

which means that det x� > det y − �. But y /∈ Bd (y�) means
det y − det y� � �, which yields det x� > det y�. This con-
tradiction shows that ‖�‖ � d, which in turn shows that
‖�‖ < ε/2.

Finally, recovering Eq. (A13) we obtain

‖x� − y�‖ < ε. (A19)

�

Taking Jn = f (M(Cn)) and J = f (M(C�)) and applying
this theorem to f (M(Cn)) and f (M(C�)), where Cn ⊂ C� and
M(C�) ⊆ M(C) with

Pr(dH (M(Cn),M(C�)) > δ)
n→∞−→ 0 (A20)

will ensure that

Pr(‖Jn − J‖ > ε)
n→∞−→ 0 (A21)

Since the probability to generate a Cn within any given
Hausdorff distance to C� approaches 1 exponentially, we see
that any desired precision can be attained with arbitrarily high
certainty by sampling enough matrices from C�.

APPENDIX B: DERIVATIVES WITH RESPECT TO THE
CHANNEL PARAMETERS

In order to compute the derivatives of ρ(X) = S(X)ρ0, note
that

∂µρ(X) = ∂µS(X)ρ0. (B1)

Thus we only need to compute the derivative of the superop-
erator S(X). Using the relation [58]

∂

∂Xµ
expG(X) =

∫ 1

0
euG(X)∂µG(X)e(1−u)G(X)du, (B2)

the channel derivatives can be written as

∂µS(X) =
∫ 1

0
euG(xκ )∂µG(xκ )e−uG(xκ )duS(X), (B3)

where κ stands for the mode to which the parameter Xµ

corresponds. This expression allows for the handy relation

∂µS(X) = DµS(X), (B4)

with

Dµ =
∫ 1

0
euG(xκ )∂µG(xκ )e−uG(xκ )du. (B5)

Using the Hadamard lemma,

exp(uA)B exp(−uA) =
∞∑

m=0

um

m!
[A,B]m, (B6)

with [A,B]0 ≡ B and [A,B]m ≡ [A,[A,B]m−1], and the com-
mutation relations

[L[a†
k],L[ak′]] = 2δkk′(L[ak] + L[a†

k]), (B7a)

[D[a†
k],D[ak′]] = 0, (B7b)

[D[ak],L[ak′]] = 2δkk′D[ak], (B7c)

[L[a†
k],D[ak′]] = 2δkk′D[ak], (B7d)

[D[a†
k],L[ak′]] = 2δkk′D[a†

k], (B7e)

[L[a†
k],D[a†

k′]] = 2δkk′D[a†
k], (B7f)

one can show by induction that

[G(X),L[ak]]m = γ m
k L[ak] + 2γ m−1

k G(xk), (B8a)

[G(X),L[a†
k]]m = γ m

k L[a†
k] − 2γ m−1

k G(xk), (B8b)

[G(X),D[ak]]m = γ m
k D[ak], (B8c)

[G(X),D[a†
k]]m = γ m

k D[a†
k], (B8d)
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and the D superoperators become

Dγk
= 1

γk

G(xk), (B9a)

DNk
= (eγk − 1)

L[ak] + L[a†
k]

2
, (B9b)

DReMk
= (eγk − 1)

D[ak] + D[a†
k]

2
, (B9c)

DImMk
= (eγk − 1)

D[ak] − D[a†
k]

2i
. (B9d)

Finally, notice that the D superoperators allow for evaluating
derivatives of the state ρ in a simple form,

∂µρ = ∂µS(X)ρ0 = DµS(X)ρ0 = Dµρ, (B10)

where all have the structure

Dµρ = αµ,ij [χiρχj − (χjχi) ◦ ρ]. (B11)

APPRNDIX C: COMPUTING THE SLD

We proceed here to show how Eqs. (64), (67), and (68)
are derived. We remark that the relations obtained apply to all
Gaussian states in any number of modes. We use the notations
introduced in Sec. IV.

Lemma. [ρth,χ
i] = [exp M − 1]ij χ

jρth, where M =⊕
k diag(βk, − βk).
Proof. We begin by showing

ρthχ
iρ−1

th = [exp M]ijχ
j . (C1)

Define A = −⊕
k βka

†
kak and Bm = [A,Bm−1]; B0 = χi .

One can show by induction that Bm = [Mm]ijχ
j . Using the

Hadamard lemma,

ρthχ
iρ−1

th =
∑
m

1

m!
Bm = [exp M]ijχ

j , (C2)

thus, finally,

[ρth,χ
i] = (

ρthχ
iρ−1

th − χi
)
ρth

= [exp M − 1]ij χ
jρth. (C3)

�

Lemma. Let u be the symplectic representation of S as defined
in Eq. (43a) and s as defined in Eq. (46), where S is defined
from ρ in Eq. (39). Let � be the covariance matrix of ρ

[Eq. (42)] and E = exp M . Then

uEu−1 = H †f (�̃)H,

where

f (x) = x − i/2

x + i/2
.

Proof. Observe that

f (�̃) = �̃2 − 1/4 − i�̃

�̃2 + 1/4

= s
�̃2

th − 1/4 − i�̃th

�̃2
th + 1/4

s−1

= s
⊕

k

(
cosh βk i sinh βk

−i sinh βk cosh βk

)
s−1

= sHEH†s−1

= HuEu−1H †. (C4)

�

Lemma. Given ρ > 0 with CM �, define F = H †f (�̃)H .
The following relation holds:

e−vρχ̃ ievρ =
∑
m

(−v)m

m!
[(F − 1)m]ii ′ χ̃

i ′ρm.

Proof. Again, using the Hadamard lemma,

e−vρthχievρth =
∑
m

(−v)m

m!
Cm, (C5)

where C0 = χi and Cm = [ρth,Cm−1]. One can show by
induction that Cm = [(E − 1)m]ijχ

jρm
th . Now observe that

e−vρχ̃ ievρ = DSe−vρthS†χiSevρthS†D†

= si
i ′DSe−vρthχi ′evρthS†D†

=
∑
m

(−v)m

m!
si
i ′[(E − 1)m]i

′
i ′′DSχi ′′ρm

thS†D†

=
∑
m

(−v)m

m!
ui

i ′[(E − 1)m]i
′

i ′′[u
−1]i

′′
i ′′′ χ̃

i ′′′ρm

=
∑
m

(−v)m

m!
[(F − 1)m]ii ′ χ̃

i ′ρm. (C6)

�

Lemma. Given ρ > 0 with CM � and χ̃ i = DχiD†, the
following holds:∫ ∞

0
e−vρχ̃ ie−vρdv = [(1 + F )−1]ii ′ χ̃

i ′ρ−1

= [(1 + F−1)−1]ii ′ρ
−1χ̃ i ′ . (C7)

Proof.∫ ∞

0
e−vρχ̃ ie−vρdv

=
∑
m

[(F − 1)m]ii ′ χ̃
i ′ρm

∫ ∞

0
dv

(−v)m

m!
e−2vρ

=
∑
m

1

2

[(
1 − F

2

)m]i

i ′
χ̃ i ′ρ−1

= [(1 + F )−1]ii ′ χ̃
i ′ρ−1. (C8)

The other identity is proven analogously. �

Theorem. Given ρ > 0, the following relation holds:∫ ∞

0
e−vρχ̃ iρχ̃ j e−vρdv = [(F ⊗ 1 + 1 ⊗ F−1)−1]ijkl χ̃

kχ̃ l,

where the inverse of a tensor T
ij

kl is T −1 such that

T
ij

kl [T −1]kl
rs = δi

rδ
j
s .
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Proof. Making extensive use of the previous lemma,∫ ∞

0
e−vρχ̃ iρχ̃ j e−vρdv

=
∑
m

1

m!
[(F − 1)m]ikχ̃

k

×
∫ ∞

0
(−v)mρm+1e−vρχ̃ j e−vρdv

=
∑
mn

(−1)m

m!n!
[(F − 1)m]ik[(F − 1)n]jl χ̃

kρ1+m+n

×
∫ ∞

0
vm+ne−2vρρ−nχ̃ lρndu

=
∑
mn

(−1)m(m + n)!

21+m+nm!n!
[(F − 1)m]ik[(F − 1)n]jl

× χ̃ kρ−nχ̃ lρn

=
∑
mn

(−1)m

21+m+n

(
m + n

n

)
[(F − 1)m]ik[(F − 1)n]jl

× [F−n]ls χ̃
kχ̃ s

=
∑
mn

(−1)m

21+m+n

(
m + n

n

)
[(F − 1)m]ik[(1 − F−1)n]jl

× χ̃ kχ̃ l . (C9)

Next, make the change of variables m + n = q and replace∑∞
m,n=0 by

∑∞
q=0

∑q

n=0,∫ ∞

0
e−vρχ̃ iρχ̃ j e−vρdv

=
∞∑

q=0

(−1)q

2q+1

q∑
n=0

(
q

n

)
[(F − 1)q−n ⊗ (F−1 − 1)n]ijkl

= [(F ⊗ 1 + 1 ⊗ F−1)−1]ijkl . (C10)

This proves the theorem. �

Finally we are in position to obtain Eq. (64). Observe that∫ ∞

0
e−vρχiρχje−vρdv

=
∫ ∞

0
e−vρ(χ̃ + 〈χ〉)iρ(χ̃ + 〈χ〉)j e−vρdv. (C11)

Collecting the results and using

[H ⊗ H ]kl
k′l′ χ̃

k′
χ̃ l′ = R̃kR̃l

= R̃k ◦ R̃l + i

2
�kl, (C12)

[H ⊗ H ]kl
k′l′ χ̃

k′ 〈χl′ 〉 = R̃k〈Rl〉, (C13)

[H ⊗ H ]kl
k′l′ 〈χk′ 〉〈χl′ 〉 = 〈Rk〉〈Rl〉, (C14)

we finally obtain∫ ∞

0
e−uρχiρχje−uρdu

= [H † ⊗ H †]iji ′j ′

(
[(f (�̃) ⊗ 1 + 1 ⊗ f (�̃)−1)−1]i

′j ′
kl

×
(

R̃k ◦ R̃l + i

2
�kl

)
+ [(1 + f (�̃))−1]i

′
i ′′R̃

i ′′ 〈Rj ′ 〉

+ [(1 + f (�̃)−1)−1]j
′

j ′′ 〈Ri ′ 〉R̃j ′′ + 1

2
〈Ri ′ 〉〈Rj ′ 〉

)
,

(C15)

which is Eq. (64).

APPENDIX D: SOME SIMPLIFYING IDENTITIES

In this section we derive some relations that will be useful
for the simplification and evaluation of the QFI. Consider the
tensor [f (�̃) ⊗ 1 + 1 ⊗ f (−�̃)]−1. Notice that if [X,Y ] = 0
we can write

[f (X) + f (Y )]−1 = 1

2

(
XY − 1/4

XY + 1/4
+ i

2

(X + Y )

XY + 1/4

)
.

(D1)

Given that f (X) ⊗ 1 = f (X ⊗ 1), 1 ⊗ f (Y ) = f (1 ⊗ Y ),
and [�̃ ⊗ 1,1 ⊗ �̃] = 0, we can write

[f (�̃) ⊗ 1 + 1 ⊗ f (−�̃)]−1

= 1

2
D−1

(
�̃ ⊗ �̃ + 1

4
1 ⊗ 1 − i

2
(�̃ ⊗ 1 − 1 ⊗ �̃)

)
,

(D2)

where we have defined

D = �̃ ⊗ �̃ − 1
41 ⊗ 1; (D3)

thus

L(0) = iD−1

[
�̃ ⊗ �̃ − i

4
(�̃ ⊗ 1 − 1 ⊗ �̃)

]
, (D4)

L(2) = 1

2
D−1[1 ⊗ 1 − i(�̃ ⊗ 1 − 1 ⊗ �̃]. (D5)

At this point, the following relations are useful,

[�̃ ⊗ �̃]ijkl�
kl = [���(��)T ]ij

= [���]ij , (D6a)
[�̃ ⊗ 1 − 1 ⊗ �̃]ijkl�

kl = [��� − �(��)T ]ij

= −2�ij , (D6b)
[�̃ ⊗ �̃]ijkl�

kl = [���(��)T ]ij

= −[�����]ij , (D6c)
[�̃ ⊗ 1 − 1 ⊗ �̃]ijkl�

kl = [��� − �(��)T ]ij

= 2[���]ij . (D6d)

Thus finally we get

[L(0)]ijkl�
kl = i

[
D−1

(
��� + i

2
�

)]ij

, (D7)

[L(2)]ijkl�
kl = −i

[
D−1

(
��� + i

2
�

)]ij

; (D8)

thus

[L(0)]ijkl�
kl = −[L(2)]ijkl�

kl. (D9)

This identity, together with the fact that tr[ρR̃i] = 0, guar-
antees the consistency check tr[ρ�µ] = 0 [Eq. (7)]. It also
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turns out to be very handy in the simplification of the QFI in
Appendix E.

PPENDIX E: COMPUTING THE QFI

The QFI can be computed from Eqs. (6), (67), and (68).
Combining Eqs. (6) and (67) we obtain all possible cross terms
among L(0), L(1), and L(2). Classifying terms according to the
number of R̃ operators they contain, we find the following.
Of zero order only one term is obtained (E1a). Terms in first
order contain products of L(0) and L(1). These terms vanish
when the expectation is taken (〈R̃〉 = 0). Second-order terms
contain cross products between L(0) and L(2) and “second
powers” of L(1), lines (E1b), (E1c), and (E1d). Third-order
terms contain expressions of the form tr[ρR̃i(R̃j ◦ R̃k)], which
vanish identically (we argue this claim at the end of the
appendix). There is only one fourth-order term (E1e), which
comes from double contribution of L(2).

Jµν(X) = α̃µ,ij α̃ν,kl

(
[L(0)]iji ′j ′�

i ′j ′
[L(0)]kl

k′l′�
k′l′ (E1a)

+ [L(1)]iji ′ [L(1)]kl
k′ tr[ρR̃i ′ ◦ R̃k′

] (E1b)

+ [L(0)]iji ′j ′�
i ′j ′

[L(2)]kl
k′l′�

k′l′ (E1c)

+ [L(2)]iji ′j ′�
i ′j ′

[L(0)]kl
k′l′�

k′l′ (E1d)

+ [L(2)]iji ′j ′ [L(2)]kl
k′l′ tr[ρ(Ri ′ ◦ Rj ′

) ◦ (Rk′ ◦ Rl′)]
)
.

(E1e)

Using Eq. (D9) this is reduced to

Jµν(X) = α̃µ,ij α̃ν,kl

(
[L(1)]iji ′ [L(1)]kl

k′ �
i ′k′

+ [L(2)]iji ′j ′�
i ′j ′

[L(0)]kl
k′l′�

k′l′ + [L(2)]iji ′j ′ [L(2)]kl
k′l′

× tr[ρ(Ri ′ ◦ Rj ′
) ◦ (Rk′ ◦ Rl′)]

)
. (E2)

At this point a manageable expression for T ijkl = tr[ρ(Ri ◦
Rj ) ◦ (Rk ◦ Rl)] is an imperative. This tensor is symmetric
under index permutations (12), (34) and (13), (24), where
we have used standard cycle notation. These permutations
generate a subgroup S of the full symmetric group S4. It is
convenient to establish the relation between the tensor T ijkl

and the fully symmetric one

T
ijkl

W = 1

4!

∑
σ∈S4

T σ (ijkl), (E3)

which can be easily computed with standard phase space
methods [50],

T
ijkl

W = tr[ρW (RiRjRkRl)], (E4)

where W (X) is the Weyl-ordered product of X. With �

being the covariance matrix of ρ, T
ijkl

W is just the fourth
moment of the Gaussian distribution with covariance matrix �,

namely,

T
ijkl

W = �ij�kl + �ik�jl + �il�jk. (E5)

In order to exploit the preexisting symmetry of T we split
the sum over σ ∈ S4 over right cosets S4/S, of which we
pick {e,(23),(24)} as representatives, namely, S ∪ (23)S ∪
(24)S = S4. We can rewrite TW as

T
ijkl

W = 1

4!

∑
a∈{e,(23),(24)}

∑
σ∈S

T aσ (ijkl). (E6)

Since T is invariant under the action of S we have

T
ijkl

W = |S|
4!

∑
a∈{e,(23),(24)}

T a(ijkl)

= 1

3
(T ijkl + T ikjl + T ilkj ). (E7)

Therefore

T ijkl = T
ijkl

W + 1
3 (T ijkl − T ikjl) + 1

3 (T ijkl − T ilkj )

= T
ijkl

W + 2
3

(
T

ijkl

[2,3] + T
ijkl

[2,4]

)
, (E8)

where T
ijkl

[2,3] is the antisymmetrized tensor in the second and
third indices,

T
ijkl

[2,3] = 1
2 (T ijkl − T ikjl)

= 1
8 (�ij�kl − �ik�jl) − 1

4�il�jk, (E9)

and T
ijkl

[2,4] = 1
3 (T ijkl − T ilkj ) = 1

3 (T ijlk − T iljk) = T
ijlk

[2,3].
With this we obtain

T ijkl = T
ijkl

W − 1
4 (�ik�jl + �il�jk). (E10)

Thus, finally,

T ijkl = �ij�kl + �ik�jl + �il�jk − 1
4 (�ik�jl + �il�jk).

(E11)

It will be convenient to write this result as

T ijkl = �ij�kl + [D]iji ′j ′ (�i ′k�j ′l + �i ′l�j ′k), (E12)

where D is defined in Eq. (D3).
A similar approach shows that R̃i ◦ (R̃j ◦ R̃k) =

W (R̃iR̃j R̃k)+ terms containing only first powers of R̃. It is
easy to see that expectation values of all these terms vanish
identically.

Using the expression for T ijkl we get

Jµν(X) = α̃µ,i ′j ′ α̃ν,k′l′
(
[L(1)]i

′j ′
i [L(1)]k

′l′
k �ik + [L(2)]i

′j ′
i ′′j ′′

× [L(2)]k
′l′

kl [D]i
′′j ′′

ij (�ik�jl + �il�jk)
)
, (E13)

where, by virtue of Eq. (D9), the second term in Eq. (E2)
has been canceled against the first contrubition coming from
Eq. (E12).
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