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Influential groups for seeding and sustaining
nonlinear contagion in heterogeneous hypergraphs
Guillaume St-Onge 1,2✉, Iacopo Iacopini 3,4,5,6, Vito Latora 6,7,8, Alain Barrat 4,9, Giovanni Petri 10,11,

Antoine Allard 1,2,12 & Laurent Hébert-Dufresne 1,12,13✉

Contagion phenomena are often the results of multibody interactions—such as super-

spreading events or social reinforcement—describable as hypergraphs. We develop an

approximate master equation framework to study contagions on hypergraphs with a het-

erogeneous structure in terms of group size (hyperedge cardinality) and of node membership

(hyperdegree). By mapping multibody interactions to nonlinear infection rates, we demon-

strate the influence of large groups in two ways. First, we characterize the phase transition,

which can be continuous or discontinuous with a bistable regime. Our analytical expressions

for the critical and tricritical points highlight the influence of the first three moments of the

membership distribution. We also show that heterogeneous group sizes and nonlinear

contagion promote a mesoscopic localization regime where contagion is sustained by the

largest groups, thereby inhibiting bistability. Second, we formulate an optimal seeding pro-

blem for hypergraph contagion and compare two strategies: allocating seeds according to

node or group properties. We find that, when the contagion is sufficiently nonlinear, groups

are more effective seeds than individual hubs.
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Mathematical models of contagion processes enhance our
understanding of spreading dynamics and our pre-
dictive capabilities1. To account for the interconnected

nature of real-world systems, the past two decades of network
science and computational epidemiology research have focused
on modeling frameworks of increasing complexity1–3. From the
spreading of infectious diseases to rumors and innovations4–6, a
crucial aspect remains the interplay between the contact patterns
enabling transmission and the dynamics that unfolds on top. As a
representation for these contacts, graphs have been widely
exploited to better represent real-world patterns with increasing
levels of accuracy1,2,7.

While graphs remain a reference for the representation of
complex systems, they come with a fundamental limitation: they
can only encode pairwise interactions (represented by edges).
Groups are instead the foundational units of many biological,
ecological and social systems, whose processes can involve multi-
body interactions between any number of elements. To overcome
this limitation, higher-order network representations8 are becoming
more and more popular9–12 to describe the structure of interacting
systems13,14, their growth15–18, and dynamics in groups19–21.
Simplicial complexes and hypergraphs can encode relationships and
interactions between any number of elements. They have been used
to investigate the implications of higher-order interactions for
landmark dynamical processes like synchronization22–24,
diffusion25–27, and other social dynamics28–30. Battiston et al.11

provide a comprehensive review of early efforts in this direction.
Recently, a model of simplicial contagion has been proposed31.

This is a standard Susceptible-Infected-Susceptible (SIS) compart-
mental model in which a susceptible individual can become infected
through different transmission channels, beyond infectious edges.
In models of simple contagion, the transition from susceptible to
infected happens independently with each exposure to an infectious
edge1. In models of complex contagion instead32, the transition
requires multiple infectious edges or is reinforced by multiple
exposures, thus accounting for the empirically observed mechan-
isms of social influence33–36. In simplicial contagions, or more
generally hypergraph contagions, a susceptible individual can
become infected because of a multibody process, i.e., through
exposure to an infectious group31. In this way, the node is simul-
taneously exposed to the state of the entire group, whose effect can
be interpreted as a mechanism of social reinforcement33. In addi-
tion, the study of higher-order contagion models has applications as
well in biological sciences: it has indeed recently been shown that
the combination of multibody interactions, heterogeneous temporal
activity, and the concept of a minimal infective dose lead to non-
linear infection kernels in a model of biological contagions37.

The analytical approaches derived so far have confirmed the
rich phenomenology emerging from the contagion dynamics,
characterized by discontinuous phase transitions, bistability, and
critical mass effects31,38–42. Most approaches follow a hetero-
geneous mean-field (HMF) framework in which nodes are divi-
ded into hyperdegree classes. These descriptions are analytically
tractable, but do not consider the details of the structure and
ignore the dynamical correlations within groups, which are
especially important for hypergraph contagions since multibody
interactions naturally reinforce these correlations.

Other approaches like quenched mean-field theory43 and
microscopic Markov-chains44 can explicitly take the entire con-
tact patterns into account. Along this line, the microscopic epi-
demic clique equations capture dynamical correlations as well,
thereby highlighting the important impact these correlations have
on critical points45. The analytical tractability of these approaches
is, however, sacrificed in favor of a more precise description of the
structure. To fully understand the consequences of multibody
interactions in contagions on higher-order networks, we thus

need a framework that is both analytically tractable and captures
dynamical correlations.

In particular, we are interested in better understanding the
notion of influence in hypergraph contagions. In classic con-
tagion models on random networks, individual hubs are influ-
ential in the sense that they are the best seeds of contagions, but
they are also the most apt at sustaining seeded contagions46.
However, in hypergraph contagions, we must consider the
influence of both individuals and groups, because dynamical
correlations can allow groups to be more influential than sets of
uncorrelated hubs. Regimes of bistability and hysteresis also
imply a potential decoupling between the ability of nodes to seed
a contagion and their ability to sustain it. We thus wish to
determine (i) which set of groups can best maintain the stationary
state of a hypergraph contagion, and when this becomes a
dominant effect (ii) which set of groups and their configuration
offer optimal initial conditions for a contagion, as compared to
the classic notion of influential spreaders as individual hubs, and
(iii) whether or not these two notions of group influence are
aligned.

In this work, we use approximate master equations
(AMEs)20,21,47–50 to study hypergraph contagions, capturing
exactly the inner dynamics of groups. We consider a model where
the infection rate is a nonlinear function of the number of
infected nodes in groups. First, we provide a detailed character-
ization of the phase transition and derive analytical expressions
for the critical and tricritical points. We find that large values for
the third moment of the membership (hyperdegree) distribution
suppress the emergence of a discontinuous phase transition.
Furthermore, we show that heterogeneous group sizes and
superlinear contagion facilitate the onset of a mesoscopic locali-
zation regime49,50, where contagion is sustained by the largest
groups, and, incidentally, inhibit bistability. Second, we define
and solve an influence maximization problem based on two
strategies: allocating seeds according to either node individual
properties or according to group properties. When the contagion
is sufficiently nonlinear, the latter is more effective. Altogether,
our results highlight the role of influential groups to drive both
the stationary state of contagion on hypergraphs and its behavior
in the transient state.

Results
Hypergraph contagion model. In the original version of the
simplicial contagion model31, the spreading process takes place
on a simplicial complex [see Fig. 1] and obeys the following rule.
If all nodes in a d-simplex are infected except a susceptible one,
this remaining node gets infected at a rate βd, and also receives
contributions from the lower-dimensional simplices included in
the d-simplex with rates respectively equal to βd−1,…, β1. For
instance, in Fig. 1, two of the three nodes composing a 2-simplex
are infected, hence the susceptible node gets infected at rate
2β1+ β2, considering the contributions both from the two edges
and from the “triangle.”

A simplicial complex is a specific type of hypergraph, and thus
we can always map the former on the latter—note that the reverse
direction is not always possible. To do so, each facet—a simplex
that is not a face of any larger simplex—is represented by a single
hyperedge (group). In this paper, we relax the requirement of the
simplicial complex in favor of a more general hypergraph
structure. We make use of the bipartite representation of
hypergraphs8,11, in which the two sets of nodes of the bipartite
graph correspond respectively to the sets of nodes and groups of
the original hypergraph, as illustrated in Fig. 1.

The size n of a group corresponds to the number of nodes
belonging to this group, and it is therefore equivalent to the
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hyperedge cardinality. Note that a d-simplex consist of d+ 1
nodes and is therefore mapped onto a group of size n= d+ 1.
Similarly, the membership m of a node, the node hyperdegree,
corresponds to the number of groups to which it belongs,
regardless of their size.

The hypergraph contagion model is defined as follows: for a
group of size n, where i ≤ n members are infected, each of the
n− i susceptible nodes gets infected at rate β(n, i). For susceptible
nodes that belong to multiple groups, their total transition rate to
the infected state is simply the sum of the infection rates
associated with each group to which they belong—in other words,
the infection processes are independent. All infected nodes
transition back to the susceptible state at the same constant
recovery rate μ.

Notice that the hypergraph contagion model allows represent-
ing any type of simplicial contagion. For instance, in the
simplicial contagion model case of Fig. 1, we would use
β(3, 2)= 2β1+ β2. In fact, the description offered by the infection
rate function β(n, i) yields a variety of models more general than
the original simplicial contagion—in which a function β(i) would
be sufficient to encode contributions from facets of any
dimension.

In all our case studies, we will use an infection rate function of
the form

βðn; iÞ ¼ λiν : ð1Þ

However, many results we derive hold true for a general
infection rate function β(n, i). The parameter ν controls the
nonlinearity of the contagion. A linear contagion is recovered by
setting ν= 1, which is equivalent to a standard SIS model on
networks, where each group is a clique20. We intentionally chose
the infection rate function independent of n to focus on the
impact of a nonlinear dependence on i; it would be straightfor-
ward to generalize the results by considering β(n, i)↦Λ(n)iν.

The infection rate function in Eq. (1) is the simplest nonlinear
generalization of standard epidemiological models, where
β(n, i)∝ i. Moreover, we can motivate the choice of exponents
ν ≠ 1 in the context of social contagions, by comparing our
approach to the original formulation of the simplicial contagion
model. A value of β2 > 0 in Fig. 1 represents social
reinforcement31, and to correctly map the infection rate for a

triangle, we need to use an exponent ν > 1 in our model. Similarly,
a value β2 < 0 represents social inhibition, and this case can be
obtained with an exponent ν < 1.

Another motivation for the infection rate function at Eq. (1) is
a recent study that shows this general form emerges in the
occurrence of heterogeneous temporal patterns37. More specifi-
cally, if you consider that the participation time of nodes—
representing individuals—to higher-order interactions is distrib-
uted according to a power law and that individuals become
infected according to a threshold mechanism based on the dose
received in the interaction, then the probability for a node to get
infected in a group is∝iν, where ν is related to the temporal
heterogeneity. In the continuous time limit, one recovers the
infection rate function defined at Eq. (1).

The infection mechanism is motivated in the context of
biological contagions37, where the infective dose received could
represent viral particles for instance, and the threshold would
correspond to the minimal infective dose to develop a disease.
While such types of complex contagions are rarely used in the
context of biological contagions, they could help explain certain
observed phenomena, such as super-exponential spread for
certain diseases51. Moreover, threshold models are very common
in social contagions33,52–54, thus Eq. (1) could be interpreted as
an effective mechanism of social spread accounting for hetero-
geneous temporal patterns.

Group-based AMEs. To describe hypergraph contagions, we make
use of group-based AMEs20,21,49,50. This means that we do not
rely on specific hypergraph realizations. Instead, we assume that
the structure is drawn from a random hypergraph ensemble
described by the distributions pn, for the size n of a group, and gm,
for the membership m of a node. Each of the m membership
stubs of a node is assigned uniformly at random to a group
available spot. Therefore, the membership m of a node and the
sizes of the groups to which it belongs are uncorrelated.

To track the evolution of a contagion process on this ensemble
of hypergraphs, we define two sets of quantities: sm(t), represent-
ing the fraction of nodes with membership m that are susceptible
at time t and fn,i(t), the fraction of groups of size n having i
infected members at time t. The last quantity can also be
interpreted as a conditional probability (of observing i infected
nodes in a group of size n) satisfying the normalization condition
∑ifn,i= 1.

We further define two mean-field quantities. First, let us take a
random susceptible node. The mean-field infection rate resulting
from a random group to which it belongs is defined as

rðtÞ ¼ ∑n;iβðn; iÞðn� iÞf n;ipn
∑n;iðn� iÞf n;ipn

: ð2Þ

Indeed, the joint distribution for the size n and the number of
infected nodes i in this group is proportional to (n− i)fn,ipn, and
we just average β(n, i) over this distribution.

Second, let us randomly choose a susceptible node inside a
group. The mean-field infection rate caused by all the external
groups to which the susceptible node belongs (excluding the one
from which we picked the node) can be written as

ρðtÞ ¼ rðtÞ∑mmðm� 1Þsmgm
∑mmsmgm

: ð3Þ

To obtain ρ(t), we assume that infections coming from
different groups are independent processes. We multiply r(t)
with the mean excess membership of a susceptible node, i.e., if we
pick a susceptible node in a group, it is the expected number of
other groups to which it belongs. Since the membership
distribution of a susceptible node picked in a group is

Fig. 1 Mapping of the simplicial contagion model to a hypergraph
contagion. We use a bipartite representation, where nodes (white circles)
belong to groups (black circles). A facet of dimension n− 1 is mapped onto
a group of size n. In the simplicial contagion model, contributions from
higher-order interactions are taken into account by additional transmission
rates (e.g., β2 for the 2-simplex) when all but one node of the simplex are
infected31. With our hypergraph representation, infections within a group
are simply modeled by a general infection function β(n, i) that depends on
both the size n of the group and the number i of infected nodes in the group
(with i≤ n).
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proportional to msm(t)gm, we simply average m− 1, its excess
membership, over this distribution.

Using the definitions in Eqs. (2) and (3), we can write the
following system of AMEs

dsm
dt

¼ μð1� smÞ �mrsm ; ð4aÞ

df n;i
dt

¼ μðiþ 1Þf n;iþ1 � μif n;i

� ðn� iÞ βðn; iÞ þ ρ
� �

f n;i

þ ðn� iþ 1Þ βðn; i� 1Þ þ ρ
� �

f n;i�1 :

ð4bÞ

This system is composed of Oðn2max þmmaxÞ equations. It is
approximate in the sense that the evolution of the fractions of
infected nodes of membership m, sm, are treated in a mean-field
fashion (still considering dynamic correlations between pairs
node-group), while the evolution equations of the fn,i are treated
as master equations. In the right-hand side of Eq. (4b), the first
two terms are due to the recovery process, and the last two to the
infection. The infection rate due to infected nodes inside the
group is exact, while the infection rates associated with external
groups (the terms making use of ρ) are treated in an approximate
way. Without loss of generality (up to a change of time scale) we
set μ≡ 1 for the remainder of the document.

From Eqs. (4a)-(4b), we can calculate the global prevalence

IðtÞ ¼ ∑
m
½1� smðtÞ�gm ; ð5Þ

and the group prevalence

InðtÞ ¼ ∑
i

i
n
f n;iðtÞ ; ð6Þ

which correspond to the average fraction of infected nodes in the
whole system and within groups of size n respectively.

In the stationary state, we obtain the following self-consistent
relations:

s�m ¼ 1
1þmr�

; ð7aÞ

ðiþ 1Þf �n;iþ1 ¼ iþ ðn� iÞ βðn; iÞ þ ρ�
� �� �

f �n;i
� ðn� iþ 1Þ βðn; i� 1Þ þ ρ�

� �
f �n;i�1 :

ð7bÞ

The latter equation can be simplified by noting that f �n;i must
respect detailed balance in the stationary state, i.e.,

ðiþ 1Þf �n;iþ1 ¼ ðn� iÞ βðn; iÞ þ ρ�
� �

f �n;i ;

expressing that the probability to decrease the number of
infectious nodes in a group of size n from i+ 1 to i by a
recovery process is equal to the probability of the opposite change
(from i to i+ 1 infectious nodes) obtained through a contagion
event. We thus finally obtain

f �n;i ¼ f �n;0
n!

ðn� iÞ!i!
Yi�1

j¼0

½βðn; jÞ þ ρ�� 8 i 2 f1; ¼ ; ng ; ð8Þ

where fn,0= 1−∑i>0fn,i.

Comparison with simulations. We provide a comparison of our
approach with Monte Carlo simulations. To do this, we consider
empirical higher-order structures constructed from real-world
data and their randomized counterparts. Details on the simula-
tions and the data collection and aggregation are provided in the
subsection “Contagion on real-world hypergraphs” in “Methods”.

The motivation for this a priori validation is threefold: first, it
allows us to illustrate the validity and accuracy of our analytical
framework when our assumptions are met—namely when the

structure is drawn from an ensemble of uncorrelated hypergraphs
with fixed gm and pn. Second, because of the excellent agreement
with simulations for random hypergraphs, we omit further
comparison with Monte Carlo simulations for the many results
we present in the following sections. Finally, it showcases the
possible sources of discrepancies—and how our results could vary
—when considering real datasets.

In Fig. 2, we show the phase diagram, i.e., the fraction I* of
infectious nodes in the stationary state, of contagion dynamics on
hypergraphs that encode higher-order social (face-to-face) interac-
tions between individuals from a primary school in Lyon. Both the
membership and group size distributions are homogeneous for this
dataset. We considered linear contagion (ν= 1), equivalent to the
standard SIS model, and superlinear contagion (ν= 4). In both
cases, our analytical formalism (continuous lines) agrees quite well
with the Monte Carlo simulations (symbols) on the original
(empirical) hypergraph [Fig. 2a]. The main source of errors for
the observed discrepancy can be attributed to structural correlations,
which do not appear to affect the threshold values but reduce the
stationary prevalence. Indeed, in Fig. 2b, the agreement improves by
randomizing the hypergraph while preserving the memberships and
the group sizes. The remaining discrepancies are due to the fact that
simulations are affected by finite-size effects, while our formalism
assumes an infinite size system: the agreement becomes almost
perfect in Fig. 2c by additionally increasing the size of the
hypergraph by a factor of 10.

Let us remark that the error is more important for ν= 4 on the
original hypergraph [Fig. 2a], which suggests that structural
correlations have a greater effect on nonlinear contagions. In
Supplementary Note 1, we show how to generalize our framework
to account for structural correlations.

We also considered a completely different dataset, which
represents coauthorship relations in computer science publica-
tions, obtained from major journals and proceedings in the field.
The resulting hypergraph is considerably larger than the previous
one, and it also presents a very different structure. The results are
shown in Fig. 3, where we plot the same phase diagram curves as
in Fig. 2, using a superlinear contagion (ν= 2). In this case,
however, the membership distribution is heterogeneous [Fig. 3a],
approximately of the form gm � m�γm with γm ≈ 2.3, while the
group size distribution is more homogeneous [inset of Fig. 3a],
but still extends to rather large values with nmax ¼ 25. By
comparing the results for the original hypergraph [Fig. 3b]
against those for a randomized ensemble [Fig. 3c], we see that
structural correlations account for the major part of the
discrepancies between simulations and theory, affecting both
the invasion threshold and the stationary prevalence. However,
Fig. 3c shows that structural correlations are not the only source
of errors at high prevalence.

Let us recall that our formalism correctly captures the dynamical
correlations within a group through a master equation description
[Eq. (4b)] of the possible states, but it does not capture the
dynamical correlations around nodes, since we use a HMF
description [Eq. (4a)]. These correlations become especially
important in the presence of hubs with a large membership, which
is the case for the hypergraph considered in Fig. 3. In fact, when we
use the same group size distribution as in Fig. 3, but with a more
homogeneous membership distribution, the discrepancy at high
prevalence disappears (see Supplementary Note 2).

Phase transition. In this section, we unveil the important role of
influential groups in the phase transition of hypergraph contagions.
We first derive a general expression for critical points, marking the
limit of the domain of validity of a stationary solution. Secondly, we
obtain an expression for tricritical points, indicating when the phase
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transition switches from continuous to discontinuous, and a bistable
regime appears. These results are valid for any infection rate func-
tion such that β(n, i) > 0 for all i > 0 (see Supplementary Note 3 for a
consideration of threshold models).

We then concentrate our study on the infection rate function
β(n, i)= λiν. This allows us to define important threshold values,

the invasion threshold λc above which the disease-free solution
I*= 0 is unstable, and the bistability threshold νc, the smallest
nonlinear exponent allowing for a discontinuous phase transition.
In particular, we will show how heterogeneous membership and
group size distributions alter these thresholds, especially in the
presence of a mesoscopic localization driven by influential groups.

Fig. 2 Phase transition on a hypergraph constructed from high-resolution face-to-face contact data. See “Contagion on real-world hypergraphs" in
“Methods.” The hypergraph contains 242 nodes and 1188 groups. Both the membership and the group size distributions are homogeneous, with
〈m〉≈ 11.79, 〈n〉≈ 2.40, mmax ¼ 32, and nmax ¼ 5. We compare the results of Monte Carlo simulations (symbols) with the predictions of our approach
(solid and dashed lines for stable and unstable solutions, respectively) for the fraction I* of infectious nodes in the stationary state. Note that in the “Phase
transition" subsection in the main text, we omit the asterisk for stationary quantities to simplify the notation. The infection rate function is β(n, i)= λiν,
where ν controls the nonlinearity of the contagion. We rescale λ with the invasion threshold λc, which is computed using Eq. (15). The symbols represent
the average infected fraction measured over long runs and averaged over randomized hypergraphs when this applies. The error bars (sometimes too small
to be seen) correspond to one standard deviation. The green circles are obtained with the quasistationary-state method, starting with a large fraction of
infected nodes (I= 0.8) to sample the upper branch of the hysteresis loop when the phase transition is discontinuous. We use a the original hypergraph,
b 10 uniformly randomized versions of the original hypergraph, or c 10 uniformly randomized versions of the original hypergraph with its size expanded by a
factor of 10, with either linear (ν= 1) or superlinear contagion (ν= 4). For superlinear contagion in c, the blue triangles are obtained by ordinary
simulations, starting with a small fraction of infected nodes (I= 0.02) to sample the lower branch of the hysteresis loop. We only do it for the expanded
hypergraphs because finite-size effects make unreliable the estimation of the lower branch for small hypergraphs.

Fig. 3 Phase transition on a hypergraph constructed from coauthorship data. See “Contagion on real-world hypergraphs" in “Methods.” The hypergraph
has been obtained by using a breadth-first search to extract a subhypergraph of 57,501 nodes and 55,204 groups; the original data contained more than
106 nodes and groups. a The membership distribution is heterogeneous, approximately of the form gm � m�γm with 〈m〉≈ 3.75 and mmax ¼ 903, while the
group size distribution (inset) is more homogeneous, with 〈n〉≈ 3.90 and nmax ¼ 25. b, c We compare the results of Monte Carlo simulations (circle
markers) with the predictions of our approach (solid lines). The infection rate function is β(n, i)= λiν. We rescale λ with the invasion threshold λc, which is
computed using Eq. (15). The infected fraction I* has been obtained as averages over time with long runs (and averaging over randomized hypergraphs
when this applies). The error bars (too small to be seen) correspond to one standard deviation. We used ordinary simulations, starting with I= 0.8. b We
use the original hypergraph. c We use 10 uniformly randomized versions of the original hypergraph.
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In the following, we assume that the system has reached the
stationary state and we drop the asterisk to simplify the notation
throughout this section.

Critical points and the invasion threshold. Equations (7a) and (8)
imply that each sm and fn,i can be written in terms of r and ρ. In
turn, r and ρ can be written in terms of sm and fn,i through Eqs.
(2) and (3), which means the stationary solutions are determined
by a set of self-consistent equations.

Satisfying all self-consistent equations means we can reexpress
all quantities (sm, fn,i, ρ, r) as functions of a single mean-field
quantity, which we choose to be r. sm(r) is given by Eq. (7a), and
ρ(r) is given by Eq. (3), which is rewritten as

ρðrÞ ¼ r
∑mmðm� 1ÞsmðrÞgm

∑mmsmðrÞgm
: ð9Þ

fn,i is more simply written as a composite function, fn,i[ρ(r)],
given by Eq. (8). Finally, r itself must satisfy Eq. (2), which we can
write as r ¼ M½ρðrÞ� where

MðρÞ ¼ ∑n;iβðn; iÞðn� iÞf n;iðρÞpn
∑n;iðn� iÞf n;iðρÞpn

: ð10Þ

This relation is used to solve numerically for the fixed points
and evaluate their stability (see Supplementary Note 4).

In Fig. 4, the stationary solutions correspond to the intersec-
tions of M½ρðrÞ� (solid lines) and r (dashed line). We see that
r= 0 is always a solution, while the solution r > 0 only exists for

certain values of the parameter λ. This indicates the presence of a
critical point.

Critical points mark the limit of the domain of validity of a
solution to the equation r ¼ M½ρðrÞ�. They arise when r is
tangent to M½ρðrÞ�, which implies

dM
dr

¼ dM
dρ

dρ
dr

¼ 1 ; ð11Þ

as can be seen in Fig. 4a, where M½ρðrÞ� is tangent to r at the
point r= 0 for some value λ= λc.

Note that, for an infection rate function of two parameters, like
β(n, i)= λiν, we have critical points when one of the parameters
(and the structure) is kept fixed, but in general we have critical
lines when both parameters can vary. For instance, in Fig. 4b, r is
tangent to M½ρðrÞ� at r= 0 for different values of ν. Hence, there
exists a critical line λ= ϕ(ν) where ∂rMjr¼0 ¼ 1.

When the tangent point r > 0, Eq. (11) needs to be solved
numerically. However, when the solution r→ 0, we are able to
obtain an analytical expression. In this limit, we expect to have
sm→ 1, ρ→ 0 and fn,i→ δi,0 ∀ n, i.e., all nodes are susceptible.
Therefore, from Eq. (9) we have

dρ
dr

����
r!0

¼ mðm� 1Þ� �
mh i ; ð12Þ

where h� � �i stands for the expectation value with respect either to
gm or pn. From Eq. (10) (and using the fact that β(n, 0)≡ 0) we
also obtain

dM
dρ

����
ρ!0

¼ 1
hni∑n;i βðn; iÞðn� iÞpn

df n;i
dρ

����
ρ!0|fflfflfflfflffl{zfflfflfflfflffl}

hn;i

:
ð13Þ

To evaluate hn,i, we apply the derivative d/dρ to Eq. (8). We
obtain hn,1= n and

hn;i ¼
n!
Qi�1

j¼1 βðn; jÞ
ðn� iÞ! i! 8 i 2 f2; ¼ ; ng ; ð14Þ

Also, ∑ihn,i≡ 0 as ∑ifn,i= 1, hence

hn;0 ¼ �∑
i>0

hn;i :

Combining Eqs. (12)–(14) with Eq. (11), we obtain the
following implicit expression for critical points (or lines) in the
limit r→ 0

hmðm� 1Þi
hmihni ∑

i>0

n!
ðn� i� 1Þ! i!

Yi
j¼1

βðn; jÞ
* +

¼ 1 : ð15Þ

For the infection rate function β(n, i)= λiν, Eq. (15) allows us
to define the invasion threshold λc, i.e., the critical value of λ
marking the limit of the validity for a solution r→ 0. This
solution is not always stable, but we always have that the trivial
solution r= 0, corresponding to I= 0, is unstable for all λ > λc.
This is illustrated in Fig. 5a, b for regular hypergraph structures
with fixed membership and group size. The invasion threshold
depends on both the structure (gm, pn) and the nonlinear
exponent ν. The resulting phase diagram in the (λ, ν) plane is
shown in Fig. 5c. The invasion threshold spans the critical line
(solid line) λ= λc in the phase diagram.

The dashed critical line λ= λp is associated with the limit of
validity of a solution where M½ρðrÞ� is tangent to r for some
r > 0—it is thus solved numerically. We call λp the persistence
threshold as it is the smallest value of λ such that a nontrivial
solution is locally stable. For continuous phase transitions,
λc= λp, but for discontinuous phase transitions, λp < λc.

Fig. 4 Critical behavior of the function M½ρðrÞ�. Each intersection with the
dashed line represents a stationary solution of Eqs. (7a)-(7b). Results refer to
the infection rate function β(n, i)= λiν and a hypergraph with
gm= (δm,2+ δm,3)/2 and pn= (δn,4+ δn,5)/2. a We fix ν= 1 and vary λ. For
λ > λc, a nontrivial solution emerges. b We fix λ= λc and vary ν. Note that the
slope of all solid lines is 1 at the origin. A nonlinear exponent ν > νc is associated
with a discontinuous phase transition, since ∂2r M> 0 in this case.
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Tricritical points and the bistability threshold. Depending on the
structure and the form of β(n, i), we can have a continuous or a
discontinuous phase transition, as can be seen in Fig. 5. When the
phase transition is continuous, we have possibly two solutions for
the stationary fraction of infected nodes, I1= 0 and I2 > 0. When
I2 exists (for instance when λ > λc), I1 is unstable.

When the phase transition is discontinuous, we have typically
three solutions, I1= 0 and 0 < I2 < I3. In the bistable regime [for
instance, when λ∈ (λp, λc)], all three solutions coexist, I2 is
unstable, and I1 and I3 are locally stable. In the endemic regime
[for instance, when λ ≥ λc], only I1 and I3 exist, and only I3 is
locally stable.

We are interested in knowing when the phase transition
changes from continuous to discontinuous. In Fig. 5c, the bistable
regime starts at a tricritical point (star marker), where two critical
lines meet. For the infection rate function β(n, i)= λiν and a fixed
hypergraph structure, the tricritical point happens at (λ, ν)= (λc,
νc), where νc is what we call the bistability threshold, since a
bistable regime only exists for ν > νc.

To get some insights on the properties of tricritical points, we
show in Fig. 4b the function M½ρðrÞ� at λ= λc and for values of ν
below, at, and above the bistability threshold. For ν < νc, we have
∂2rMjr!0 < 0 and I3 does not exist. For ν > νc, we have
∂2rMjr!0 > 0 and there exists a solution I3 > 0. At the tricritical
point, I3= I2→ 0, hence the nontrivial solution is degenerate,
which is possible only if

d2M
dr2

����
r!0

¼ dM
dρ

d2ρ
dr2

þ dρ
dr


 �2 d2M
dρ2

" #�����
r!0

¼ 0 :

Since a tricritical point is also a critical point, from Eq. (11)
dM=dρ ¼ ðdρ=drÞ�1, so the condition can be rewritten as

d2ρ
dr2

þ dρ
dr


 �3 d2M
dρ2

" #�����
r!0

¼ 0 :

The derivatives on ρ with respect to r at a critical point where
r→ 0 can be easily evaluated, and the condition now becomes

2
m2
� �2
hmi2 � m3

� �
hmi

 !
þ mðm� 1Þ� �

hmi


 �3
d2M
dρ2

����
ρ!0

¼ 0 : ð16Þ

To evaluate the last term of Eq. (16), let us rewrite

MðρÞ ¼
∑
n;i
βðn; iÞðn� iÞf n;iðρÞpn
∑
n;i
ðn� iÞf n;iðρÞpn

� uðρÞ
vðρÞ :

In the limit ρ→ 0, fn,i→ δi,0, which implies u(ρ)→ 0 and
vðρÞ ! hni, therefore

d2M
dρ2

����
ρ!0

¼ 1
hni

d2u
dρ2

����
ρ!0

� 2

hni2
du
dρ

dv
dρ

����
ρ!0

: ð17Þ

First-order derivatives can be evaluated using

du
dρ

����
ρ!0

¼ ∑
n;i
βðn; iÞðn� iÞpnhn;i ; ð18aÞ

dv
dρ

����
ρ!0

¼ ∑
n;i
ðn� iÞpnhn;i : ð18bÞ

For the second-order derivative, let us define ln,i≡ d2fn,i/
dρ2∣ρ→0, so that we can write

d2u
dρ2

����
r!0

¼ ∑
n;i
βðn; iÞðn� iÞpnln;i : ð19Þ

Finally, we can apply the second-order derivative to Eq. (7b) to
obtain the recurrence relation

ðiþ 1Þln;iþ1 ¼ 2 ðn� iÞhn;i � ðn� iþ 1Þhn;i�1

h i
;

þ iþ ðn� iÞβðn; iÞ� �
ln;i ;

� ðn� iþ 1Þβðn; i� 1Þln;i�1 :

ð20Þ

Again, ln,0=−∑i>0ln,i by definition.
Even though it is possible to express the ln,i in an explicit form,

the expression does not give us more intuition, and it is simpler to
calculate the ln,i using the recurrence equation just given. After
rewriting d2M=dρ2jρ!0 � F½pn; βðn; iÞ�, tricritical points are
obtained by solving the equation

m2
� �2
hmi2 � m3

� �
hmi þ mðm� 1Þ� �3

2hmi3 F½pn; βðn; iÞ� ¼ 0 : ð21Þ

Tricritical points result from an intricate relation between the
structure (gm, pn) and the infection rate β(n, i). Figure 5 shows
that either changing the structure [Fig. 5a] or the shape of the
infection rate function [Fig. 5b, c] can lead to a change of
behavior, from a continuous phase transition to a discontinuous
one with a bistable regime.

Fig. 5 Phase transition in regular hypergraphs. The membership and group size distributions are of the form ðgm; pnÞ ¼ ðδm;m0
; δn;n0 Þ. The infection

rate function is β(n, i)= λiν. Solid and dashed lines in a, b represent stable and unstable solutions, respectively, for the stationary fraction of infected
nodes. a ν= 1.8, but different structures were used, with a node always having the same number of different neighbors. From bottom to top, we have
(gm, pn)= (δm,6, δn,3), (δm,4, δn,4), and (δm,3, δn,5). Note that for the middle curve (δm,4, δn,4), νc≈ 1.81. b The hypergraph structure is fixed with gm= δm,3 and
pn= δn,4. Values of ν 2 1:5; 1:7; νc; 2:1; 2:3

� �
(bottom to top curves) were used, with νc≈ 1.91. c Phase diagram for the same hypergraph as in b. The

dashed critical line (λ= λp) and the solid critical line (λ= λc) coalesce at the tricritical point (λc, νc) indicated by the star marker.
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The first hypothesis we can make from these simple examples
is that more nonlinear infection rates (larger ν) and larger groups
promote bistability. However, we will see that this intuition does
not hold in general for heterogeneous structures due to the onset
of mesoscopic localization.

Heterogeneous memberships. In this section, we investigate the
effects of a heterogeneous membership distribution gm while keeping
pn ¼ δn;n0 homogeneous to disentangle the impact of the different
types of heterogeneity. A first remark we can make about the inva-
sion threshold [Eq. (15)] is that it is coherent with heterogeneous
pair-approximation frameworks55 on random networks when only
dyadic interactions are considered, i.e., when pn= δn,2. In this case,
we can set ν= 1 without loss of generality, thus recovering the
standard SIS model. The associated threshold is

λSISc ¼ hmi
hmðm� 1Þi ;

where gm can now be interpreted as the standard degree distribution
of graphs. This threshold, although quite accurate for most structures,
does not capture the hub reinfection mechanism56, and thus could be
inaccurate for graphs with hubs of a very large degree.

More generally, for group interactions (pn ≠ δn,2) we can see
that a larger average excess membership 〈m(m− 1)〉/〈m〉 always
leads to a smaller invasion threshold λc, akin to the standard SIS
model, but the relationship is now nonlinear. To see this, let us
rewrite Eq. (15) as

1
hni ∑

i>0

n!
ðn� i� 1Þ! i!

Yi
j¼1

βðn; jÞ
* +

¼ hmi
mðm� 1Þ� � : ð22Þ

Since β(n, i) is a monotonically increasing function of λ for all
n, i, then the left-hand side of Eq. (22) is a monotonically
increasing function (of λ) as well. Consequently, if the right-hand
side decreases, λc must decrease as well.

Assessing the impact of membership heterogeneity on the
bistability threshold νc is more complicated. In fact, Eq. (21)
explicitly depends on the first three moments of gm, but it also
depends on the first two moments implicitly through λc, at which
F must be evaluated.

In order to build our intuition, let us assume that we are able to
keep fixed the first two moments 〈m〉 and 〈m2〉 while increasing
〈m3〉. This means that λc would not change, hence the only
dependence on gm would be explicit in Eq. (21). Since the term
depending on 〈m3〉 is negative, increasing the third moment
implies that F must increase if we want to balance Eq. (21). But
since d2M=dr2jr!0 increases with ν [see Fig. 4], and thereby F as
well, we can conclude that increasing 〈m3〉 while keeping the first
two moments fixed leads to an increase of the bistability threshold
νc. This is validated in Supplementary Note 5, where we consider
two distributions gm sharing the same first two moments, but a
different third moment. The larger third moment suppresses the
emergence of a bistable regime.

A corollary of this argument is that for certain structures, it is
impossible to have bistability. To see this, let us consider a power-
law membership distribution of the form gm � m�γm . In this case,
since the bistability threshold depends on the third moment of
gm, while the invasion threshold only depends on the first two, by
setting the exponent 3 < γm < 4, the invasion threshold converges
to a value λc > 0, but νc does not exist. In other words, it is
impossible to have a discontinuous phase transition.

This second statement is validated in Fig. 6a, where we show
that that the bistability threshold νc appears to grow without
bound as mmax ! 1 for γm ≤ 4. Instead, for γm ≥ 4, the
bistability threshold appears to converge, as expected, since the
first three moments of gm converge as well. What is more

surprising is the nonmonotonic behavior of νc with respect to γm,
which we present in Fig. 6b. The bistability threshold has a well-
defined maximum at a value of γm that appears to converge to
γm= 3 for mmax ! 1. In other words, γm= 3 is the optimal
value of membership exponent in suppressing the emergence of a
discontinuous phase transition and the related bistability.

This can be understood from Eq. (21): for γm > 3, the invasion
threshold does not vary much since the first two moments of gm
are finite. Hence maximizing the third moment maximizes νc,
which corresponds to γm→ 3. One could still be surprised that
the bistability threshold grows more slowly with mmax in the
range 2 < γm < 3, since the invasion threshold λc tends toward
zero. In this case, the bistable regime exists, but its width (λp, λc)
simply vanishes as λc→ 0.

Heterogeneous group sizes. Let us now consider hypergraphs with
heterogeneous group size distribution pn, and homogeneous
membership distribution, namely, gm ¼ δm;m0

. In this case, the
invasion threshold, as defined by Eq. (15), depends on the whole
distribution pn, which makes drawing general conclusions on the
impact of a heterogeneous distribution pn more difficult.

To get some intuitions, let us consider the standard SIS model,
i.e., the case ν= 1 in Eq. (1). With our AMEs, it was shown that50

λ�1
c ’ mðm� 1Þ� �

hmi


 �
nðn� 1Þ� �

hni


 �
þ nmax ; ð23Þ

for power-law distributions pn � n�γn with large cut-offs nmax.
The first term on the right-hand side of Eq. (23) suggests that
more heterogeneous groups-size distributions pn (smaller values
of γn) lead to smaller invasion thresholds. Intuition tells us that
we should expect this behavior for ν ≠ 1 as well. We have
therefore investigated numerically in Fig. 7a the invasion
threshold as a function of the group size exponent for different
values of ν, confirming that more heterogeneous group sizes
(smaller γn) do lead to a smaller invasion threshold, even for
nonlinear infection functions (ν ≠ 1). However, this effect is
mitigated when larger values of ν are considered. For large ν and
large nmax, the value of the invasion threshold is dominated by the
cut-off, and scales as λc � n�ν

max, as illustrated in Fig. 7b.
This behavior can be attributed to the onset of mesoscopic

localization49,50. It was shown analytically for ν= 1 that, for
certain combinations of (γm, γn), the epidemic near the invasion
threshold [λ= λc(1+ ϵ) with ϵ≪ 1] is dominated by the largest
most influential groups. In these scenarios, the second term on
the right-hand side in Eq. (23) dominates the first one, and, near
λc, the group prevalence In grows exponentially with n, i.e.,
Inmax

=I2 ¼ Ω eanmaxð Þ for some positive constant a. While an
analytical characterization of mesoscopic localization in the
general case of ν ≠ 1 is out of the scope of this paper, we provide
clear numerical evidence of localization phenomena in Fig. 7c.
The stationary distributions of the fraction of infected nodes in
groups of increasing size n are concentrated in the largest group
(n= 50) near the invasion threshold λc.

Since mesoscopic localization was characterized using a linear
contagion (ν= 1) and a continuous phase transition49,50, two
natural questions arise: How does ν ≠ 1 affect localization? And
what happens in the context of discontinuous phase transitions?
In Fig. 8, we present the phase diagram of the group prevalence In
for different scenarios. Comparing Fig. 8a, b, we see that
increasing ν from 0.5 to 1.5 (while keeping gm= δm,4) strengthens
localization effects, which is expected since reinforcement effects
are more important when the group prevalence is high. In Fig. 8c,
we show a similar diagram, but for a discontinuous phase
transition. We see that the concentration of infected nodes in the
largest groups is still possible, but the phenomenon is now
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associated with the unstable solution near the invasion threshold
[λ= λc(1− ϵ) with ϵ≪ 1]. Therefore, mesoscopic localization
affects both continuous and discontinuous phase transition with a
bistable regime, but the exponential growth of In with n near λc
concerns the stable solution in the former and the unstable
solution in the latter.

If we now reinterpret the results of Fig. 7 in light of these
considerations, larger values of ν facilitate the onset of mesoscopic
localization, where the largest groups drive the onset of the endemic
phase, and make the invasion threshold scale as λc � n�ν

max. This
explains why λc varies only slightly with γn for ν= 2 in Fig. 7a.

In Fig. 9, we finally investigate the role of heterogeneous group
sizes on the bistability threshold by varying the group exponent
γn and the maximal group size nmax. From Fig. 9a, we see that a
more heterogeneous group distribution, thereby increasing the
fraction of larger groups, decreases the value of the bistability
threshold νc. This is consistent with our observation of regular
structures [Fig. 5], for which larger groups appear to promote
bistability. However, Fig. 9b brings some nuance to this
statement: for a fixed exponent γn, there is a nonmonotonic
relationship between νc and the largest group nmax. As such, the
presence of larger groups does not always promote bistability.

We can again attribute this behavior to localization effects. In
fact, we are able to illustrate this via a very simple example in
Fig. 9c. We look at the phase transition for a regular hypergraph
with fixed group size, pn= δn,4, and a perturbed version of it,
where we introduce a small proportion of larger groups,
pn= (1− ϵ)δn,4+ ϵδn,15 with ϵ= 10−3. For the regular

distribution, the phase transition is discontinuous, while for the
perturbed distribution it is continuous, with the contagion
localized in the largest groups near the invasion threshold. The
bistability threshold νc is larger for the perturbed distribution
since mesoscopic localization reduces considerably the invasion
threshold λc. The largest most influential groups drive and self-
sustain an endemic state for smaller values of λ, hence preventing
a bistable regime.

Influence maximization. Influence maximization broadly refers
to the problem of selecting a subset of nodes to initially spark a
diffusion process in order to maximize the effect. The process
could represent the spread of information, the diffusion of
innovations, or a viral marketing campaign6,57.

There is a large body of literature on influence maximization in
complex networks, where various models have been used:
threshold models58–61, independent cascade58, and simple
contagion models (SI, SIS, SIR)62–65, to name a few. Recently,
these ideas have been also exported to higher-order networks66,67.

The effectiveness of an influence maximization procedure is
often measured by the fraction of affected nodes (in the limit
t→∞) for processes that terminate. However, because the final
epidemic size in the SIS dynamics does not depend on the seeds
(other than for stochastic extinction), we will consider the simpler
task of maximizing _Ið0Þ, the initial spreading speed. This is often a
straightforward task to solve for graphs. Considering the SIR
model, for instance, one just needs to maximize the number of

Fig. 7 Impact of heterogeneous group sizes on the invasion threshold. We considered hypergraphs with power-law group size distributions pn � n�γn

with various exponents γn, a regular membership distribution gm= δm,4, and various exponents ν for the infection function in Eq. (1). We obtain the invasion
threshold using Eq. (15). Lower values of γn imply a more heterogeneous group size distribution. a For a fixed nmax ¼ 20, the invasion threshold increases
with larger γn, but the effect is more limited for larger ν. b For a fixed γn= 3, the invasion threshold decreases like n�ν

max for large nmax, indicating the onset of
mesoscopic localization49, 50. c Stationary distribution fn,i for the starred case in b, i.e., γn= 3 and ν= 1.5, with λ= 1.1λc, illustrating localization in the largest
groups.

Fig. 6 Impact of heterogeneous memberships on the bistability threshold. We considered hypergraphs with power-law membership distributions
gm � m�γm with various exponents γm, different maximal values mmax, a minimal value mmin ¼ 2, and a regular group size distribution pn= δn,4. We obtain
the bistability threshold by solving Eq. (21). Lower values of γm imply a more heterogeneous membership distribution. a The bistability threshold grows
logarithmically or faster for γm≤ 4 but converges for γm > 4. b The bistability threshold shows a maximum near γm= 3, suggesting that this is the maximum
in the limit mmax ! 1.
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outgoing edges from infected to susceptible nodes, which implies
that nodes of maximal degree would be optimal influencers.
However, we will show that additional considerations need to be
accounted for in higher-order networks. More specifically, our
goal is to use our formalism to answer the following question:
Should we focus on finding influential nodes, or seed the spread
from influential groups?

In this section, to simplify the notation, all dynamic quantities
are evaluated at t= 0, e.g., I(0)≡ I.

Let us assume that we are given a fixed hypergraph and an initial
fraction of nodes that can be infected at the initial time I= ϵ≪ 1 (the
seeds of the contagion). Our task is to invade the system as fast as
possible by maximizing _I for a hypergraph contagion, which is
equivalent to maximizing the objective function

Φ½S;F � ¼ rhmsmi ; ð24Þ
where we define the initial node states S � sm

� �mmax

m¼1 and the initial

group states F � f n;ij0 ≤ i ≤ n
n onmax

n¼2
. The optimization problem

is also constrained by

0 ≤ sm ≤ 1 8m ; ð25aÞ

0 ≤ f n;i ≤ 1 8n; i ; ð25bÞ

∑
m
smgm ¼ 1� ϵ ; ð25cÞ

∑
i
f n;i ¼ 1 8n ; ð25dÞ

hmsmi
hmi ¼ 1

hni∑n;iðn� iÞf n;ipn : ð25eÞ

While the first four constraints come from the definitions of
the variables, the last one is less straightforward. Equation (25e)
ensures the consistency between S and F , more specifically that
the fraction of all memberships stubs belonging to susceptible
nodes [left-hand side of Eq. (25e)] matches the fraction of
susceptible nodes in groups [right-hand side of Eq. (25e)].

By combining the constraint of Eq. (25e) with the definition of
r as given by Eq. (2), the objective function can be simplified as

Φ½S;F � / ∑
n;i
βðn; iÞðn� iÞf n;ipn : ð26Þ

Although it appears to be independent of S, it depends on it
implicitly through Eq. (25e).

It is worth stressing that our formalism assumes that the
membership stubs of nodes are assigned to groups uniformly at
random, and thus we cannot engineer both S and F , i.e., choose
at the same time the seeds according to their membership and the
repartition of the seeds among the various group sizes. Indeed, if
we decide for instance to infect only nodes of a certain
membership m0 and we try to engineer F , there are no guarantees

Fig. 9 Impact of heterogeneous group sizes on the bistability threshold. We considered hypergraphs with power-law group size distributions pn � n�γn

with various exponents γn and a regular membership distribution gm= δm,4. We solve the bistability threshold using Eq. (21). Lower values of γn imply a
more heterogeneous group size distribution. a For a fixed nmax, the bistability threshold increases with larger γn. b For a fixed γn, the bistability threshold has
a nonmonotonic relationship with nmax. c Phase transition using gm= δm,4 and ν= 2.3. We use pn= δn,4 for the regular case, and pn= (1− ϵ)δn,4+ ϵδn,15
with ϵ= 10−3 for the perturbed case. Mesoscopic localization49, 50 inhibits bistability in the perturbed case.

Fig. 8 Mesoscopic localization in large groups. We illustrate I�n , the average stationary fraction of infected nodes in groups of various size n. We
considered hypergraphs with power-law group size distributions pn � n�γn with γn= 3, regular membership distributions of the form gm ¼ δm;m0

, and
various exponents ν for the infection function in Eq. (1). Near the invasion threshold λc, I

�
n is larger for larger groups in a with ν= 0.5, but localization is

much more pronounced for b with ν= 1.5. c For discontinuous phase transitions, mesoscopic localization is still possible, but near λc we must look at the
unstable solution for I�n in the bistable regime.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00788-w

10 COMMUNICATIONS PHYSICS |            (2022) 5:25 | https://doi.org/10.1038/s42005-021-00788-w |www.nature.com/commsphys

www.nature.com/commsphys


we can achieve such configuration in practice—e.g., we cannot
infect a node in a group if none of its nodes have membership m0.

We therefore compare two strategies to optimize the early spread:

A. The influential spreaders strategy: we engineer S, i.e., we
choose the fraction of seeds to assign to each membership
class, and we assume a random configuration for the
groups, i.e., all ff n;igni¼0

are binomial distributions with
probability q (to be determined).

B. The influential groups strategy: we engineer F , i.e., we
assign a certain number of seeds in the groups depending
on their sizes, and assume that nodes are infected at
random through the group to which they belong.

Influential spreaders. In this strategy, we are free to engineer S in
order to maximize Φ, with respect to the constraints of Eqs.
(25a)-(25e). Let us assume that fn,i is a binomial distribution,

f n;i ¼
n
i

� 
qið1� qÞn�i :

Using Eq. (25e), we can identify

q ¼ 1� hmsmi
hmi :

An optimal solution S? can be found by first finding the value
q⋆ that maximizes the objective function Eq. (26), and then
identifying any set S that satisfies the relation for q= q⋆ above.

There are in general many optimal solutions possible, but they
collapse into a single one when q is sufficiently small, which is
reasonable for ϵ≪ 1. In this case, we simply have that Φ ≈ q, and
the optimal solution is intuitive: one needs to infect nodes of
maximal membership first in order to maximize q. This is true
irrespective of β(n, i), pn, and gm.

The infection function and the structure affect the maximal
value of ϵ such that this solution is unique and optimal. For
example, in the simplest case of linear contagion, where
β(n, i)∝ i, it is possible to show that this strategy is optimal up
to q= 1/2 for all gm and pn, and we expect even higher values for
ν > 1. For all practical purposes, targeting nodes of the highest
membership is optimal, and this is the case in all experiments we
considered.

Influential groups. In this second strategy, we want to engineer F
in order to maximize Φ with respect to the constraints Eqs. (25a)-
(25e). Let us assume that we can do so by choosing a certain
number of groups and infecting a certain portion of their nodes.
Following this procedure, one can realize that not all sets F
satisfying Eqs. (25a)-(25e). are allowed. For instance, if we decide
to infect i nodes in all groups of size n, the outcome is different
from just having fn,i= 1. Indeed, nodes belong to more than one
group, hence we need to account for spillover effects—groups of
size n0 ≠ n would have some infected nodes as well, and more
than i nodes could be infected in some groups of size n.

To do so, let us first define ~f n;i as the fraction of all the groups
of size n for which we infect i nodes at random. Note that if a
node belongs to multiple groups, it can be chosen more than once
for infection, but the duplicates have no effect. Spillovers are
taken into account by considering that each of the n− i nodes
that have not been chosen for infection in a group of size n could
have been infected in another group, with probability u (to be
determined). Therefore, we can write

f n;i ¼ ∑
i

j¼0

~f n;i�jBn�iþj;j ; ð27Þ

where

Bk;j ¼
k
j


 �
ujð1� uÞk�j :

Second, let us define η as the fraction of all spots in groups that
have been chosen for infection,

η � 1
hni∑n;i i

~f n;ipn : ð28Þ

Since nodes within groups are chosen at random, a node of
membership m is susceptible if it has not been chosen for
infection in any of the groups to which it belongs, i.e.,

sm ¼ ð1� ηÞm

As a consequence, η is constrained by Eq. (25c),

ð1� ηÞm� � ¼ 1� ϵ :

The probability u still needs to be obtained. It corresponds to
the fraction of all memberships that are not matched with a spot
chosen for infection in a group but that are still associated with an
infected node:

u ¼ hmð1� smÞi � ηhmi
ð1� ηÞhmi :

With this formulation, we engineer F indirectly through
~F ¼ f~f n;ij0 ≤ i ≤ ngnmax

n¼2
. The objective function can be rewritten

Φ / ∑
n;i

∑
i

j¼0
βðn; iÞðn� iÞ~f n;i�jBn�iþj;jpn ;

¼ ∑
n;i

∑
n�i

j¼0
βðn; iþ jÞðn� i� jÞ~f n;iBn�i;jpn :

Since the objective function is a linear function of each ~f n;i, the
optimization problem can be solved using linear programming.

However, there is an intuitive and more efficient way to solve
this problem exactly. We just need to identify the most cost-
effective ~f n;i by looking at the effect on Φ of increasing ~f n;i,

E � ∂Φ

∂~f n;i
/ ∑

n�i

j¼0
βðn; iþ jÞðn� i� jÞBn�i;jpn ;

versus the cost of increasing ~f n;i, i.e., the variation of η

C � ∂η

∂~f n;i
/ ipn :

The most cost-effective ~f n;i maximizes the ratio

Rðn; iÞ ¼ E
C
¼ 1

i
∑
n�i

j¼0
βðn; iþ jÞðn� i� jÞBn�i;j : ð29Þ

Obviously, i= 0 is always the most cost-effective for all n (since
it has zero cost), but to satisfy Eq. (28), we must also fill some ~f n;i
with i > 0.

Optimal solutions tend to fill the ~f n;i with i > 0 that maximizes
R(n, i), especially for sufficiently small ϵ. A general solution can
be obtained using the procedure presented in the “Influential
groups solutions" subsection of the Methods, building on this idea
of cost-effectiveness. In the worst case, the computational
complexity to obtain an optimal solution F ? under the influential
groups strategy is Oðmmax þ n3maxÞ, which is much more efficient
than using a general-purpose linear-programming method.

Equation (29) also gives us an intuition of what defines
influential groups when trying to maximize the early spread. If
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ϵ≪ 1, then u≪ 1, hence we have

Rðn; iÞ � βðn; iÞðn� iÞ
i

;

/ iν�1ðn� iÞ ;
when considering β(n, i)= λiν. For simple contagions (ν= 1),
picking the largest group with a single seed (i= 1) is always
optimal. For hypergraph contagions with ν > 1, the largest groups
are the most influential as well, but the optimal number of seeds
is generally i > 1. Hence, beyond its size, the initial configuration
of a group determines whether or not it is influential.

Experiments. To compare the influential spreaders and the
influential groups strategies, we measure the ratio

ζ � Φ?
F

Φ?
S

; ð30Þ

where Φ?
F and Φ?

S are the values of the objective function for the
optimal solution of the influential groups and influential spreader
strategies, respectively. Therefore, ζ > 1 indicates that the influ-
ential groups strategy is better to maximize _I, and vice versa if
ζ < 1.

In Supplementary Note 6, we show that

lim
ϵ!0

ζ ¼ βðn0; i0Þðn0 � i0Þhni
i0hβðn; 1Þnðn� 1Þimmax

þ hmðm� 1Þi
hmimmax

; ð31Þ

where ðn0; i0Þ is the pair that maximizes the ratio R(n, i), restricted
to i > 0, in the limit ϵ→ 0. For general ϵ, we need to solve
numerically the optimization problem as discussed in the
previous sections.

With β(n, i)= λiν, ζ is independent of λ, since Φ∝ λ. As a
consequence, ζ is agnostic to the underlying phase of the system

(healthy, bistable, or endemic). Equation (31) simplifies to

lim
ϵ!0

ζ ¼ i0ν�1ðn0 � i0Þhni
hnðn� 1Þimmax

þ hmðm� 1Þi
hmimmax

: ð32Þ

In Fig. 10, we illustrate how ζ varies as we change ν, ϵ, and the
underlying structure. For homogeneous memberships and group
sizes [Fig. 10a], we see that the influential groups strategy
performs better as soon as the contagion process is sufficiently
nonlinear (ν ≈ 2); for highly nonlinear contagions (ν ≈ 4), the
influential group strategy is much more effective, with ζ up to
100. When considering heterogeneous memberships, but still
homogeneous group sizes [Fig. 10b], the influential spreaders
strategy performs better for moderately nonlinear contagions
(ν≲ 2.8); otherwise, the influential groups strategy is still a better
choice. Finally, considering a heterogeneous pn as well [Fig. 10c]
helps the performance of the influential groups strategy,
especially for larger ϵ.

When picking a pair (ϵ, ν) such that ζ < 1, we confirm that the
influential spreader strategy invades the system faster in Fig. 10d.
However, sufficiently close to ζ= 1, maximizing _I does not
necessarily imply that I(t) will be larger for all t > 0. For instance,
in Fig. 10e, ζ ≈ 1, but the influential spreader strategy is slightly
better. Therefore, one must be careful when interpreting the
results of Fig. 10. One way to improve on our approach would be
to consider higher-order temporal derivatives of I to assess which
strategy performs best or refine the optimization procedure by
trying to maximize these higher-order derivatives as well. For a
pair (ϵ, ν) such that ζ > 1, we confirm that the influential group
strategy invades the system faster in Fig. 10f.

Figure 10d–f suggests that the initial speed, _Ið0Þ, roughly
correlates with the time taken by the disease to infect a given
fraction of the population, a metric that has been used to measure
influence for SI and SIR dynamics68–70.

Fig. 10 Comparison of the influential spreaders and influential groups strategies. a–c If log 10ζ > 0, this indicates that the influential groups strategy is
better to maximize _I, and vice versa if log 10ζ < 0. We use different combinations of homogeneous and heterogeneous distributions. More specifically, for
homogeneous distributions we use gm∝ ame−a/m! and pn∝ ane−a/n!, with a= 5, mmin ¼ 1, nmin ¼ 2, and mmax ¼ nmax ¼ 20. For heterogeneous
distributions, we use gm / m�γm and pn / nγn , with γm= γn= 3, mmin ¼ nmin ¼ 2, and mmax ¼ nmax ¼ 100. The dashed lines indicate when ζ= 1 and the star
markers correspond to the limit ϵ→ 0, using Eq. (32). Irregularities of the level curves are due to the discrete nature of gm and pn, not to numerical errors.
d–f Time evolution of the fraction of infected nodes for different strategies, with ϵ= 10−2 and ν∈ {1, 1.88, 3}, corresponding to the three empty markers in
a. We use λ= 3λc in each case. The random strategy corresponds to sm= 1− ϵ for all m, and fn,i is a binomial distribution with probability ϵ.
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Figure 10f also illustrates a particular feature of highly
nonlinear contagions: the time to reach the stationary state can
be excessively long for suboptimal strategies, despite λ= 3λc (see
the Supplementary Note 7). In this regime, the initial conditions
have a much more important impact on the capacity of the
contagion to invade the system, especially considering the
possibility of stochastic extinction in real systems due to
finite size.

These results again highlight the importance of considering an
accurate description of the inner dynamics of groups when
studying hypergraph contagions. In the context of influence
maximization, optimizing group configurations is a crucial
component; one should not focus exclusively on identifying the
most central nodes. Ultimately, an optimal strategy would
capitalize on the synergy of these two important aspects.

Discussion
We have introduced group-based AMEs to describe hypergraph
contagions. Our framework is analytically tractable, allowing us to
obtain closed-form implicit expressions for the critical and tri-
critical points. In addition, we have shown that it describes the
dynamical process with remarkable accuracy when compared
with Monte Carlo simulations. Our formulation in terms of an
infection rate function β(n, i) makes it extremely flexible, allowing
us to consider arbitrary group distribution with large group
interactions, contrarily to existing HMF theories31,39,40 that
instead require specifying the rule for each different type of
interaction separately.

Motivated by simplicity and recent results37, we analyzed in
depth the consequences of a nonlinear infection rate function
β(n, i)= λiν, highlighting the important role of influential groups
in hypergraph contagions.

With our analytical results about the invasion and bistability
thresholds, we were able to perform an exhaustive analysis of the
phase transition and better understand the influence of a het-
erogeneous structure, both in terms of membership m and group
size n. We found that the third moment of the membership
distribution gm plays a crucial role, with large m3

� �
suppressing

the onset of a discontinuous phase transition with a bistable
regime, in line with other approaches39,40. This is best exempli-
fied for power-law membership distributions gm � m�γm , where
γm= 3 most suppresses bistability, and in the limit mmax ! 1, a
discontinuous phase transition is only possible for γm > 4.

The phenomenon of mesoscopic localization49,50, driven by the
most influential groups, also has important consequences on the
phase diagram, with the effects being enhanced by superlinear
infection (ν > 1). In this case, the invasion threshold scales as
λc � n�ν

max, and for λ close to λc, infected nodes are found almost
exclusively in the largest groups. This localization of the con-
tagion thereby inhibits bistability by enforcing an endemic state
with a very small global fraction of infected nodes.

Our approach, furthermore, provided insights concerning the
problem of influence maximization for hypergraph contagions.
We focused on the problem of maximizing the early spread and
proposed two strategies: allocating seeds to the influential
spreaders (engineering sm), or to the influential groups (engi-
neering fn,i). For various types of structures, the latter strategy
performs better for contagions that are sufficiently nonlinear,
highlighting the key role of influential groups on the transient
state of the system.

For the process we considered, the notion of influential groups
to seed and sustain hypergraph contagions are mostly aligned—in
both cases, the largest groups typically have a dominant role. In
the case of influence maximization, however, we showed that a
careful seed allocation is also essential to determine whether or
not a group is influential. Moreover, a more realistic infection

function β(n, i) that actually depends on n could affect which
groups are most influential in both scenarios.

Our work constitutes the first step towards a better under-
standing of the role of higher-order interactions on the outreach
of information spreading6, and resonates with other recent the-
oretical findings on higher-order naming games, where big
groups facilitate the takeover of committed minorities in social
convention30. AMEs thus provide an analytical avenue to study
recent empirical results showing how social contagions and
movements defy classic influence maximization. As one example,
networked counterpublics71 are public spaces used by under-
represented groups to gather legitimacy and form tight-knit
communities. Therein, nondominant forms of knowledge can still
spread and reach widespread attention through dense commu-
nities (influential groups) despite the limited connectivity of their
members (noninfluential spreaders). These results provide one
more addition to the mounting evidence that groups of elemen-
tary elements are the foundational unit of many complex systems.

Many avenues are now left open to explore and broaden the
applicability of our group-based AMEs. While we restrained
ourselves to a particular nonlinear infection rate function β(n, i)
and a constant recovery rate, other dynamical processes could be
considered, each having its own phenomenology and a rich
dynamical behavior. In Supplementary Note 3 for instance, we
briefly discuss how our framework can be applied to threshold
models of the form β(n, i)= δn−1,i, but one could consider other
traditional dynamical processes, such as voter models72.

In Supplementary Note 1, we provide a roadmap to include
structural two-point correlations, but a thorough characterization of
the impact of correlation patterns on bistability, mesoscopic locali-
zation, and influence maximization is still lacking. The inclusion of
dynamical correlation around nodes is a more tedious task that
would require a fusion between degree-based47,48,73 and group-
based20,21,49,50 AMEs. This would allow describing almost exactly
short-range dynamical correlations, namely correlations between the
states of nodes and their direct neighbors. Incorporating long-range
correlations—beyond first neighbors—in AME frameworks, without
a prohibitive computational time due to combinatorial explosion, is
still an open problem.

Finally, many directions could be taken with regards to the
influence maximization problem on hypergraphs. One avenue
would be to analyze the notion of influential groups and influ-
ential spreaders from the perspective of centrality measures for
hypergraphs74. Another would be to investigate the closely related
problem of targeted immunization1,75.

Methods
Contagion on real-world hypergraphs
Simulation of contagions. We used a standard Gillespie algorithm for the simula-
tion of contagions on hypergraphs. We decompose the whole process into events
j∈ J, that each happens at rate ωj. The next event to happen is chosen with
probability

PðjÞ ¼ ωj

∑j2J ωj
;

and the time step between two events Δt is distributed exponentially with mean
〈Δt〉= 1/∑j∈Jωj.

There are two types of events: infection and recovery. On the one hand, all
susceptible nodes in a group can be considered equivalent with regard to infection.
Consequently, each group is chosen for an infection event with a rate

ωinf ðn; iÞ ¼ ðn� iÞβðn; iÞ :
Once a group is chosen for an infection event, one of the (n− i) susceptible

nodes is chosen uniformly at random to become infected. On the other hand, all
infected nodes perform a recovery event with the rate ωrec= 1.

We store all possible events in an efficient data structure called a
SamplableSet76, where insertion, deletion, and sampling of elements (events)
all have a computational complexity O log log ωmax=ωmin

� �� �
77, where ωmax and

ωmin are, respectively, the maximal and minimal rates among fwjgj2J . This makes
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the sampling and the updating of the data structure extremely fast, which is
especially useful when fwjgj2J spans multiple scales.

Once an event is performed—for instance, a node recovers—we need to update
the rate ωinf of all groups to which this node belongs. This is the most costly part of
the algorithm, which unfortunately cannot be overcome. This essentially means the
simulation procedure is slower for hypergraphs with large average excess
membership 〈m(m− 1)〉/〈m〉.

In Figs. 2 and 3, we compare the stationary state solutions from our formalism with
estimates from Monte Carlo simulations. To compute estimates, we let the system relax
during a burn-in period τb∈ [102, 104] then we sample N 2 ½10; 104� states, both
depending on the size of the hypergraph and if multiple randomized hypergraphs are
being used. Sampled states are separated by a decorrelation period τd= 1.

To simulate contagions in the stationary state, we used two approaches,
ordinary simulations and the quasistationary-state method.

a. Ordinary simulation method: With this approach, we simply let the simulation
run and do not intervene. This is usually not the method of choice, especially for
small hypergraphs near the invasion threshold, because finite size systems all
eventually reach the absorbing state where all nodes are susceptible. This is,
however, more practical to obtain the lower branch for the superlinear case in
Fig. 2(c), or faster for large hypergraphs, as in Fig. 3.

b. Quasistationary-state method: This approach aims at sampling the
quasistationary distribution of the contagion process78, which is defined
as the probability distribution for all states in the limit t→∞, except for the
absorbing state. We used a state-of-the-art method78, where we keep a
history of past states (in our case up to 50 states). We update the history by
removing one uniformly at random and storing the current state after each
decorrelation period τd∈ [0.1, 1]. Each time the absorbing state is reached
during the simulation, we pick a state from the history uniformly at random
to replace the current one. This method is well suited for finite-size analysis
and especially useful for simulations on small hypergraphs, such as in Fig. 2.

Datasets. The simulations shown in Figs. 2 and 3 run on two different empirical
social structures that encode different types of social higher-order interactions.
Here we briefly describe the nature of these two datasets and the techniques used to
construct the associated higher-order structures.

The first social structure is based on face-to-face interactions in a French
primary school. Originally collected as part of the SocioPatterns collaboration, this
dataset79 contains information of face-to-face interactions between children of a
primary school in Lyon recorded over 2 days. Participants are given wearable
sensors (placed on their chests), and contact is detected whenever two sensors are
in close proximity (1.5m). The initial temporal resolution of this dataset is 20 s, but
contacts have been further preprocessed in order to construct a static hypergraph
from the temporal sequence of interactions31. In particular, considering each child
as a node, we aggregated different snapshots using a temporal window of 15 min
and computed all the maximal cliques appearing in each window. Cliques were
then aggregated across the entire time range, retaining only those that appeared at
least 3 times, and finally “promoted” to groups. Some properties of the obtained
structure are reported in the caption of Fig. 2.

The second social structure concerns coauthorship relations in computer
science. DBLP is an online bibliography containing information on major
computer science journals and proceedings. This dataset, already preprocessed80

(from the release 3, 2017), consists of a list of publications and respective authors
that naturally calls for higher-order representations81. In particular, each author
corresponds to a node and any collaboration of n (co-)authors in a single
publication corresponds to a group of size n. We constructed a hypergraph by
aggregating all the resulting groups together, but without considering single-author
publications (these have been removed in order to avoid disconnected nodes). In
addition, the original dataset contained 1 831 127 nodes and 2 954 518 groups,
which is too large to perform simulations on a personal computer in a reasonable
time. Therefore, we obtained a subhypergraph by performing a breadth-first search,
starting from a random group, then visiting all groups at a maximum distance of 2
when considering the one-mode projection of the original hypergraph on the
groups. This ensures that the resulting subhypergraph is connected. Some
properties of the obtained structure are reported in the caption of Fig. 3.

The authors state that in the country where the work was performed additional
ethical approval or a license to reuse the datasets is not required given that the
datasets are in the public domain.

Randomization and data augmentation. In Figs. 2 and 3, we make use of rando-
mized versions of the original hypergraph. In Fig. 2, we also use expanded versions,
where the size of the network is increased by a factor x. In all cases, we use the same
procedure (x= 1 if the hypergraph is not expanded).

Let us first note m= [m1,m2,… ] and n= [n1, n1,… ] the membership
sequence and the group size sequence of the original hypergraph, i.e., the list for the
membership of each node and the list for the size of each group. From these
sequences, we create two expanded sequences m0 and n0 , which are formed of x
copies of m and n respectively. This can be seen as the membership and group size
sequences for a hypergraph that is x times larger.

For each expanded sequence, we create a stub list. For instance, for the node j of
the expanded hypergraph, we include m0 copies of the label j in the stub list for the
nodes. Similarly, we include n0 copies of the label ℓ in the stub list for the groups.
By definition, these two stub lists are of the same length, M0 , which corresponds to
the number of edges in the bipartite representation of the hypergraph. We can thus
shuffle them and match the entries of both lists, thereby assigning nodes to groups
—or equivalently creating edges between nodes and groups in the bipartite
representation of the hypergraph.

We then remove multi-edges (nodes assigned multiple times to the same group)
by performing edge swaps82. We then perform M0 additional edge-swap attempts
at random—picking two random edges, swapping the groups, and accepting the
swap if it does not create multi-edges. This ensures the uniformity of the generation
process (see Supplementary Note 8). The resulting hypergraph is a randomized
version of the original hypergraph, expanded by a factor x.

Influential groups solutions. An intuitive approach to solve the problem would be
to sort all pairs (n, i) in decreasing order of their R(n, i) values (for i > 0), then fill
~f n;i up to 1 following this order, until I= ϵ, or more directly until η reaches the
value prescribed by ϵ. However, this approach does not account for the fact that
one may encounter multiple times the same n value before the condition I= ϵ is
reached. For instance, let us assume (n, i) is the next pair with the highest value
R(n, i), but there exists a pair ðn; i0Þ with Rðn; i0Þ≥Rðn; iÞ and we have already
assigned ~f n;i0 ¼ 1. What is the best option?

1. Discard the (n, i) pair.
2. Fill the associated ~f n;i up to 1 and decrease the value of ~f n;i0 accordingly.

It turns out that an optimal solution is constructed by choosing one or the other
depending on certain conditions. Option 1 is chosen whenever i < i0, because it can
only reduce the total contribution to Φ. If i > i0 , we assign a new cost-effective ratio
to the pair (n, i), accounting for the fact that we need to decrease ~f n;i0 :

R̂ðn; iÞ ¼ iRðn; iÞ � i0Rðn; i0Þ
i� i0

:

This can be interpreted as the cost-effective ratio for the additional infected
nodes ði� i0Þ that we add to the configuration. Note that R̂ðn; iÞ can be negative,
which is not a problem: this only means that infecting these nodes decreases the
objective function Φ. If R̂ðn; iÞ is still the highest ratio when compared with the
ratios from other available pairs, option 2 is chosen. An algorithm for this
procedure is presented in the Supplementary Methods.

Data availability
The hypergraphs analyzed during the current study are available in the “Influential
groups data” repository on Zenodo83: https://doi.org/10.5281/zenodo.5662206. The
hypergraphs can also be obtained from the original sources: (1) Face-to-Face data79:
http://www.sociopatterns.org/datasets/primary-school-temporal-network-data/; (2)
Coauthorship data80: https://github.com/arbenson/ScHoLP-Data/tree/master/coauth-
DBLP. See the subsection “Contagion on real-world hypergraphs” of “Methods” for the
preprocessing of the data.

Code availability
The code used to produce all results is available on Zenodo84: https://doi.org/10.5281/
zenodo.5662446
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