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networks from gene-expression data: a message
passing approach
Marc Bailly-Bechet1,2, Alfredo Braunstein2,3, Andrea Pagnani4*, Martin Weigt4, Riccardo Zecchina2,3

Abstract

Background: Transcriptional gene regulation is one of the most important mechanisms in controlling many
essential cellular processes, including cell development, cell-cycle control, and the cellular response to variations in
environmental conditions. Genes are regulated by transcription factors and other genes/proteins via a complex
interconnection network. Such regulatory links may be predicted using microarray expression data, but most
regulation models suppose transcription factor independence, which leads to spurious links when many genes
have highly correlated expression levels.

Results: We propose a new algorithm to infer combinatorial control networks from gene-expression data. Based
on a simple model of combinatorial gene regulation, it includes a message-passing approach which avoids explicit
sampling over putative gene-regulatory networks. This algorithm is shown to recover the structure of a simple
artificial cell-cycle network model for baker’s yeast. It is then applied to a large-scale yeast gene expression dataset
in order to identify combinatorial regulations, and to a data set of direct medical interest, namely the Pleiotropic
Drug Resistance (PDR) network.

Conclusions: The algorithm we designed is able to recover biologically meaningful interactions, as shown by
recent experimental results [1]. Moreover, new cases of combinatorial control are predicted, showing how simple
models taking this phenomenon into account can lead to informative predictions and allow to extract more
putative regulatory interactions from microarray databases.

Background
Transcriptional gene regulation is one of the key
mechanisms in living cells; the control of gene expres-
sion is crucial in processes as cell development, cell-
cycle regulation, and response to external stimuli [2-5].
While the number of sequenced genomes is growing
rapidly, it becomes more and more important to study
genetic information on a higher level, i.e. to understand
genes in their interdependence and to capture relations
between regulatory genes, e.g. transcription factors (TF)
or signaling proteins, and regulated genes via the recon-
struction of gene-regulatory networks (GRN).
Direct experimental approaches to understand gene

regulation are money and time consuming. Therefore
genome-scale regulatory networks are only known for

E. coli [6] and for baker’s yeast, S. cerevisiae [7,8]. For
higher organisms, the knowledge is restricted to inten-
sively studied small functional modules, see e.g. [9,10].
Some characteristic features of these GRN are:

• Directionality: Regulatory control is directed from
regulators to regulated genes.
• Sparsity: Each single gene is controlled by a limited
number of other genes, which is small compared to
the total gene content (and also to the total number
of TFs) of an organism.
• Combinatorial control: The expression of a gene
may depend on the joint activity of various regula-
tory proteins.

The last item is crucial, and it is the topic of very active
and diversified research [11-15]. One example of combina-
torial control in yeast is the case of transcription factors* Correspondence: andrea.pagnani@gmail.com
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Yrr1 and Yrm1, which compete for occupancy of the same
promoter sequence [16]. Many other types of combined
control exist, such as the formation of hetero- or homo-
dimers by TFs, or their post-translational modification by
other proteins, which can entirely change their targets
[17]. On the other hand, the hypothesis of sparsity has
been experimentally checked in well-studied organisms,
where it has been observed that the number of TFs is low
compared to the total number of genes.
It is tempting to ask in how far GRN can be recon-

structed from gene-expression data. After the advent of
the first generation of gene-expression microarrays, more
than a decade ago [18], we face an growing number of
new high-throughput technologies capable of monitoring
simultaneous concentrations of thousands of cellular
components, in particular of mRNAs. The improved
quality of new generations of microarrays, the decrease
of their cost, and the amount of experiments accumu-
lated so far call for the development of large-scale meth-
ods of data analysis. Different approaches to modeling
have been proposed (see [19] for a recent review), from a
coarse-grained description of co-regulated genes [20],
classification methods [21,22], to Boolean descriptions
where genes are described in terms of logical switches
with only on/off states of activity [23] (and in particular
[24] for the problem of inference of boolean networks),
or considering more realistic systems of differential equa-
tions describing the kinetic details [25]. Also for GRN
reconstruction, approaches from different origins have
been proposed: system control theory [26-29], Bayesian
inference [30-33], information theory [34-36].
Many limitations of the existing algorithms arise

directly from the quantity and quality of data:
Microarrays are noisy averages over cell populations,

and the number of available arrays is normally much
smaller than the number of probes measured in each
array. Moreover, microarrays measure mRNA but not
active protein concentrations (which, for TFs, are the
important parameters). Both may be uncorrelated in the
cell [37]. But as proteomics data are even sparser than
microarray data, this is not an easy-to-solve problem,
and many modeling approaches use mRNA concentra-
tion alone. Another problem is the existence of combi-
natorial control in gene regulation: Predicting such
cases is a NP-complete problem, and has therefore
eluded many approaches due to computational complex-
ity, although some recent and interesting progress has
been achieved in [33].
In this paper we introduce a novel algorithmic strat-

egy, based on message-passing techniques, to infer the
regulatory network of an organism based solely on gen-
ome-wide expression data, that specifically focuses on
combinatorial control. Our methodology is probabilistic
and distributed, allowing for a fast exploration of the

space of networks. We apply the algorithm to three
yeast networks: (i) To test the efficiency of the algo-
rithm, we first reconstruct an in-silico regulatory net-
work for cell-cycle control from artificially generated
data [38]. (ii) We propose a large-scale reconstruction of
the yeast regulatory network, using the classic Gasch
microarray dataset [4], and analyze evidence for combi-
natorial control. (iii) We use yeast expression data from
the SMD database [39] to recover the regulations affect-
ing genes involved in pleiotropic drug resistance (PDR).
This network is now under intense scrutiny because of
the more and more common nosocomial infections by
Candida yeasts [40], which are able to resist to drugs by
exporting them out of the cell. These resistance
mechanisms are genetically regulated by the PDR net-
work, which we aim to reconstruct. An detailed descrip-
tion of the algorithm is given in the Methods section.
An implementation in C can be downloaded at [41].

Results and Discussion
Reconstructing an in-silico yeast cell-cycle network
Before coming to biological data, we test our approach
on the network model of Tang et al. [38] for cell cycle
regulation in S. cerevisiae. The cell cycle is regulated by
cyclins/CDK complexes, which sequentially activate and
inhibit each other, creating a periodicity which is the
clock of the cell. Recently sequential waves of transcrip-
tional activation independent of cyclins activation have
been discovered [42,43], but they are not taken into
account in the model. It anyway serves as an ideal start-
ing point for the the performance analysis of our analysis,
since the data generating network is explicitly known and
can be compared to our inferred regulatory interactions.
In the model of [38], the regulatory network consists

of N = 11 genes/proteins, which are described by a bin-

ary state vector S t t
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Our aim here is to infer the regulatory links of this
network model based on the different state vectors st.
The above in-silico dynamics shows 7 fixed points, i.e.
stationary states of the dynamics. Each fixed point can
be characterized by the size of its basin of attraction, i.e.
by the number of initial random initial conditions that
end on it. Tang et al. argue that the fixed point with the
largest basin of attraction can be identified with the G1
phase of the cell cycle. If one perturbs the stationary G1
state by flipping the Cln3 cyclin to its active value, the
network passes trough 13 different states before reach-
ing again G1. The authors of [38] argue that this trajec-
tory robustly reproduces various aspects of the yeast cell
cycle.
We test our algorithm on two different data sets: (i)

the 13 states obtained by first flipping the Cln3 cyclin to
the active value, and letting the system evolve until sta-
tionarity as described before, (ii) a larger dataset con-
taining the configurations of data set (i) and additionally
the trajectories obtained by evolving all configurations
at Hamming distance 1 away from G1 (70 different
states). In Additional File 1 we include both data sets
together with the links of the network.
In order to deal with time series, Eq. (9) for the prior

probability distribution is transformed into
P st t( | , )0

1+ S J , to express the conditional probability of
the target gene 0 at time t + 1 given the expression pro-
file of the other genes at time t. For both data sets we
fix the diluting field h to a value giving Neff ~ 30
according to Eq. (5). For the original data set (i) we fix
sD 0. while for the larger data set (ii), convergence of
Belief propagation (BP) is ensured by sD = 0.3.
In Fig 1 we display the Precision-Recall curve for the

network inferred using BP, for both cell-cycle and per-
turbed cell-cycle data sets (cf. the paragraph about
observables in Methods for a precise definition of preci-
sion and recall). Results are compared to the perfor-
mance of a co-expression network which ranks links
j ® i according to the Pearson correlation of s j

t and
si

t+1 . We see that on the original data set BP is able to
correctly infer 11 links before making the first error,
whereas Pearson correlation fails already after two cor-
rectly predicted links. This result shows that BP cor-
rectly manages to take into account combinatorial
control effects, which cannot be seen by purely local
methods (as pair correlations). Increasing the data set
improves the outcome of BP, the larger data set leads to
16 correctly predicted links before the precision drops
down from one, and the precision stays always above
the one obtained from the 13-state trajectory. It is also
interesting to note that the first links inferred by our
algorithm are those which where identified in [44] as
essential for reproducing the cell-cycle by a complete
enumeration of the space of all networks.

Yeast response to environmental stresses
For a second application of BP - at much larger scale -
we use the data of Gasch et al. [4], which consist of 172
genome-wide microarrays of S. cerevisiae under different
environmental conditions. We filter out all genes, which
show little differential expression (variance smaller than
three times the minimal variance measured) or which
miss more than 10 data points. Thereby the gene num-
ber is reduced to 2659 target genes, i.e. to roughly half
of the entire genome. As putative regulators we consider
(i) genes annotated as transcription factors or structu-
rally similar to known transcription factors, and (ii)
genes involved in signaling [45]: their total number
sums up to 460 putative inputs.
We run our algorithm with s = 0.25 which equals the

minimal variance of a gene found in the full data set. BP
giving probabilistic results, we kept regulatory links with
more than 95% of confidence.
As the distribution of the marginal probabilities fol-

lows a power-law distribution (data not shown), chan-
ging this threshold (e.g. going to 99% or 90%) has little
effect on the final network. The network contains 5779
regulatory links, giving an average of 2.17 links per tar-
get; the in-connectivity has a distribution best fitted by
an exponential law k = Ce-g with g = 0.42, a value very
close to the reference one in [7]. Only 182 target genes
(7%) have no predicted regulator. Moreover, 1637 tar-
gets (62%) are regulated by at least 2 genes, providing a
wealth of potential predictions in the field of combina-
torial control. Interestingly enough the finding of 2.17
links per target can be confronted with the result of
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Fig 1 Precision-Recall curve for the cell-cycle inference.
Precision-Recall curve for the network inferred using BP (both cell-
cycle and perturbed cell-cycle data sets) and Pearson correlation
coefficient (only cell-cycle data set). In the case of BP-based
inference we infer correctly 11 links (cell-cycle) and 16 links
(perturbed cell-cycle) respectively before making the first error. In
the case of the correlation based inference we make the first error
after only 2 correct links.

Bailly-Bechet et al. BMC Bioinformatics 2010, 11:355
http://www.biomedcentral.com/1471-2105/11/355

Page 3 of 12



Balaji et. al. [46], based on a review of Chip-chip experi-
ments, reporting a comparable average value of 2.9
regulators per target.
Combinatorial control
In order to assess the relevance of the inferred network,
we compare it first to a network based on pairwise cor-
relations of expression data (co-expression network),
which was constructed to have the same number of
links as the BP network. Selected links are those of
highest absolute value of the Pearson correlation
between all input-output gene pairs. This is clearly an
oversimplified model, but it allows to grasp the signifi-
cant features of our model.
One advantage of our algorithm is the explicit infer-

ence of combinatorial control mechanisms by multiple
transcription factors. Indeed, the number of genes with
multiple regulators inferred using our methodology is
1637, while it is only 612 in the case of the pairwise-cor-
relation network. The average number of regulators per
regulated gene (i.e. genes with at least one inferred regu-
lator) in our BP case is 2.33, and has to be compared to
2.9 from the work of Balaji et al. [46], and 6.17 for the
co-expression network. It is interesting to note that BP
results are is closer to the experimental network as
compared to the co-expression one. This feature shows
how, for the vast majority of target genes, our algorithm
is able to describe the behavior of the gene by combin-
ing few putative regulators.
Another way of investigating combinatorial control is

to compare expression profiles of different regulators.
Regulators having highly correlated expression profiles
carry similar information to the target gene, whereas
regulators having diverse profiles can be used to trans-
mit much more information. This is directly incorpo-
rated in our model: The sparsity term introduced in
Eq. 5 reduces the effect of potential regulators whose
expression profiles are highly correlated. As a limiting
example let us consider two input genes with identical
expression profiles, regulating one target gene. The spar-
sity term will select randomly only one of the two, and
identify it as a regulator. In more realistic cases, no two
genes shows exactly the same expression, and only the
most explanatory gene will be chosen as a regulator out
of a set of highly correlated potential TFs.
To quantify the independent information carried by

each regulator we compute, as a simple measure, one
minus the Pearson correlation coefficient between any
two regulators of common target genes, see Fig 2. One
can see that the information content is much higher
using our methodology than simply co-expression,
because the latter tends to discover redundant infor-
mation as displayed in the example of Fig 3 for the
target gene YDR518W. This specific example also
shows that secondary regulators found by BP tend to

correct discrepancies between the first regulator and
the target gene.
Comparison to experimental TF binding data
In order to further investigate the significance of the BP
inferred network, we compare it to the experimentally
verified network presented by Balaji et al. [46], as char-
acterized by 158 TFs, 4411 target genes, and 12974 reg-
ulatory links between them. After filtering out genes
with low variance in the expression data set, the set of
analyzed genes consists of 1919 targets, and 132 TFs.
The number of experimentally verified links between
these genes reduces consequently to 5533. Again we run
BP with s = 0.25, which equals the minimal variance of
a gene found in the full data set, and we keep regulatory
links with more than 90% of confidence. The resulting
network has 6914 directed edges. Since these edges
describe logical implications between gene expression
levels, it is not clear in how far they reflect physical
binding between the TF related to the input gene, and
the promoter sequence of the target gene. It is easy to
imagine that co-regulated genes are discovered as pre-
dicting each other, or secondary targets in regulatory
cascades are recognized as direct targets.
In fact, the overlap with the experimentally verified

network is only 206 edges (the resulting network is pro-
vided in Additional File 1). In order to give a statistical
assessment of this number, we compare it to the overlap
with a null model: We scramble the links in the BP net-
work randomly preserving the in-degree of the inferred
network. The overlap with the null model is 176 ± 5.3
edges, implying a z-score of 5.5, and a p-value of 1.18 ×
10-8 (under the hypothesis that the distribution of
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overlaps is Gaussian with mean and variance given by
the null-model).
To check the effect of an increased number of experi-

ments, we downloaded 1013 microarrays from the Stan-
ford Microarray Database (SMD) [47]. Now 2614 target
genes and 157 regulatory genes pass the statistical test,
and the coverage of the experimental network increases
to 7635 links. With respect to Gasch’s data set, we use a
6-fold higher number of arrays coming from different
experiments, so we run BP at a higher noise value s =
1.5. The resulting BP network has 16176 edges (around
three times the number of edges inferred with Gasch
dataset alone). The overlap with the experimentally veri-
fied network is 406 edges (the resulting network is pro-
vided in Additional File 1). The overlap with the null-
model is 314 ± 7.9 edges. Thus we find a z-score of
11.6, and a p-value of 1.6 × 10-31. As a comparison, we
decided to analyze the same data set and the same set
of 157 potential transcription factor with the ARACNe
software [35]. To obtain statistically similar networks we
set the data processing inequality threshold (a tunable
parameter for controlling the overall number of edges in
the network) to 0.10: the resulting network has 19775
directed edges (note that ARACNe produces undirected

links). The overlap with the experimentally verified net-
work is of 480 edges (data in Addition Files). The over-
lap with the null-mode is 424 ± 9.8 edges, with a
z-score of 5.7 and a p-value of 3.0 × 10-9.
The sensible increase of statistical significance with

respect to the results using Gasch’s data is encouraging:
It indicates in quantitative form, that larger microarray
numbers would allow for extracting substantially more
information about regulatory processes from gene
expression data.

Inference of the PDR network
We finally apply our algorithm to a small dataset, to
tackle an issue of direct medical relevance: drug resis-
tance among yeasts. S. cerevisiae is able to resist many
drugs, using an ensemble of genes connected in the
“pleiotropic drug resistance” network. The basic
mechanism is that these genes, regulated by the master
regulator PDR1, can export a broad range of substances
out of the cell - drugs included. This general feature has
been discovered in many organisms, and is considered a
generic and robust mechanism of drug resistance, from
bacteria to yeasts [48]. The precise regulations acting in
this network are yet unknown, even if numerous works

Fig 3 An example of combinatorial control. Example for combinatorial control. Top: Three top inputs found by BP, with the prediction
compared to the real output. The left bars are training, the right test data. Bottom: Three most Pearson-correlated genes and corresponding
prediction. Over- (under-) expression is depicted in red (blue).
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have already uncovered a part of them [49-52]. Here we
propose to look for combinatorial regulations in this
network, in order to better understand how transcrip-
tion factors dedicated to drug resistance collaborate to
ensure cell survival in harsh conditions - that is, in the
presence of drugs. We run our algorithm on 40 genes
known to be involved in PDR processes as targets -
selection was based on literature -, and use all 157 tran-
scription factors annotated in the database YEASTRACT
[53] as potential regulators. The expression data consist
of 912 microarrays from SMD [47]. Due to its small
size, the statistical properties of the inferred network
(see Fig 4) are quite different from the global one : 265
links were inferred at 95% confidence, giving a high
average of 6.65 regulators per regulated gene. All target
genes had at least one regulator; in fact only one had a
single regulator (the GIS1 ® STB5 couple).
Again, as a comparison, we decided to analyze the

same data set ARACNe. To obtain statistically similar
networks, we set the data processing inequality to 0.10:

247 links were inferred (note that ARACNe produces
undirected links). Both networks are provided in Addi-
tional File 1. As a first observation we note that 13 out
of the 40 target gene appear not regulated in the ARA-
CNe network. We can conclude that, at least in this
case, ARACNe seems to produce links which are more
concentrated to a smaller target number, with an in-
degree of 9.14 ± 6.6 TF/regulated target (to be con-
fronted with the BP results of 6.625 ± 3.6).
Compared to the latest version of YEASTRACT, we

find the following numbers of overlapping links: 16 in
our case (if we consider the TF ® target direction), and
28 if the direction is not taken into account. ARACNe,
which produces an undirected network, has only 22 over-
lapping links. We also compared our findings with the
network presented in the work of Balaji et al. [46]: in the
BP case we match 8 directed edges and 15 undirected
ones, whereas ARACNe matches 9 undirected links.
Moreover, a closer look to some predicted cases of

combinatorial control gives interesting insights into the

Fig 4 The PDR network inferred. The PDR regulatory network inferred by BP, comprising 157 TF and 40 targets. Targets are shown in grey.
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biology of drug resistance. In particular, we find RPN4, a
transcriptional regulator of the proteasome, regulated by
both PDR3 and YAP1. This interaction between drug
resistance and the proteasome was already hinted in
previous works concerning global stress resistance [54],
and was recently proved experimentally [1]. This case is
not found when running ARACNe on the same dataset,
emphasizing the need for specially designed algorithms
in order to uncover new cases of combinatorial control.
Another interesting case of combinatorial regulation
predicted in this analysis is the cross regulation of YAP1
and RAS1 by PDR1, PDR3 and RPN4. This complex
regulation could therefore link drug resistance and pro-
teasome regulation to the processes of cell aging and
proliferation, regulated by RAS1. However, to our best
knowledge there is no experimental evidence of this
link, which is to be confirmed.

Conclusions
In this work, we have presented an effcient method for
genome-wide inference of regulatory networks, particu-
larly designed to take into account cases of genetic com-
binatorial control. The method, based on message
passing, was tested on a small in-silico model for the
cell-cycle regulation in yeast, and then applied to both a
large-scale and a small-scale dataset. The test shows the
accuracy of the method in case of informative data, and
the applications predict meaningful network structures.
One relevant feature of our algorithm is its capability

of unveiling patterns of combinatorial control. Even if
the model of gene-regulation we used (linear superposi-
tion of inputs, followed by a non-linear function) is very
simple, it allows for regulators which account only for
part of the target expression, and which may be cor-
rected for by other regulators under other conditions,
cf. Fig 3.
From the algorithmic point of view, our methodology

allows to explore combinatorially the full space of reg-
ulatory networks while keeping the computational time
short. The flexibility of the approach allows for inte-
grating other type of data: to give an example, infor-
mation about putative transcription factor binding sites
in the regulatory region of an output gene can be
easily integrated via a transcription-factor dependent
diluting field h.
Finally, our method can be generalized to tackle a

variety of issues in the field of gene regulation inference.
One possibility is to try to discover new regulators, by a
corrective methodology, starting with a known regula-
tory network and looking for the most relevant regula-
tions to be added to this network. Another possibility is
to use the information of combinatorial control in con-
junction with the nature of the expression data to
explain which conditions allow which combinatorial

controls, opening the door to a wealth of genetic experi-
ments and to a better understanding of the complexity
of gene regulation.

Methods
Data encoding
Gene expression data are encoded into a (N + 1) × M
input matrix of entries xi

 , with i = 0.1,..., N and μ =
1,..., M, where M is the number of experiments (arrays),
N + 1 is the number of genes. The value xi

 is a real
number that quantifies the level of expression of gene i
in sample μ; more precisely, xi

 is the i log-ratio of the
actual expression of the gene i and the expression of the
same gene in a reference condition. A negative (positive)
value indicates the under- (over-)expression of gene i
i sample μ with respect to the reference. Here we use
the vectorial notation x  ≡ ={ } , ,x i Ni 0  to indicate
expression pattern μ.
The task is the reconstruction of a network model

which may explain these data. Using a statistical-physics
analogy, starting from some snapshots of the micro-
scopic state of a system one tries to infer the energy
function (Hamiltonian) governing its behavior. Note that
due to the directed nature of gene networks this task
can be formally factorized over regulated genes: we can
ask first, which genes have a regulatory influence on
gene 0, and how they interact combinatorially. Then we
ask the same question for the regulators of gene 1, 2,...,
N. To further simplify the possible influence other genes
can have on target gene 0, we aim at a ternary classifica-
tion of the influence of a gene i on 0:

J

i

i→ =
−

0

1

0

if gene  represses the expression of gene 0,

if genne  does not regulate gene 0,

if gene  activates the ex

i

i1 ppression of gene 0.

⎧
⎨
⎪

⎩
⎪

This classification scheme is clearly an oversimplifica-
tion with respect to biological reality, where a whole
range of positive and negative interaction strengths is
expected. On the other hand, given the peculiar restric-
tion posed by the limited number of available expression
patterns, having a simple but meaningful model reduces
the risk of overfitting and produces results which are
easier to interpret. Our algorithm can be easily extended
to include more than three values for the Ji®0; in most
cases we have analyzed this generalization does not
increase the predictive power.

A minimal deterministic model of gene regulation
As a minimal functional model, we assume that a gene
becomes over-expressed if the joint influence of its
regulators is above some threshold -τ, and it is
repressed if the joint influence is below -τ. Hence,
indicating the sign function by sign(·), and introducing
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to hold for as many expression patterns μ = 1,..., M as
possible. In this sense, each pattern poses a constraint
on the coupling vector J = (J1®0,..., JN®0), and the pro-
blem of finding a good candidate vector J can be under-
stood as an instance of a constraint satisfaction problem.
A cost function for this problem counts the number of
errors made in Equation (3),

0 0

1

( ) ( ( )),J J= − +
=

∑Θ x d
M

 



 (4)

with Θ being the Heaviside step function. Obviously
threshold functions form only a restricted function
space. Functions like a XOR (or real-valued generaliza-
tions of it) are not implementable in this way. However,
due to the before-mentioned problems with data quan-
tity and quality and the risk of overfitting we must
restrict our model to a class of functions which is biolo-
gically reasonable but does not depend on too many
parameters.
The simplest prior biological knowledge we can

include at this point is the sparsity of regulatory net-
works. In this sense, we are looking for coupling vectors
J which are as sparse as possible, i.e. which contain as
few as possible non-zero elements. The number of these
entries is counted by

N Ji

i

M

eff ( ) | |,J = →
=
∑ 0

1

(5)

and will be incorporated into the cost function,

 ( ) ( ) ( )J J J= +0
hN eff (6)

with h acting as a parameter controlling the relative
importance of the two contributions: A small h will
favor couplings of low ℋ0, a high h will force couplings
to be sparse at the cost of possibly not satisfying some
pattern constraints. We introduce a formal inverse tem-
perature b and the corresponding Gibbs distribution

P hNGibbs eff( ) exp( ),J ∝ − −0 (7)

with h h=   . At the end we are interested in the low-
b case where the Gibbs distribution concentrates in
low-cost configurations.

A minimal stochastic model of gene regulation
The previous deterministic scheme is appealing for its
simplicity but does not take into account the noise pre-
sent in real data. We will assume first that the actual
expression value of gene 0 is given as the sum of the
measured value x0

 and a Gaussian noise h of zero
mean and variance s2:

sign sign( ) ( ).x d0
  + = +J (8)

Denoting a centered Gaussian of variance s2 by
 0, ( )  , we can write the probability of measuring a
given value x0

 for variable 0 as

P x d x d

x d

( | , ) ( ) [( )( )]

( )

0 0

1
2

0
2

 


    

  

x

erfc

J

J

J∝ + +

= −
+

∞

∞

∫  Θ



⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
.

(9)

For s ® 0 we go back to the deterministic model (3),
s > 0 smoothes the Heaviside function into a sigmoidal
function. The noise level that we estimate from data is
encoded in the value of s.

Bayesian Inference
We turn (9) into a probabilistic Bayesian framework
[55]. Assuming statistical independence of xμ for μ =
1,..., N, Bayes theorem allows to write the posterior
probability of a coupling vector J:

P P x d PN

M

( |{ } ) ( | ) ( ), ,J JJx 


 


=

=

∝ ∏1 0

1

 (10)

As a prior for the coupling we use the distribution P
(J) ∝ exp{-hNeff(J)} favoring (sparse) connections with
small Neff. Unsurprisingly, for s ® 0 one recovers Equa-
tion (7).
From this point of view the choice of the prior is ana-

logous L1 regularization method [56], but on a discrete
vector of elements in {±1, 0}, i.e. in a case where the L1

regularization is equivalent to the L0 one.

Belief Propagation
The belief propagation (BP) algorithm is exact on tree-
like graphical models, but it has been extensively used
as an heuristic procedure to solve problems defined on
sparse graphs [57,58]. Recently, the same approach has
been shown to be a good approximation also for pro-
blems with dense graph structure [59-61]. BP is an itera-
tive algorithm for estimating marginal probability
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distributions. It works by locally exchanging messages,
until global consistence is achieved. The messages sent
between variable nodes i (couplings) and function nodes
μ (constraints) are:

• The probability rμ®i(Ji®0) that constraint μ forces
variable i to assume value Ji ® 0.
• The probability Pi®μ(Ji®0) that variable i takes
value Ji®0 in the absence of constraint μ.

The BP equations establish an approximate relation
between these messages,

P J e Ji i
h J

i i
i

→ →
−

→ →
≠

∝ → ∏ 
 

( ) ( ),| |
0 0

0
(11)

 
 

→ → → →
≠

∝
→ ≠

∑ ∏i i

J

N

j j

j i

J P x J

j j i

( ) ( | ,. ) ( ).
{ }|

0 0 0

0

x J (12)

Proportionality constants are easily determined by
normalization. The algorithm starts from randomly initi-
alized messages and stops when convergence is reached.
Our convergence criterion requires the difference
between all message at time t and the corresponding
ones at time t - 1 to be less than a pre-defined threshold
(10-8 in our simulations). Upon convergence marginal
probability distributions are given by

P J e Ji i
h J

i i

M
i( ) ( ).| |

→
−

→ →
=

∝ ∏0 0

1




(13)

From the point of view of algorithmic complexity,
Eq. (12) still contains a sum over  (3N) terms, so the
direct implementation of BP is not feasible for large
systems. This problem can be solved approximately:
Eq. (12) can be understood as the average of
P x( | ,. )0

 x J over N - 1 independent random variables
{Jj®0|j ≠ i}, with P x( | ,. )0

 x J depending on the cou-
pling vector only via the sum J xj jj →∑ 0

 . For a suffi-
ciently large system we can use the central limit
theorem and approximate the exponential sum by a
single Gaussian integration,


 

 → → →
−∞

∞
∝ +

→ →∫i i h i iJ dy y P x y J x
i i

( ) ( ) ( | ),0 0 0 Δ (14)

With

h x Ji j j j

j i




→ → →
≠

= 〈 〉∑ 0 (15)

Δ 


 → → → → →
≠

= 〈 〉 − 〈 〉∑i j j j j j

j i

x J J2
0

2
0

22

( ). (16)

The notation 〈·〉j®μ stands for the average over
Pj®μ(Jj®0).
Of course the central limit theorem is meant to be

valid in the limit of N ® ∞. In practice the Gaussian
approximation produces the same results as the exact
computation of Eq. (12) already for N ~ 10 (where the
exact computation is clearly feasible).

Computational complexity
By means of the Gaussian approximation, the complex-
ity of Eq. (12) is reduced from  (3N) to  (N), and
that of the overall iteration to  (MN). The apparent
complexity  (MN2) of updating M N messages in time
 (N) can be reduced to  (MN). by a simple trick:
The sums in Eqs. (16) can be calculated over all j once
for each μ, so only the contribution of i has to be
removed in the update of rμ®i for each i. This allows to
make the single update step in constant time. A precise
estimate of the overall complexity of the algorithm
would require to control the scaling of the number of
iterations needed for convergence. A theoretical analysis
of BP convergence times in a general setting remains
elusive. Some recent progress for the simpler matching
problem can be found in [62]. In all the simulations pre-
sented in this work, convergence is always reached in
less then 50 iterations.
It would be interesting to compare the efficiency of

our algorithm with the computational strategy proposed
in [33], based on a Monte Carlo Markov Chain
(MCMC) sampler over the model space. In our experi-
ence, however, MCMC methods have in general some
intrinsically associated problems, mainly due to the fact
that the convergence (or mixing) time is hard to assess
and often is exponential.

Observables
Marginals - We do not aim at constructing a single
high-scoring coupling vector J like in a max-likelihood
approach. Depending on the shape of the probability
space, this vector might be very different from the one
actually generating the data. We are instead interested
in characterizing the ensemble of all high-scoring vec-
tors, or more precisely in the marginal probabilities
P J Pi i J j j i

( ) ( |{ })
{ }|

→ =
→ ≠

∑0
0

J x 
, which tell us how fre-

quently the coupling from i to 0 takes value Ji®0. We
can therefore base a global ranking of all potential cou-
plings i ® 0 on the probabilities 1 - Pi(Ji®0 = 0) of
being non-zero.
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When dealing with an artificial data set generated by a
known coupling vector Jtrue, we can measure the simi-
larity of our inference result J with the true coupling.
To this aim we define

J J

J J

i i

i i

→ →

→ →

= =

≠ =
0 0

0 0

0 0

0 0

true

true

true negative (TN),

fal

, :

, : sse negative (FN),

false positive (FP),trueJ J

J

i i

i

→ →= ≠0 00 0, :

→→ →≠ ≠0 00 0true true positive (TP)., :J i

(17)

The objective of inference is predicting a fraction of
all couplings with high precision, i.e. to have an as high
as possible number of TP with a low number of FP. The
quality of the inference can be accounted for by con-
fronting recall (or sensitivity) RC = NTP /(NTP + NFN)
and precision (or specificity) PR = NTP /(NTP + NFP).
The recall describes the fraction of all existing non-zero
couplings which are recovered by the algorithm, whereas
the precision tells us the fraction of all predicted links
being actually present in the data generator.
Entropy - An interesting quantity to measure is the

entropy, i.e. the logarithm of the number of high-scoring
coupling vectors compatible with our data set. Within
BP, it can be approximated by the Bethe-entropy

S S M Si

i

NM

= − −
==
∑∑ 



( )1
11

(18)

where Sμ = -∑J Pμ(J) ln Pμ(J), and Si = -∑Ji Pi(Ji) ln Pi
(Ji), and Pμ(J) is defined as

P P x P Ji i

i


 

( ) ( | ,. ) ( ),J J∝ → →∏0 0x (19)

i.e. it takes into account the contribution of a single
constraint to the probability distribution of J.

Parameter fixing and zero-entropy criterion
The diluting field h is the conjugate variable of the num-
ber of effective link N Jeff ( )


, so we can equivalently fix

one of the two quantities. One can decide to fix the num-
ber of effective links, and thus the size of the searched
gene signature, and to choose h accordingly. To find the
correct value of h we apply a cooling procedure where,
after each interaction of the BP equations step, we
increase (resp. decrease) h depending on whether the
effective number of link is higher (resp. lower) than the
desired value. Since the true number of relevant genes is
an unknown quantity, the chosen value for N Jeff ( )


, itself

is a free parameter. In practice, in the cooling procedure
of the h field, we monitor the value of the entropy and
we stop the iteration when as soon as it becomes lower

then zero, i.e. at the point where we are able to restrict
the of the number of possible solution to our problem to
a sub-exponential number (remember that the entropy
here indicates the logarithm of the number of solutions).
Upon a further increase of h the entropy becomes nega-
tive, and no zero energy solution is found at that value of
the dilution parameter h.
In all our simulations we have taken the limit b ® ∞.
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