
Improving the Betweenness Centrality of a Node

by Adding Links

ELISABETTA BERGAMINI, Karlsruhe Institute of Technology, Germany

PIERLUIGI CRESCENZI, University of Florence, Italy

GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI), Italy

HENNING MEYERHENKE, Institute of Computer Science, University of Cologne, Germany

LORENZO SEVERINI, ISI Foundation, Italy

YLLKA VELAJ, University of Chieti-Pescara, Italy

Betweenness is a well-known centrality measure that ranks the nodes according to their participation in

the shortest paths of a network. In several scenarios, having a high betweenness can have a positive im-

pact on the node itself. Hence, in this article, we consider the problem of determining how much a vertex

can increase its centrality by creating a limited amount of new edges incident to it. In particular, we study

the problem of maximizing the betweenness score of a given node—Maximum Betweenness Improvement

(MBI)—and that of maximizing the ranking of a given node—Maximum Ranking Improvement (MRI). We

show that MBI cannot be approximated in polynomial-time within a factor (1 − 1
2e ) and that MRI does not

admit any polynomial-time constant factor approximation algorithm, both unless P = NP . We then propose

a simple greedy approximation algorithm for MBI with an almost tight approximation ratio and we test its

performance on several real-world networks. We experimentally show that our algorithm highly increases

both the betweenness score and the ranking of a given node and that it outperforms several competitive

baselines. To speed up the computation of our greedy algorithm, we also propose a new dynamic algorithm

for updating the betweenness of one node after an edge insertion, which might be of independent interest.

Using the dynamic algorithm, we are now able to compute an approximation of MBI on networks with up to

105 edges in most cases in a matter of seconds or a few minutes.

CCS Concepts: • Mathematics of computing → Approximation algorithms; • Theory of computation

→ Dynamic graph algorithms; • Applied computing → Sociology;

Additional Key Words and Phrases: Betweenness centrality, graph augmentation, greedy algorithms, network

analysis

This work is partially supported by German Research Foundation (DFG) grant ME-3619/3-2 (FINCA) within the Priority

Programme 1736 Algorithms for Big Data and by the Italian Ministry of Education, University, and Research (MIUR) un-

der PRIN 2012C4E3KT national research project AMANDA - Algorithmics for MAssive and Networked DAta. We thank

Dominik Kiefer (Karlsruhe Institute of Technology) for help with the experimental evaluation.

Authors’ addresses: E. Bergamini, Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, 76161, Germany;

email: elisabetta.bergamini89@gmail.com; P. Crescenzi, University of Florence, Viale Morgagni 65, 50134, Florence, Italy;

email: pierluigi.crescenzi@unifi.it; G. D’Angelo, Gran Sasso Science Institute (GSSI), Viale F. Crispi, 7, 67100, L’Aquila,

Italy; email: gianlorenzo.dangelo@gssi.infn.it; H. Meyerhenke, Institute of Computer Science, University of Cologne, Wey-

ertal 121, Cologne, 50931, Germany; email: h.meyerhenke@uni-koeln.de; L. Severini, ISI Foundation, Via Chisola, 5, 10126,

Torino, Italy; email: lorenzo.severini@isi.it; Y. Velaj, University of Chieti-Pescara, Viale Pindaro 42, 65127, Pescara, Italy;

email: yllka.velaj@gssi.infn.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1084-6654/2018/08-ART1.5 $15.00

https://doi.org/10.1145/3166071

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3166071


1.5:2 E. Bergamini et al.

ACM Reference format:

Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’angelo, Henning Meyerhenke, Lorenzo Severini, and

Yllka Velaj. 2018. Improving the Betweenness Centrality of a Node by Adding Links. ACM J. Exp. Algorithmics

23, 1, Article 1.5 (August 2018), 32 pages.

https://doi.org/10.1145/3166071

1 INTRODUCTION

In recent years, the analysis of complex networks has become an extremely active research area.
One of the main tasks in network analysis is computing the ranking of nodes based on their struc-
tural importance. Since the notion of importance can vary significantly depending on the applica-
tion, several centrality measures have been introduced in the literature. One of the most popular
measures is betweenness centrality, which ranks the nodes according to their participation in the
shortest paths between other node pairs. Intuitively, betweenness measures a node’s influence on
the flow circulating through the network, under the assumption that the flow follows shortest
paths.

Computing betweenness centrality in unweighted graphs requires Θ(nm) time with Brandes’s
algorithm [13], where n is the number of nodes and m is the number of edges. Since this can be
prohibitive for very large networks, several approximation algorithms exist in the literature [12,
25, 50, 51]. Also for dynamic networks that evolve over time, such as social networks and the
web graph, recomputing betweenness at every timestep can be too expensive. For this reason,
a variety of dynamic algorithms have been proposed over the last years [8, 26, 29, 33, 41, 48].
These algorithms usually keep track of the betweenness scores and additional information, such
as the pairwise distances, and update them accordingly after a modification in the graph. Another
problem that has recently been considered for betweenness and other centrality measures is the
quick identification of the k most central nodes without computing the score of each node [6, 34].

There are several contexts in which having a high betweenness can be beneficial for the node
itself. For example, in the field of transportation network analysis, the betweenness centrality
seems to be positively related to the efficiency of an airport (see Reference [38], where a network
of 57 European airports has been analyzed). Also, increasing the betweenness of an airport would
mean more traffic flowing through it and possibly more customers for its shops. In the context of
social networks, Valente and Fujimoto [55] claim that brokers (or “bridging individuals”) “may be
more effective at changing others, more open to change themselves, and intrinsically interesting
to identify.” In Reference [20], the authors show that a slightly modified version of betweenness
centrality can be used to find brokers. Also, the authors of Reference [37] show experimentally
that nodes with high betweenness are also very effective in spreading influence to other nodes in
a social network. Therefore, it might be interesting for a user to create new links with other users
or pages to increase his own influence spread.

The problem of increasing the centrality of a node has attracted considerable attention for
page-rank [1, 43], where much effort has been devoted to “fooling” search engines to increase
the popularity of some web pages (an example is the well-known link farming [57]). In addition to
page-rank, the problem has been considered also for other centrality measures, such as closeness
centrality [16] and eccentricity [19, 47].

In the above-mentioned contexts, it is reasonable to assume that, to increase its betweenness, a
node can only add edges incident to itself. Hence, in this article, we address the following problem:
assuming that a node v can connect itself with k other nodes, how can we choose these nodes to
maximize the betweenness centrality of v? In other terms, we want to add a set of k edges to the
graph (all incident tov), such that the betweenness ofv in the new graph is as high as possible. For

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.

https://doi.org/10.1145/3166071


Improving the Betweenness Centrality of a Node by Adding Links 1.5:3

directed graphs, we assume the edges we want to add are of the form (w,v ) (i.e., incoming edges).
However, our results apply also to the problem where k outgoing edges need to be added. Indeed,
in our proofs, we could simply use G transposed instead of G, and the results would also be valid
in the case where we want to add outgoing edges.

Since in some contexts one might be more interested in having a high ranking among other
nodes rather than a high betweenness score, we also consider the case where we want to maxi-
mize the ranking increment of a node instead of its betweenness. We call such two optimization
problems maximum betweenness improvement (MBI) and maximum ranking improvement (MRI),
respectively.

Our Contribution. We study both MBI and MRI problems in directed graphs. Our contribution
can be summarized as follows: (i) We provide two hardness results, one for MBI and one for MRI.
In particular, we prove that, unless P = NP , MBI cannot be approximated within a factor greater
than 1 − 1

2e
. Also, we show that, for any constant α ≤ 1, there is no α−approximation algorithm

for MRI, unless P = NP (Section 4). (ii) We propose a greedy algorithm for MBI, which yields a
(1 − 1

e
)−approximation (Section 5). This is in contrast with the results for the undirected graph

case, where it is known that the same algorithm has an unbounded approximation ratio [17]. The
complexity of the algorithm, if implemented naively, is O (kn2m). (iii) To make our greedy ap-
proach faster, we also develop a new algorithm for recomputing the betweenness centrality of a
single node after an edge insertion or a weight decrease (Section 6). The algorithm, which might be
of independent interest, builds on a recent method for updating the betweenness of all nodes [8].
In the worst case, our algorithm updates the betweenness of one node in O (n2) time, whereas all
existing dynamic algorithms have a worst-case complexity of at least Θ(nm). This is in contrast
with the static case, where computing betweenness of all nodes is just as expensive as computing
it for one node (at least, no algorithm exists that computes the betweenness of one node faster than
for all nodes). In a context where the betweenness centrality of a single node needs to be recom-
puted, our experimental evaluation (Section 7.2) shows that our new algorithm is much faster than
existing algorithms, on average by a factor 18 for directed and 29 for undirected graphs (geomet-
ric mean of the speedups). Also, using our dynamic algorithm, the worst-case complexity of our
greedy approach for MBI decreases to O (kn3). However, our experiments show that it is actually
much faster in practice. For example, we are able to target directed networks with hundreds of
thousands of nodes in a few minutes.

In terms of solution quality, our experiments in Section 7.1 show that on directed random graphs,
the approximation ratio (the ratio between the solution found by the optimum and the one found by
our greedy algorithm) is never smaller than 0.96 for the instances used. Also, we show that on real-
world networks the greedy approach outperforms other heuristics, both in terms of betweenness
improvement and ranking improvement. Although the approximation guarantee holds only for
directed graphs, our tests show that the greedy algorithm works well also on undirected real-world
networks.

2 RELATED WORK

Centrality Improvement. In the following, we describe the literature about algorithms that aim at
optimizing some property of a graph by adding a limited number of edges. In Reference [39], the
authors give a constant factor approximation algorithm for the problem of minimizing the average
shortest-path distance between all pairs of nodes. Other works [45, 46] propose new algorithms for
the same problem and show experimentally that they are good in practice. In Reference [4], the au-
thors study the problem of minimizing the average number of hops in shortest paths of weighted
graphs, and prove that the problem cannot be approximated within a logarithmic factor, unless

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:4 E. Bergamini et al.

P = NP . They also propose two approximation algorithms with non-constant approximation guar-
antees. References [54] and [52] focus on the problem of maximizing the leading eigenvalue of the
adjacency matrix and give algorithms with proven approximation guarantees.

Some algorithms with proven approximation guarantees for the problem of minimizing the
diameter of a graph are presented in References [10] and [22].

In References [36] and [18], the authors propose approximation algorithms with proven guar-
antees for the problem of making the number of triangles in a graph minimum and maximum,
respectively. In Reference [44], the author studies the problem of minimizing the characteristic
path length.

The problem analyzed in this article differs from the above mentioned ones as it focuses on
improving the centrality of a predefined vertex. Similar problems have been studied for other cen-
trality measures, i.e., page-rank [1, 43], eccentricity [19, 47], average distance [39], some measures
related to the number of paths passing through a given node [28], and closeness centrality [15,
16]. In particular, in Reference [16] the authors study the problem of adding a limited amount of
edges incident to a target node to increase its harmonic centrality (a variant of closeness). They
prove that the problem cannot be approximated within a factor greater than 1 − 1

3e
(1 − 1

15e
on

undirected graphs) and they design a 1 − 1
e

-approximation algorithm to solve it. They also make
use of heuristics to decrease the computational time and run experiments on large real-world net-
works. In this article, we show how to adapt the greedy algorithm presented in Reference [16],
according to the definition of betweenness centrality to study the MBI problem.

The MBI problem has been studied for undirected weighted graphs [17] and it has been proved
that, in this case, the problem cannot be approximated within a factor greater than 1 − 1

2e
, unless

P = NP . They proved this bound using a technique similar to the one used in Reference [15] for
the harmonic centrality (and to the one used in this article for directed graphs). Also, D’Angelo
et al. [17] show that a natural greedy algorithm exhibits an arbitrarily small approximation ratio.
Nevertheless, in their experiments on small networks with up to few hundreds of nodes, they
show that the greedy algorithm provides a solution near to the optimal. In this article, we make
the greedy algorithm orders of magnitude faster by combining it with a new dynamic algorithm
for updating the betweenness of one node and we study the behavior of the algorithm on directed
and undirected networks with up to 104 nodes and 105 edges.

Dynamic Algorithms for Betweenness Centrality. The general idea of dynamic betweenness algo-
rithms is to keep track of the old betweenness values and to update them after some modification
happens to the graph, which might be an edge or node insertion, an edge or node deletion, or a
change in an edge’s weight. In particular, in case of edge insertions or weight decreases, the al-
gorithms are often referred to as incremental, whereas for edge deletions or weight increases they
are called decremental. All dynamic algorithms existing in the literature update the centralities of
all nodes and most of them first update the distances and shortest paths between nodes and then
recompute the fraction of shortest paths each node belongs to. The approach proposed by Green
et al. [26] for unweighted graphs maintains all previously calculated betweenness values and ad-
ditional information, like the distance between each node pair and the list of predecessors, i.e., the
nodes immediately precedingv in the shortest paths from s tov , for all node pairs (s,v ). Using this
information, the algorithm limits the recomputation to the nodes whose betweenness has actually
been affected. Kourtellis et al. [30] modify the approach by Green et al. [26] to reduce the memory
requirements from O (nm) to O (n2). Instead of storing the predecessors of each node v from each
possible source, they recompute them every time the information is required.

Kas et al. [29] extend an existing algorithm for the dynamic all-pairs shortest paths (APSP) prob-
lem by Ramalingam and Reps [49] to also update betweenness scores. Nasre et al. [41] compare

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:5

the distances between each node pair before and after the update and then recompute the depen-
dencies as in Brandes’s algorithm. Although this algorithm is faster than recomputation on some
graph classes (i.e., when only edge insertions are allowed and the graph is sparse and weighted),
it was shown in Reference [9] that its performance in practice is always worse than that of the
algorithm proposed in Reference [26]. Pontecorvi and Ramachandran [48] extend existing fully
dynamic APSP algorithms with new data structures to update all shortest paths and then recom-
pute dependencies as in Brandes’s algorithm. Different from the previous algorithms, the approach
by Lee et al. [33] is not based on dynamic APSP algorithms, but splits the graph into biconnected
components and then recomputes the betweenness values from scratch only within the compo-
nent affected by the graph update. Although this allows for a smaller memory requirement (Θ(m)
versus Ω(n2) needed by the other approaches), the speedups on recomputation reported in Ref-
erence [33] are significantly worse than those reported, for example, in Reference [26] or Kas
et al. [29].

Very recently, a new approach called iBet for updating betweenness after an edge insertion or
a weight decrease has been proposed [8]. The approach improves over the one by Kas et al. [29]
by removing redundant work in both the APSP update step and the dependency accumulation. In
their experiments, the authors show that iBet outperforms existing dynamic algorithms by about
one order of magnitude. Since our new dynamic algorithm for updating the betweenness of a single
node builds on iBet, we will describe it in more detail in Section 6.1.

Recently, also dynamic algorithms that update an approximation of betweenness centrality
have been proposed [7, 27, 51]. Notice that all existing dynamic algorithms update the between-
ness of all nodes and their worst-case complexity is, in general, the same as static recomputa-
tion. This means, for exact algorithms, O (nm) in unweighted and O (n(m + n logn)) in weighted
graphs.

3 NOTATION AND PROBLEM STATEMENT

LetG = (V ,E) be a directed graph where |V | = n and |E | =m. For each nodev , Nv denotes the set
of in-neighbors of v , i.e., Nv = {u |(u,v ) ∈ E}. Given two nodes s and t , we denote by dst , σst , and
σstv the distance from s to t in G, the number of shortest paths from s to t in G, and the number
of shortest paths from s to t in G that contain v , respectively. For each node pair (s, t ), we assume
dst ≥ 0. For each node v , the betweenness centrality [23] of v is defined as

bv =
∑

s, t ∈V
s�t ; s, t�v

σst�0

σstv

σst
. (1)

In case σst = 0, the corresponding term in the sum is defined to be 0. The ranking of each node v
according to its betweenness centrality is defined as

rv = |{u ∈ V | bu > bv }| + 1. (2)

In this article, we consider graphs that are augmented by adding a set S of arcs not in E. Given
a set S ⊆ V ×V \ E of arcs, we denote by G (S ) the graph augmented by adding the arcs in S to
G, i.e., G (S ) = (V ,E ∪ S ). For a parameter x of G, we denote by x (S ) the same parameter in graph
G (S ), e.g., the distance from s to t in G (S ) is denoted as dst (S ).

The betweenness centrality of a node might change if the graph is augmented with a set of
arcs. In particular, adding arcs incident to some node v can increase the betweenness of v and its
ranking. We are interested in finding a set S of arcs incident to a particular node v that maximizes
bv (S ). Therefore, we define the following optimization problem.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:6 E. Bergamini et al.

Fig. 1. Graph in which the addition of the edge (u,v ) affects the betweenness value but not the ranking.

Maximum Betweenness Improvement (MBI)
Given: A directed graph G = (V ,E); a node v ∈ V ; an integer k ∈ N
Solution: A set S of arcs incident to v , S = {(u,v ) |u ∈ V \ Nv }, such that |S | ≤ k
Objective: Maximize bv (S )

Note that maximizing the betweenness value of a nodev does not necessarily lead to maximizing
the ranking position of v . For example, consider the graph in Figure 1: before the addition of
the edge (u,v ) the initial betweenness values are bu = 2, bv = 1 and ba = bb = bc = bd = be = 0
while the initial ranking is ru = 1, rv = 2 and ra = rb = rc = rd = re = 0. After the addition of the
edge (u,v ) the new betweenness values are b ′u = 6, b ′v = 4 and ba = bb = bc = bd = be = 0 but the
ranking remains the same.

Therefore, we also consider the problem of finding a set S of arcs incident to node v that max-
imizes the increment of the ranking of v with respect to its original ranking. We denote such an
increment as ρv (S ), that is,

ρv (S ) = rv − rv (S ).

Informally, ρ (S ) represents the number of nodes thatv “overtakes” by adding arcs in S toG. There-
fore, we define the following optimization problem.

Maximum Ranking Improvement (MRI)
Given: A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Solution: A set S of arcs incident to v , S = {(u,v ) |u ∈ V \ N (v )}, such that |S | ≤ k
Objective: Maximize ρv (S )

4 HARDNESS OF APPROXIMATION

In this section, we first show that it is NP-hard to approximate problem MBI within a factor greater
than 1 − 1

2e
. Then, we focus on the MRI problem and show that it cannot be approximated within

any constant bound, unless P = NP .

Theorem 4.1. Problem MBIcannot be approximated within a factor greater than 1 − 1
2e

, unless

P = NP .

Proof. We give an L-reduction with parameters a and b [56, Chapter 16] to the maximum set

coverage problem (MSC) defined as follows: given a finite set X , a finite family F of subsets of
X , and an integer k ′, find F ′ ⊆ F such that |F ′| ≤ k ′ and s (F ′) = | ∪Si ∈F ′ Si | is maximum. In
detail, we will give a polynomial-time algorithm that transforms any instance IMSC of MSC into
an instance IMBI of MBI and a polynomial-time algorithm that transforms any solution SMBI for
IMBI into a solution SMSC for IMSC such that the following two conditions are satisfied for some

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:7

Fig. 2. Reduction used in Theorem 4.1. In the example, x1 ∈ S1, x1 ∈ S2, x2 ∈ S1, and x2 ∈ SF . The dashed

arcs denote those added in a solution.

values a and b:

OPT (IMBI ) ≤ aOPT (IMSC ), (3)

OPT (IMSC ) − s (SMSC ) ≤ b (OPT (IMBI ) − bv (SMBI )) , (4)

where OPT denotes the optimal value of an instance of an optimization problem. If the above
conditions are satisfied and there exists an α-approximation algorithm AMBI for MBI, then there
exists a (1 − ab (1 − α ))-approximation algorithm AMSC for MSC [56, Chapter 16]. Since it is NP-
hard to approximate MSCwithin a factor greater than 1 − 1

e
[21], then the approximation factor of

AMSC must be smaller than 1 − 1
e

, unless P = NP . This implies that 1 − ab (1 − α ) < 1 − 1
e

; that is,

the approximation factor α of AMBI must satisfy α < 1 − 1
abe

, unless P = NP . In the following, we
give an L-reduction and determine the constant parameters a and b. In the reduction, each element
xi and each set S j in an instance of MSCcorresponds to a vertex in an instance of MBI, denoted by
vxi

and vSj
, respectively. There is an arc from vxi

to vSj
if and only if xi ∈ S j . The MBI instance

contains two further nodes v and t and an arc (v, t ). A solution to such an instance consists of
arcs from nodes vSj

to v and the aim is to cover with such arcs the maximum number of shortest
paths from nodesvxi

to t . We will prove that we can transform a solution to MBIinto a solution to
MSC such that any node vxi

that has a shortest path passing through v corresponds to a covered
element xi ∈ X . We give more detail in what follows.

Given an instance IMSC = (X ,F ,k ′) of MSC, where F = {S1, S2, . . . S |F | }, we define an instance
IMBI = (G,v,k ) of MBI, where

—G = (V ,E);
—V = {v, t } ∪ {vxi

| xi ∈ X } ∪ {vSj
| S j ∈ F };

—E = {(v, t )} ∪ {(vxi
,vSj

) | xi ∈ S j };
—k = k ′.

See Figure 2 for a visualization.
Without loss of generality, we can assume that any solution SMBI to MBI contains only arcs

(vSj
,v ) for some S j ∈ F . In fact, if a solution does not satisfy this property, then we can improve it

in polynomial time by repeatedly applying the following transformation: for each arc a = (vxi
,v )

in SMBI such that xi ∈ X , exchange a with an arc (vSj
,v ) such that xi ∈ S j and (vSj

,v ) � SMBI if
it exists or remove a otherwise. Note that if no arc (vSj

,v ) such that xi ∈ S j and (vSj
,v ) � SMBI

exists, then all the shortest paths from xi to t pass through v and therefore the arc (vxi
,v ) can

be removed without changing the value of bv (SMBI ). Such a transformation does not decrease the
value of bv (SMBI ); in fact, all the shortest paths passing throughv in the original solution still pass
throughv in the obtained solution. Moreover, if Condition Equation (4) is satisfied for the obtained

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:8 E. Bergamini et al.

solution, then it is satisfied also for the original solution. In such a solution, all the paths (if any)
from vxi

to t , for each xi ∈ X , and from vSj
to t , for each S j ∈ F pass through v and therefore the

ratio σstv (SM BI )
σst (SM BI ) is 1, for each s ∈ V \ {v, t } such that σst (SMBI ) � 0. We can further assume, again

without loss of generality, that any solution SMBI is such that |SMBI | = k , in fact, if |SMBI | < k ,
then we can add to SMBI an arc (vSj

,v ) that is not yet in SMBI . Note that such an arc must exist,
otherwise k > |F | and this operation does not decrease the value of bv (SMBI ).

Given a solution SMBI = {(vSj
,v ) | S j ∈ F } to MBI, we construct the solution SMSC =

{S j | (vSj
,v ) ∈ SMBI } to MSC. By construction, |SMSC | = |SMBI | = k = k ′. Moreover, the set of el-

ements xi of X such that σvxi
t (SMBI ) � 0 is equal to {xi ∈ S j | (vSj

,v ) ∈ SMBI } =
⋃

Sj ∈SMSC
S j .

Therefore, the betweenness centrality of v in G (SMBI ) is

bv (SMBI ) =
∑

s ∈V \{v, t }
σst (SM BI )�0

σstv (SMBI )

σst (SMBI )

=
∑

xi ∈X
σvxi t (SM BI )�0

σvxi
tv (SMBI )

σvxi
t (SMBI )

+
∑

Sj ∈F
σvSj

t (SM BI )�0

σvSj
tv (SMBI )

σvSj
t (SMBI )

= |{xi ∈ S j | (vSj
,v ) ∈ SMBI }| + |{S j | (vSj

,v ) ∈ SMBI }|

=

�
�
�
�
�
�
�

⋃
Sj ∈SMSC

S j

�
�
�
�
�
�
�

+ |SMSC |

= s (SMSC ) + k .

It follows that Condition Equations (3) and (4) are satisfied for a = 2, b = 1 since: OPT (IMBI ) =
OPT (IMSC ) + k ≤ 2OPT (IMSC ) and OPT (IMSC ) − s (SMSC ) = OPT (IMBI ) − bv (SMBI ), where the
first inequality is due to the fact that OPT (IMSC ) ≥ k .1 The statement follows by plugging the
values of a and b into α < 1 − 1

abe
. �

In the next theorem, we show that, unless P = NP , we cannot find a polynomial time approxi-
mation algorithm for MRI with a constant approximation guarantee.

Theorem 4.2. For any constant α ≤ 1, there is no α-approximation algorithm for the MRI problem,

unless P = NP .

Proof. By contradiction, let us assume that there exists a polynomial time algorithm A that
guarantees an approximation factor of α . We show that we can use A to determine whether an in-
stance I of the exact cover by 3-sets problem (X3C) admits a feasible solution or not. Problem X3Cis
known to be NP-complete [24] and therefore this implies a contradiction. In the X3Cproblem, we
are given a finite set X with |X | = 3q and a collection C of three-element subsets of X and we ask
whether C contains an exact cover for X ; that is, a subcollection C ′ ⊆ C such that every element
of X occurs in exactly one member ofC ′. Note that we can assume without loss of generality that
m > q.

Given an instance I = (X ,C ) of X3C where |X | = n = 3q and |C | =m, we define an instance
I ′ = (G,v,k ) of MRI as follows.

—G = (V ,E);
—V = {v,u, t1, t2, t3} ∪ {vxi

| xi ∈ X } ∪ {vTj
|Tj ∈ C} ∪ {vT �

j
|Tj ∈ C, � = 1, 2, . . . ,M };

1If OPT (IMSC ) < k , then the greedy algorithm finds an optimal solution for MSC.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:9

Fig. 3. The reduction used in Theorem 4.2. The dashed arcs denote those added in a solution to MRI.

—E = {(vxi
,vTj

) | xi ∈ Tj } ∪ {(vTj
,vT �

j
) |Tj ∈ C, � = 1, 2, . . . ,M } ∪

{(u,v ), (v, t1), (v, t2), (v, t3)};
—k = q,

where M = 5q + 1. See Figure 3 for a visualization.
The proof proceeds by showing that I admits an exact cover if and only if I ′ admits a solution

S such that ρv (S ) > 0. This implies that, if OPT is an optimal solution for I ′, then ρv (OPT ) > 0 if
and only if I admits an exact cover. Hence, the statement follows by observing that algorithm A
outputs a solution S such that ρv (S ) > αρv (OPT ) and hence ρv (S ) > 0 if and only if I admits an
exact cover.

In I ′, bv = 3, bvTj
= 3M = 15q + 3, for eachTj ∈ C , and bw = 0, for any other nodew . Therefore,

rTj
= 1, for eachTj ∈ C , rv =m + 1, and rw =m + 2, for any other nodew . In the proof we will use

the observation that, in instance I ′, adding arcs incident to v does not decrease the betweenness
value of any node; that is, for any node w ∈ V and for any solution S to I ′, bw (S ) ≥ bw .

If instance I of X3C admits an exact cover C ′, then consider the solution S = {(vT 1
j
,v ) |Tj ∈ C ′}

to I ′. Note that |S | = q = k and therefore we only need to show that ρv (S ) > 0. Indeed, in the
following we show that ρv (S ) =m − q > 0. Since C ′ is an exact cover, then all nodes vxi

are
connected to the three nodes ti and all the paths connecting them pass through v . The same
holds for nodes vTj

and vT 1
j

such that Tj ∈ C ′. Since there are 3q nodes vxi
, q nodes vTj

such

that Tj ∈ C ′, and q nodes vT 1
j

such that Tj ∈ C ′, then the betweenness centrality of v increases

to bv (S ) = 3(5q + 1) = 15q + 3. Nodes vTj
and vT 1

j
such that Tj ∈ C ′ increase their centrality to

bvTj
(S ) = 3(M + 4) = 15q + 15 and bv

T 1
j

(S ) = 16, respectively. Any other node does not change

its betweenness centrality. Therefore the only nodes that have a betweenness higher than v are
the q nodes vT 1

j
such that Tj ∈ C ′. It follows that rv (S ) = q + 1 and ρv (S ) =m + 1 − (q + 1) =

m − q > 0.
Let us now assume that I ′ admits solution S such that |S | ≤ k and ρv (S ) > 0. We first prove that

S is only made of arcs in the form (vT 1
j
,v ) and that bv (S ) ≥ 15q + 3 or that it can be transformed

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:10 E. Bergamini et al.

in polynomial time into a solution with such a form without increasing its size. Assume that S has
arcs not in this form, then we can apply one of the following transformations to each of such arcs
e = (w,v ).

—If w = vxi
for some xi ∈ X and there exists a node vT 1

j
such that xi ∈ Tj and (vT 1

j
,v ) � S ,

then remove e and add arc (vT 1
j
,v ) to S ;

—If w = vxi
for some xi ∈ X and (vT 1

j
,v ) ∈ S for all Tj such that xi ∈ Tj , then remove e;

—If w = vTj
for some Tj ∈ C and (vT 1

j
,v ) � S , then remove e and add arc (vT 1

j
,v ) to S ;

—If w = vTj
for some Tj ∈ C and (vT 1

j
,v ) ∈ S , then remove e;

—Ifw = vT i
j

for someTj ∈ C and i > 1, and (vT 1
j
,v ) � S , then remove e and add arc (vT 1

j
,v ) to

S ;
—If w = vT i

j
for some Tj ∈ C and i > 1, and (vT 1

j
,v ) ∈ S , then remove e and add arc (vT 1

j′
,v )

to S for some j ′ such that (vT 1
j′
,v ) � S ;2

—If w = ti for i ∈ {1, 2, 3}, then remove e and add arc (vT 1
j′
,v ) to S for some j ′ such that

(vT 1
j′
,v ) � S .2

Let us denote by S ′ and S the original solution and the solution that is eventually obtained by
applying the above transformations, respectively. All the above transformations remove an arc
and possibly add another arc, therefore the size of the transformed solution is at most the original
size, that is |S | ≤ |S ′ | ≤ k . It remains to show that ρv (S ′) > 0 implies bv (S ) ≥ 15q + 3. Indeed,
observe that v is initially in position m + 1 and the only nodes that have a betweenness value
higher than v are the m nodes vTj

. Therefore, since ρv (S ′) > 0, there is at least a node vTj
such

that bv (S ′) ≥ bvTj
(S ′). Moreover, all the transformations do not decrease the value of bv and then

bv (S ) ≥ bv (S ′) and, considering that bvTj
(S ′) ≥ bvTj

= 15q + 3, we obtain bv (S ) ≥ 15q + 3.

We now prove that the solution C ′ = {Tj |(vT 1
j
,v ) ∈ S } to I is an exact cover. By contradiction,

let us assume that an element in X is not contained in any set in C ′ or that an element in X is
contained in more than one set in C ′. The latter case implies the former one since |C ′ | = q, all
the sets in C ′ contain exactly three elements, and |X | = 3q. Hence, we assume that an element
in |X | is not contained in any set in C ′. This implies that there exists a node vxi

∈ V that has no
path to nodes ti and therefore the betweenness of v is at most 3(1 + 3q − 1 + 2q) = 15q, which is
a contradiction to bv (S ) ≥ 15q + 3. �

5 GREEDY APPROXIMATION ALGORITHM FOR MBI

In this section, we propose an algorithm that guarantees a constant approximation ratio for the
MBI problem. The algorithm exploits the results of Nemhauser et al. on the approximation of
monotone submodular objective functions [42]. Let us consider the following optimization prob-
lem: given a finite set N , an integer k ′, and a real-valued function z defined on the set of subsets
of N , find a set S ⊆ N such that |S | ≤ k ′ and z (S ) is maximum. If z is monotone and submodular,3

then the following greedy algorithm exhibits an approximation of 1 − 1
e

[42]: start with the empty
set and repeatedly add an element that gives the maximal marginal gain, that is, if S is a partial
solution, choose the element j ∈ N \ S that maximizes z (S ∪ {j}).

2Note that such j′ must exists, otherwise m < q.
3For a ground set N , a function z : 2N → R is submodular if for any pair of sets S ⊆ T ⊆ N and for any element e ∈ N \T ,

z (S ∪ {e }) − z (S ) ≥ z (T ∪ {e }) − z (T ).

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:11

ALGORITHM 1: Greedy algorithm.

Input: A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {(u,v ) |u ∈ V \ Nv } such that |S | ≤ k

1 S ← ∅;
2 for i = 1, 2, . . . ,k do

3 foreach u ∈ V \ (Nv (S )) do

4 Compute bv (S ∪ {(u,v )});
5 umax ← arg max{bv (S ∪ {(u,v )}) |u ∈ V \ (Nv (S ))};
6 S ← S ∪ {(umax,v )};
7 return S ;

Theorem 5.1 ([42]). For a non-negative, monotone submodular function z, let S be a set of size k
obtained by selecting elements one at a time, each time choosing an element that provides the largest

marginal increase in the value of z. Then S provides a (1 − 1
e

)-approximation.

In this article, we exploit such results by showing that bv is monotone and submodular with
respect to the possible set of arcs incident to v . Hence, we define a greedy algorithm, reported
in Algorithm 1, that provides a (1 − 1

e
)-approximation. Algorithm 1 iterates k times and, at each

iteration, it adds to a solution S an arc (u,v ) that, when added to G (S ), gives the largest marginal
increase in the betweenness of v , that is, bv (S ∪ {(u,v )}) is maximum among all the possible arcs
not in E ∪ S incident to v . The next theorem shows that the objective function is monotone and
submodular.

Theorem 5.2. For each node v , function bv is monotone and submodular with respect to any fea-

sible solution for MBI.

Proof. We prove that each term of the sum in the formula of bv is monotone increasing and
submodular. For each pair s, t ∈ V such that s � t and s, t � v , we denote such term by bstv (X ) =
σstv (X )
σst (X ) , for each solution X to MBI.

We first give two observations that will be used in the proof. Let X ,Y be two solutions to MBI
such that X ⊆ Y .

—Any shortest path from s to t in G (X ) exists also in G (Y ). It follows that dst (Y ) ≤ dst (X ).
—If dst (Y ) < dst (X ), then any shortest path from s to t in G (Y ) passes through arcs in Y \ X .

Therefore, all such paths pass throughv . It follows that ifdst (Y ) < dst (X ), thenbstv (Y ) = 1.

We now show that bv is monotone increasing, that is for each solution S to MBI and for each
node u such that (u,v ) � S ∪ E,

bstv (S ∪ {(u,v )}) ≥ bstv (S ).

If dst (S ) > dst (S ∪ {(u,v )}), then bstv (S ∪ {(u,v )}) = 1 and since by definition bstv (S ) ≤ 1, then
the statement holds. If dst (S ) = dst (S ∪ {(u,v )}), then either (u,v ) does not belong to any shortest
path from s to t and then bstv (S ∪ {(u,v )}) = bstv (S ), or (u,v ) belongs to a newly added shortest

path from s to t with the same weight andbstv (S ∪ {(u,v )}) = σstv (S )+δ
σst (S )+δ

> σstv (S )
σst (S ) = bstv (S ), where

δ ≥ 1 is the number of shortest paths from s to t that pass through arc (u,v ) in G (S ∪ {(u,v )}). In
any case, the statement holds.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:12 E. Bergamini et al.

We now show that bstv is submodular, that is for each pair of solutions to MBI S,T such that
S ⊆ T and for each node u such that (u,v ) � T ∪ E,

bstv (S ∪ {(u,v )}) − bstv (S ) ≥ bstv (T ∪ {(u,v )}) − bstv (T ).

We analyze the following cases:

—dst (S ) > dst (T ). In this case, bstv (T ∪ {(u,v )}) − bstv (T ) = 0 since in any case bstv (T ∪
{(u,v )}) = bstv (T ) = 1. As bstv is monotone increasing, then bstv (S ∪ {(u,v )}) − bstv (S ) ≥
0.

—dst (S ) = dst (T ).
—dst (S ) > dst (S ∪ {(u,v )}). In this case, there exists a shortest path from s to t passing

through edge (u,v ) in G (S ∪ {(u,v )) and the length of such path is strictly smaller
that the distance from s to t in G (S ). Since dst (S ) = dst (T ), such a path is a short-
est path also in G (T ∪ {(u,v )}) and its length is strictly smaller than dst (T ). It follows
that dst (T ) > dst (T ∪ {(u,v )}) and bstv (T ∪ {(u,v )}) = bstv (S ∪ {(u,v )}) = 1. Moreover
bstv (T ) ≥ bstv (S ). Therefore bstv (S ∪ {(u,v )}) − bstv (S ) ≥ bstv (T ∪ {(u,v )}) − bstv (T ).

—dst (S ) = dst (S ∪ {(u,v )}). In this case dst (T ) = dst (T ∪ {(u,v )}). Let us denote bstv (S ) =
α
β

, then we have that bstv (T ) =
α+γ

β+γ
, bstv (S ∪ {(u,v )}) = α+δ

β+δ
, and bstv (T ∪ {(u,v )}) =

α+γ+δ

β+γ+δ
, where γ and δ are the number of shortest paths between s and t inG (T ) that pass

through arcs inT \ S and arc (u,v ), respectively. The statement follows since α+δ
β+δ
− α

β
≥

α+γ+δ

β+γ+δ
− α+γ

β+γ
for any α ≤ β , i.e., σstv (S ) ≤ σst (S ). �

Corollary 5.3. Algorithm 1 provides a (1 − 1
e

)-approximation for the MBI problem.

It is easy to compute the computational complexity of Algorithm Greedy. Line 2 iterates over
all the numbers from 1 to k . Then, in Line 3, all the nodes u that are not yet neighbors of v are
scanned. The number of these nodes is clearlyO (n). Finally, in Line 4, for each nodeu in Line 3, we
add the edge {u,v} to the graph and compute the betweenness in the new graph. Since computing
betweenness requires O (nm) operations in unweighted graphs, the total running time of Greedy
isO (kn2m). In Section 6, we show how to decrease this running time toO (kn3) by using a dynamic
algorithm for the computation of betweenness centrality at Line 4.

6 DYNAMIC ALGORITHM FOR BETWEENNESS CENTRALITY OF A SINGLE NODE

Algorithm 1 requires us to add edges to the graph and to recompute the betweenness centrality
bv of node v after each edge insertion. Instead of recomputing it from scratch every time, we use
a dynamic algorithm. The idea is to keep track of information regarding the graph and just update
the parts that have changed as a consequence of the edge insertion. As described in Section 2,
several algorithms for updating betweenness centrality after an edge insertion have been proposed.
However, these algorithms update the betweenness of all nodes, whereas in Algorithm 1 we are
interested in the betweenness of a single node. In this case, using an algorithm that recomputes
the betweenness of all nodes would require a significant amount of superfluous operations. Let us
consider the example shown in Figure 4.

The insertion of an edge (u,v ) does not only affect the betweenness of the nodes lying in the new
shortest paths, but also that of the nodes lying in the old shortest paths between affected sources
and affected targets (represented in red). Indeed, the fraction of shortest paths going through these
nodes (and therefore their betweenness) has decreased as a consequence of the new insertion.
Therefore, algorithms for updating the betweenness of all nodes have to walk over each old short-
est path between node pairs whose distance has changed. However, we will show that if we are

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:13

Fig. 4. Insertion of edge (u,v ) affects the betweenness of nodes lying in the old shortest paths (red).

only interested in the betweenness of one particular node x , we can simply update the distances
(and number of shortest paths) and check which of these updates affect the betweenness of x .
Section 6.2 describes our new dynamic algorithm for updating the betweenness of a single node
after an edge insertion. Notice that the algorithm could be used in any context where one needs
to keep track of the betweenness of a single node after an edge insertion (or weight decrease) and
not only for the betweenness improvement. Since our new algorithm builds on a recent dynamic
betweenness algorithm called iBet [8], we first describe iBet in Section 6.1 and then explain how
this can be modified to recompute the betweenness of a single node in Section 6.2.

6.1 iBet Algorithm for Updating the Betweenness of all Nodes

iBet [8] updates the betweenness of all nodes after an edge insertion or an edge weight decrease.
Just as Brandes’s algorithm [13], iBet is composed of two steps: a step where the pairwise distances
and number of shortest paths are computed, and a step where the actual betweenness values are
found.

Let us assume a new edge (u,v ) with weight ω ′u,v is inserted into the graph, or that the weight
of an existing edge (u,v ) ∈ E is decreased and set to a new value ω ′u,v . Then, let us name affected

pairs the node pairs (s, t ) such that dst ≥ dsu + ω
′
u,v + dvt . Notice that these are the nodes for

which either (u,v ) creates a shortcut (decreasing the distance), or creates one or more new shortest
paths of the same length as the old distance. Also, let the affected sources of a node t be the set S (t )
of nodes {s ∈ V : dst ≥ dsu + ω

′
u,v + dvt } and let the set T (s ) of affected targets of s be T (s ) = {t ∈

v : dst ≥ dsu + ω
′
u,v + dvt }.

In Reference [8], it was proven that if (s, t ) is an affected node pair, then s ∈ S (v ) and t ∈ T (u).
This allows us to reduce the search space of the affected pairs to the nodes whose distance to v
or from u has changed (or their number of shortest paths). Thus, a first idea would be to identify
the set S (v ) and the set T (u), which can be done with two pruned breadth-first searches (BFSs),
rooted in u and v , respectively. For each node s ∈ S (v ) and each node t ∈ T (u), we can compare
the old distance dst with the one of a path going through edge (u,v ), namely dsu + ω

′
u,v + dvt ,

and update the distance and number of shortest paths accordingly. However, iBet is more efficient
than this. Let a predecessor in a shortest path from v to t be any node x such that (x , t ) ∈ E and
dvt = dvx + dxt , and let us denote this as x ∈ Pv (t ). Then, the following lemma holds.

Lemma 6.1. [8] Let t ∈ V be any node and x ∈ Pv (t ) be a predecessor of t in the shortest paths

from v . Then, S (t ) ⊆ S (x ).

Figure 5 explains this concept. The insertion of edge (u,v ) creates a shortcut between s and
t , making (s, t ) an affected pair. Similarly, the new edge creates a shortcut between s and each

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:14 E. Bergamini et al.

Fig. 5. Insertion of edge (u,v ) creates a shortcut between s and t , but also between s and x .

predecessor of t in the shortest path from v , i.e., x . Lemma 6.1 basically tells us that we do not
need to check all pairs (s, t ) such that s ∈ S (v ) and t ∈ T (u). On the contrary, for a given target t ,
we only need to check the nodes s ∈ S (x ), where x is any node in Pv (t ). If we process the targets
in increasing order of distance fromv , this set will become smaller and smaller as we go down the
BFS tree, saving unnecessary comparisons.

Clearly, what we described is only the update of the augmented APSP. After this, iBet also needs
to update the betweenness scores of all the nodes that lie in some old or new shortest path between
an affected pair. Since this part is not necessary when updating the betweenness of a single node,
we will not describe this and refer the reader to Reference [8] for more details.

Since the augmented APSP update of iBet was shown to be significantly faster than all exist-
ing algorithms, we use it as a building block for our incremental algorithm for the betweenness
centrality of a single node, described in Section 6.2.

6.2 New Dynamic Algorithm for the Betweenness of a Single Node

iBet stores the pairwise distances dst and the number of shortest paths σst for each s, t ∈ V . When
computing the betweenness of a specific node x , we also need the number σstx of shortest paths
between s and t that go through x . Then, we can compute betweenness by using its definition given
in Equation (1). In the following, we will assume that the graphG is unweighted and connected, but
the algorithm can be easily extended to weighted and disconnected graphs, in a way analogous to
what has been done in Reference [8]. Our algorithm can be divided in two phases: an initialization

phase, where pairwise distances, σ( ·, ·) and σ( ·, ·)x are computed and stored, and an update phase,
where the data structures and the betweenness of node x are updated as a consequence of the edge
insertion.

6.2.1 Initialization. The initialization can be easily done by running a Single-Source Shortest
Path (SSSP) from each node, as in the first phase of Brandes’s algorithm for betweenness central-
ity [13]. While computing distances from a source node s to any other node t , we set the number
σst of shortest paths between s and t to the sum

∑
σsp over all predecessors p in the shortest paths

from s (and we set σss = 1). This can be done for a node s in O (m) in unweighted graphs and in
O (m + n logn) in weighted graphs (the cost of running a BFS or Dijkstra, respectively). Instead
of discarding this information after each SSSP as in Brandes’s algorithm, we store both the dis-
tances d ( ·, ·) and the numbers of shortest paths σ( ·, ·) in a matrix. After this, we can compute the
number σ( ·, ·)x of shortest paths going through x . For each node pair (s, t ), σstx is equal to σsx · σxt

if dst = dsx + dxt , and to 0 otherwise. The betweenness bx of x can then be computed using the
definition given in Equation (1). This second part can be done in O (n2) time by looping over all
node pairs. Therefore the total running time of the initialization is O (nm) for unweighted graphs
and O (n(m + n logn)) for weighted graphs, and the memory requirement is O (n2), since we need
to store three matrices of size n × n each.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:15

Fig. 6. Possible positions of x with respect to the new shortest paths after the insertion of edge (u,v ). On

the left, x lies between the source s and u. In the center, x lies between v and the target t . On the right, x
does not lie on any new shortest path between s and t .

6.2.2 Update. The update works in a way similar to iBet (see Section 6.1), with a few
differences. Algorithm 2 gives an overview of the algorithm for betweenness update for a
single node x , whereas Algorithm 3 and Algorithm 4 describe the update σ( ·, ·) and σ( ·, ·)x when
dst > dsu + ω

′
uv + dvt and when dst = dsu + ω

′
uv + dvt , respectively.

Algorithm 2 shares its structure with iBet. In Lines 2–6, after setting the new distance between
u and v , also σuv and σuvx are updated with either updateSigmaGR or updateSigmaEQ. Then,
just like in iBet, the affected sources are identified with a pruned BFS rooted in u onG transposed
(function findAffectedSources).

Then, a (pruned) BFS rooted in v is started to find the affected targets for u (Lines 12–31). In
Lines 27–31, the neighbors w of the affected target t are visited and, if they are also affected
(i.e., duw ≥ ω ′uv + dvw ), they are enqueued. Also, t is stored as the predecessor of w (Line 31).
In Lines 15–26, for each affected node pair (s, t ), we first subtract the old contribution σstx/σst

from the betweenness of x , then we recompute dst , σst and σstx with either updateSigmaGR or
updateSigmaEQ, and, finally, we add the new contribution σ ′stx/σ

′
st to bx . Notice that, if x did not

lie in any shortest path between s and t before the edge insertion, σstx = 0 and therefore bx is
not decreased in Line 17. Analogously, if x is not part of a shortest path between s and t after the
insertion, bx is not increased in Line 24.

In the following, we analyze updateSigmaGR and updateSigmaEQ separately.

UpdateSigmaGR. Let us consider the case dst > dsu + ω
′
uv + dvt . In this case, all the old shortest

paths are discarded, as they are not shortest paths any longer, and all the new shortest paths go
through edge (u,v ). Therefore, we can set the new number σ ′st of shortest paths between s and t
to σsu · σvt . Since all old shortest paths should be discarded, also σstx depends only on the new
shortest paths and not on whether x used to lie in some shortest paths between s and t before
the edge insertion. Depending on the position of x with respect to the new shortest paths, we
can define three cases, depicted in Figure 6. In Figure 6(a) (left), x lies in one of the shortest paths
between s and u. This means that it also lies in some shortest paths between s and t . In particular,
the number of these paths σ ′stx is equal to σsux · σvt . Notice that no shortest paths between s and
u can be affected (as shown in Reference [8]) and therefore σsux = σ ′x (s,u). In Figure 6(b) (center),
x lies in one of the shortest paths between v and t . Analogously to Case 1, the new number of
shortest paths between s and t going through x is σ ′stx = σsu · σvtx . Notice that Figures 6(a) and
(b) cannot both be true at the same time. In fact, if dsu = dsx + dxu and dvt = dvx + dxt , we would
have that d ′st = dsu + ω

′
uv + dvt = dsx + dxu + ω

′
uv + dvx + dxt > dsx + dxt , which is impossible,

since d ′st is the shortest-path distance between s and t . Therefore, at least one among σsux and
σvtx must be equal to 0. Finally, in Figure 6(c) (right), σsux and σvtx are both equal to 0, meaning

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:16 E. Bergamini et al.

ALGORITHM 2: Update of bx after an edge insertion

Algorithm: Incremental betweenness

Input: Graph G = (V , E ), edge update (u, v, ω′uv ), pairwise distances d (·, ·) , numbers σ(·, ·) of shortest paths,

numbers σ(·, ·)x of shortest paths through x , betweenness value bx of x

Output: Updated d (·, ·) , σ(·, ·) , σ(·, ·)x and bx

Assume: boolean vis (v ) is false, ∀v ∈ V

1 if duv ≥ ω′uv then

2 if duv > ω′uv then

3 duv ← ω′uv ;

4 σuv , σuvx ←updateSigmaGR(G, (u, v ), d, σ , σx );

5 else

6 σuv , σuvx ←updateSigmaEQ(G, (u, v ), d, σ , σx );

7 S (v ) ← findAffectedSources(G, (u, v ), d);

8 Q ← ∅;
9 P (v ) ← v ;

10 Q .push (v );

11 vis (v ) ← true;

12 while Q .length() > 0 do

13 t = Q .front();

14 foreach s ∈ S (P (t )) do

15 if dst ≥ dsu + ω′uv + dvt then

16 if x � s and x � t then

17 bx ← bx − σst x /σst ;

18 if dst > dsu + ω′uv + dvt then

19 σst , σst x ←updateSigmaGR(G, (u, v ), d, σ , σx );

20 dst ← dsu + ω′uv + dvt ;

21 else

22 σst , σst x ←updateSigmaEQ(G, (u, v ), d, σ , σx );

23 if x � s and x � t then

24 bx ← bx + σst x /σst ;

25 if t � v then

26 S (t ).inser t (s );

27 foreach w s.t. (t, w ) ∈ E do

28 if not vis (w ) and duw ≥ ω′uv + dvw then

29 Q .push (w );

30 vis (w ) ← true;

31 P (w ) ← t ;

that x does not lie on any new shortest path between s and t . Once again, this is independent on
whether x lied in an old shortest path between s and t or not. Algorithm 3 shows the computation
of σ ′st and σ ′stx . Notice that, in the computation of σ ′stx , the first addend is greater than zero only
in Figure 6(a) and the second only in Figure 6(b).

UpdateSigmaEQ. Let us now consider the case dst = dsu + ω
′
uv + dvt . Here all the old shortest

paths between s and t are still valid and, in addition to them, new shortest paths going through
(u,v ) have been created. Therefore, the new number of shortest paths σ ′st is simply σst + σsu · σvt .
Notice that we never count the same path multiple times, since all new paths go through (u,v )
and none of the old paths do. Also, all old shortest paths between s and t through x are still valid,

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:17

ALGORITHM 3: Update of σst and σstx when (u,v ) creates new shortest paths of length smaller than

dst

Algorithm: UpdateSigmaGR

Input: Graph G = (V , E ), edge insertion (u, v ), pairwise distances d (·, ·) , numbers σ(·, ·) of shortest paths, numbers

σ(·, ·)x of shortest paths through x

Output: Updated σ ′st , σ ′st x

1 σ ′st ← σsu · σvt ;

2 σ ′st x ← σsux · σvt + σsu · σvt x ;

3 return σ ′st , σ ′st x ;

ALGORITHM 4: Update of σst and σstx when (u,v ) creates new shortest paths of length equal to dst

Algorithm: UpdateSigmaEQ

Input: Graph G = (V , E ), edge insertion (u, v ), pairwise distances d (·, ·) , numbers σ(·, ·) of shortest paths, numbers

σ(·, ·)x of shortest paths through x

Output: Updated σ ′st , σ ′st x

1 σ ′st ← σst + σsu · σvt ;

2 σ ′st x ← σst x + σsux · σvt + σsu · σvt x ;

3 return σ ′st , σ ′st x ;

therefore σ ′stx is given by the old σstx plus the number of new shortest paths going through both x
and (u,v ). This number can be computed as described for updateSigmaGR according to the cases
of Figure 6. Algorithm 4 shows the computation of σ ′st and σ ′stx .

6.3 Time Complexities

6.3.1 Dynamic Betweenness Algorithm. Let us define the extended size | |A| | of a set of nodes A
as the sum of the number of nodes in A and the number of edges that have a node of A as their
endpoint. Then, the following proposition holds.

Proposition 6.2. The running time of Algorithm 2 for updating the betweenness of a single node

after an edge insertion (u,v ) is Θ( | |S (v ) | | + | |T (u) | | +∑
y∈T (u ) |S (P (y)) |).

Proof. The function findAffectedSources in Line 7 identifies the set of affected sources start-
ing a BFS inv and visiting only the nodes s such that dsu + ω

′
uv + dvt ≤ dst . This takes Θ( | |S (v ) | |),

since this partial BFS visits all nodes in S (v ) and their incident edges. Then, the while loop of
Lines 12–31 (excluding the part in Lines 14–26) identifies all the affected targets T (u) with a par-
tial BFS. This part requires Θ( | |T (u) | |) operations, since all affected targets and their incident edges
are visited. In Lines 14–26, for each affected node t ∈ T (u), all the affected sources of the prede-
cessor P (t ) of t are scanned. This part requires in total Θ(

∑
t ∈T (u ) |S (P (t )) |) operations, since for

each node in S (P (t )), Lines 15–26 require constant time. �

Notice that, since S (P (y)) is O (n) and both | |T (u) | | and | |S (v ) | | are O (n +m), the worst-case
complexity of Algorithm 2 is O (n2) (assuming m = Ω(n)). This matches the worst-case running
time of the augmented APSP update of iBet. However, notice that iBet needs a second step to
update the betweenness of all nodes, which is more expensive and requires Θ(nm) operations
in the worst case. Also, this introduces a contrast between the static and the incremental case:
Whereas the static computation of one node’s betweenness has the same complexity as computing
it for all nodes (at least no algorithm for computing it for one node faster than computing it for all
nodes exists so far), in the incremental case the betweenness update of a single node can be done
in O (n2), whereas there is no algorithm faster than O (nm) for the update of all nodes.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:18 E. Bergamini et al.

6.3.2 Greedy Algorithm for Betweenness Maximization. We can improve the running time of
Algorithm Greedy by using the dynamic algorithm for betweenness centrality instead of the re-
computation from scratch. In fact, at Line 4 of Algorithm Greedy, we add an edge {u,v} to the
graph and compute the betweenness in the new graph, for each node u in V \ Nv (S ). If we com-
pute the betweenness by using the from-scratch algorithm, this step requiresO (nm) and this leads
to an overall complexity of O (kn2m). At Line 4, instead of recomputing betweenness on the new
graph from scratch, we can use Algorithm 2. As we proved previously, its worst-case complex-
ity is O (n2). This leads to an overall worst-case complexity of O (kn3) for Greedy. However, in
Section 7.2 we will show that Greedy is actually much faster in practice.

7 EXPERIMENTAL EVALUATION

In our experiments, we evaluate the performance of Greedy both in terms of quality of the solution
found (Section 7.1) and in terms of its running time (Section 7.2). All algorithms compared in our
experiments are implemented in C++, building on the open-source NetworKit [53] framework.
The experiments were done on a machine equipped with 256 GB RAM and a 2.7 GHz Intel Xeon
CPU E5-2680 having 2 sockets with 8 cores each. To make the comparison with previous work
more meaningful, we use only one of the 16 cores. The machine runs 64 bit SUSE Linux and we
compiled our code with g++-4.8.1 and OpenMP 3.1.

For our experiments, we consider a set of real-world networks belonging to different do-
mains, taken from SNAP [35], KONECT [32], Pajek [3], and the 10th DIMACS Implementation
Challenge [2]. The properties of the networks are reported in Table 2 (directed graphs) and in
Table 3 (undirected graphs).

7.1 Solution Quality

In this section, we evaluate Greedy in terms of accuracy and we compare it both with the optimum
and with some alternative baselines.

To speed up the computation of Greedy (and therefore to target larger graphs), we do not re-
compute betweenness from scratch in Line 4 of Algorithm 1, but we use the dynamic algorithm
described in Section 6. Notice that this does not affect the solution found by the algorithm, only
its running time, which is reported in Section 7.2. Since computing the optimum by examining all
possible k-tuples would be too expensive even on small graphs, we use an Integer Programming
(IP) formulation, described in the following paragraph.

7.1.1 IP Formulation for MBI on Directed Graphs. Let S be a solution to an instance of MBI.
Given a node v , we define a variable xu for each node u ∈ V \ (Nv ∪ {v}):

xu =

{
1 if (u,v ) ∈ S
0 otherwise.

We define a variable yst for each s, t ∈ V \ {v}, s � t .

yst =

{
1 If all shortest paths from s to t in G (S ) pass through node v
0 otherwise.

For each pair of nodes s, t ∈ V \ {v}, s � t , we denote by A(s, t ) the set of nodes u not in Nv

such that all the shortest paths between s and t in G ({(u,v )}) pass through edge (u,v ) and hence
through node v . Note that in this case, dst > dst ({(u,v )}) and hence A(s, t ) is defined as A(s, t ) =
{u |dst > dst ({(u,v )})}. Set B (s, t ) is defined as the set of nodes u not in Nv such that at least a
shortest path between s and t in G ({(u,v )}) does not pass through edge (u,v ) and hence B (s, t ) =
V \ (A(s, t ) ∪ Nv ). We denote by σ̄stv (u) the number of shortest paths from s to t in G ({(u,v )})
passing through edge (u,v ).

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:19

Table 1. Comparison Between the Greedy Algorithm

and the Optimum

Graph Nodes Edges Min. approx. ratio
PA 100 130 1
COPY 100 200 0.98
COMP 100 200 0.98
COMP 100 500 0.96

The first three columns report the type and size of the graphs; the fourth

column reports the approximation ratio.

The following non linear formulation solves the MBI problem:

max
∑

s, t ∈V
s�t ; s, t�v

(
(1 − yst )

σstv +
∑

u ∈B (s,t ) xu σ̄stv (u)

σst +
∑

u ∈B (s,t ) xu σ̄stv (u)
+ yst

)
, (5)

subject to
∑

u ∈A(s,t )

xu ≥ yst , s, t ∈ V \ {v}, s � t (6)

∑
u ∈V \(Nv∪{v })

xu ≤ k,

xu ,yst ∈ {0, 1} s ∈ V \ {v}, t ∈ V \ {v, s}.

Let us consider a solution S to the above formulation. In the case that yst = 1, for some pair of
nodes s, t ∈ V \ {v}, s � t , then Constraint Equation (6) implies that, for at least a node u ∈ A(s, t ),
variable xu must be set to 1 and hence all the shortest paths between s and t inG (S ) pass throughv .
In this case, the term corresponding to pair (s, t ) in the objective function Equation (5) is correctly
set to be equal to 1.
insert ê
If yst = 0 and xu = 0, for each u ∈ A(s, t ), then the number of shortest paths between s and t in

G (S ) passing through v is equal to σstv +
∑

u ∈B (s,t ) xu σ̄stv (u) and the overall number of short-
est paths between s and t in G (S ) is equal to σst +

∑
u ∈B (s,t ) xu σ̄stv (u). In this case, the term

corresponding to pair (s, t ) in the objective function Equation (5) is correctly set to be equal to
σstv+

∑
u∈B (s,t ) xu σ̄stv (u )

σst+
∑

u∈B (s,t ) xu σ̄stv (u ) .

Note that,
σstv+

∑
u∈B (s,t ) xu σ̄stv (u )

σst+
∑

u∈B (s,t ) xu σ̄stv (u ) ≤ 1 and therefore a solution in which yst = 0 and xu = 1, for

some u ∈ A(s, t ) is at least as good as a solution in which yst is set to 1 instead of 0 and the other
variables are unchanged. Hence, we can assume without loss of generality that the case in which
yst = 0 and xu = 1, for some u ∈ A(s, t ), cannot occur in an optimal solution.

We solve the program with the Mixed-Integer Nonlinear Programming Solver Couenne [5] and
measure the approximation ratio of the greedy algorithm on three types of randomly generated
directed networks, namely, directed Preferential Attachment (in short, PA) [11], Copying (in short,
COPY) [31], Compressible Web (in short, COMP) [14]. For each graph type, we generate five different
instances with the same size. We focus our attention on twenty verticesv , which have been chosen
on the basis of their original betweenness ranking. In particular, we divide the list of vertices, sorted
by their original ranking, in four intervals, and choose five random vertices uniformly at random
in each interval. In each experiment, we add k = {1, 2, . . . , 7} edges. We evaluate the quality of the
solution produced by the greedy algorithm by measuring its approximation ratio and we report
the results in Table 1. The experiments clearly show that the experimental approximation ratio is

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:20 E. Bergamini et al.

Fig. 7. Betweenness of the pivot as a function of the number k of inserted edges for the four heuristics. The

plots refer to two different pivots in the munmun-digg-reply graph.

Fig. 8. Betweenness of the pivot as a function of the number k of inserted edges for the four heuristics. The

plots refer to two different pivots in the linux graph.

by far better than the theoretical one proven in the previous section. In fact, in all our tests, the
experimental ratio is always greater than 0.96.

7.1.2 Results for Real-World Directed Networks. We also analyze the performance of Greedy on
the real-world directed networks of Table 2 (Section 7.2). Since finding the optimum on these net-
works would take too long, we compare the solution of Greedy with the following three baselines:

—Top-k Degree: the algorithm that connects the k nodes having the highest degree to v ;
—Top-k Betweenness: the algorithm that connects the k nodes having the highest between-

ness centrality to v ;
—Random: the algorithm that connects k nodes extracted uniformly at random to v .

For each graph, we pick one node at random, compute its betweenness on the initial graph and
try to increase it with the four heuristics. We refer to the selected node as pivot. Since the results
may vary depending on the initial betweenness of the pivot, we also repeat each experiment with
five different pivots. In each experiment, we add k = {1, 2, . . . , 10} edges and compute the ranking
and betweenness of the pivot after each insertion.

Figure 7 shows the results for the munmun-digg-reply graph, using two different pivots. In
particular, the plot on the left shows the betweenness improvement for a node with an initially
low betweenness score (close to 0), whereas the one on the right refers to a node that starts with
a higher betweenness value (about 40,000). Although the final betweenness scores reached by the
two nodes differ, we see that the relative performance of the four algorithms is quite similar among
the two pivots. A similar behavior can be observed for all other tested pivots. Figure 8 reports the
results for two different pivots chosen from the linux graph. Again, we notice that the relative
performance of the four algorithms is basically the same. Since the same is also true for the other
tested graphs, in the following, we simply report the average values among the samples.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:21

Fig. 9. Percentage betweenness of the pivot as a function of the number k of inserted edges for the four

heuristics. Left: average results for the munmun-digg-reply graph. Right: average results for the linux graph.

Fig. 10. Percentage rank of the pivot as a function of the number k of inserted edges for the four heuristics.

Left: average results for the munmun-digg-reply graph. Right: average results for the linux graph.

Figure 9 reports the average results (over the sampled pivots) for munmun-digg-reply (left) and
linux (right). We define the percentage betweenness of a node v as bv · 100

(n−1)(n−2) , where bv is

the betweenness of v and (n − 1) (n − 2) represents the maximum theoretical betweenness a node
can have in a graph with n nodes. For each value of k , the plots show the average percentage
betweenness of a pivot after the insertion of k edges (each point represents the average over the
five pivots). Clearly, the pivot’s betweenness after k insertions is a non-decreasing function of k ,
since the insertion of an edge can only increase (or leave unchanged) the betweenness of one of
its endpoints. In both plots, Greedy outperforms the other heuristics. For example, after 10 edge
insertions, the average betweenness of a pivot in the munmun-digg-reply graph is 81,460 with
Greedy; 43,638 with Top-kDegree; 36,690 with Top-kBetweenness; and 28,513 with Random. A
similar behavior can be observed for the average ranks of the pivots, reported in Figure 10. The
figures report the percentage ranks, i.e., the ranks multiplied by 100

n
, since n is the maximum rank

a node can have in a graph with n nodes. This can be seen as the fraction of nodes with higher
betweenness than the pivot. On munmun-digg-reply, the average initial rank is 2,620 (about 43%).
After 10 insertions, the rank obtained using Greedy is 476 (about 7%), whereas the one obtained
by the other approaches is never lower than 1,188 (about 19%). It is interesting to notice that three
edge insertions with Greedy yield a rank of 1,011, which is better than the one obtained by the
other approaches after 10 insertions. Similarly, also on the linux graph, three iterations of Greedy
are enough to bring down the rank from 2,498 (45.6%) to 247 (4.4%), whereas the other approaches
cannot go below 299 (5.3%) with 10 iterations. Similar results can be observed on the other tested
(directed) instances. Figure 11 reports the average results over all directed networks, both in terms
of betweenness (left) and rank (right) improvement. The initial average betweenness of the sample
pivots is 0.015%. Greedy is by far the best approach, with an average final percentage betweenness
(after 10 iterations) of 0.38% and an average final percentage rank of 1.4%. As a comparison, the best

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:22 E. Bergamini et al.

Fig. 11. Average results over all directed networks. On the left, average percentage betweenness of the pivots

as a function of k . On the right, average percentage rank of the pivots.

alternative approach (Top-kDegree) yields a percentage betweenness of 0.22% and a percentage
rank of 7.3%. Not surprisingly, the worst approach is Random, which in 10 iterations yields a
final percentage betweenness of 0.04% and an average percentage rank of 10.2%. On average, a
single iteration of Greedy is sufficient for a percentage rank of 5.5%, better than the one obtained
by all other approaches in 10 iterations. Also, it is interesting to notice that in our experiments
Top-kDegree performs significantly better than Top-kBetweenness. This means that, for the
betweenness of a node in a directed graph, it is more important to have incoming edges from
nodes with high out-degree than with high betweenness. We will see in the following that our
results show a different behavior for undirected graphs.

Also, notice that, although the percentage betweenness scores are quite low, the improvement
using Greedy is still large: with 10 insertions, on average the scores change from an initial 0.015%
to 0.38%, which is about 25 times the initial value.

7.1.3 Results for Real-World Undirected Graphs. Although it was proven that Greedy has an
unbounded approximation ratio for undirected graphs [17], it is still not clear how it actually
performs in practice. In Reference [17], the authors performed some preliminary experiments in
which they showed that the greedy algorithm provides a solution slightly better than the Top-
kBetweenness algorithm. However, they analyzed only very small networks (with few hundreds
of nodes), due to the high complexity of a straightforward implementation of the Greedy algo-
rithm. In what follows, we compare Greedy with other baselines on graphs with up to 104 nodes
and 105 edges. This is made possible by combining Greedy with the dynamic algorithm described
in Section 6 (note that using the dynamic algorithm only influences the running times of Greedy,
but not its results). In particular, we compare Greedy with Top-kBetweenness, Top-kDegree,
and Random, also on several undirected real-world networks listed in Table 3 of Section 7.2. Fig-
ure 12 shows the percentage betweenness and ranking, averaged over the undirected networks
of Table 3. Also in this case, Greedy outperforms the other heuristics. In particular, the average
initial betweenness of the pivots in the different graphs is 0.05%. After 10 iterations, the between-
ness goes up to 3.7% with Greedy, 1.6% with Top-kDegree, 2.1% with Top-kBetweenness and
only 0.17% with Random. The average initial rank is 45%. Greedy brings it down to 0.7% with 10
iterations and below 5% already with two. Using the other approaches, the average rank is always
worse than 10% for Top-kBetweenness, 15% for Top-kDegree and 20% for Random. As men-
tioned before, differently from directed graphs, Top-kBetweenness performs significantly better
than Top-kDegree in undirected graphs.

Also, notice that in undirected graphs the percentage betweenness scores of the nodes in the
examined graphs are significantly larger than those in the directed graphs. This could be due to the
fact that many node pairs have an infinite distance in the examined directed graphs, meaning that

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:23

Fig. 12. Average results over all undirected networks. On the left, average percentage betweenness of the

pivots as a function of k . On the right, average percentage rank of the pivots.

these pairs do not contribute to the betweenness of any node. Also, say we want to increase the
betweenness of x by adding edge (v,x ). The pairs (s, t ) for which we can have a shortcut (leading
to an increase in the betweenness of x ) are limited to the ones such that s can reachv and such that
t is reachable from x , which might be a small fraction of the total number of pairs. On the contrary,
most undirected graphs have a giant connected component containing the greatest majority of the
nodes. Therefore, it is very likely that a pivot belongs to the giant component or that it will after
the first edge insertion.

It is interesting to notice that, despite the unbounded approximation ratio, the improvement
achieved by Greedy on undirected graphs is even larger than for the directed ones: on average 74
times the initial score.

7.2 Running Time Evaluation

In this section, we evaluate the running time of the dynamic algorithm for betweenness centrality
computation. We used the same experimental setting used in Section 7.1. Since some of the algo-
rithms we use for comparison work only on unweighted graphs, all the tested networks are un-
weighted (although we recall that our algorithm described in Section 6.2 can handle also weighted
graphs).

7.2.1 Evaluation of the Dynamic Algorithm for the Betweenness of One Node. In the following,
we refer to our incremental algorithm for the update of the betweenness of a single node as SI

(Single-node Incremental). Since there are no other algorithms specifically designed to compute
or update the betweenness of a single node, we also use the static algorithm by Brandes [13]
and the dynamic algorithm by Bergamini et al. [8] for a comparison (the one by Brandes was
already in NetworKit). Indeed, the algorithm by Brandes (which we refer to as Stat, from Static) is
the best known algorithm for static computation of betweenness and the one by Bergamini et al.
(which we name AI, from All-nodes Incremental) has been shown to outperform other dynamic
algorithms [8].

To compare the running times of the algorithms for betweenness centrality, we choose a node
x at random and we assume we want to compute the betweenness of x . Then, we add an edge to
the graph, also chosen uniformly at random among the node pairs (u,v ) such that (u,v ) � E. After
the insertion, we use the three algorithms to update the betweenness centrality of x and compare
their running times. We recall that Stat is a static algorithm, which means that we can only run it
from scratch on the graph after the edge insertion. On each graph, we repeat this 100 times and
report the average running time obtained by each of the algorithms.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:24 E. Bergamini et al.

Table 2. Average Running Times of the Betweenness Algorithms on Directed Real-World Graphs

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] STD AI [s] STD SI [s]
subelj-jung 6 120 50 535 1.25 0.0019 0.0002 0.0036 0.0005
wiki-Vote 7 115 100 762 8.18 0.0529 0.0015 0.0635 0.0038
elec 7 118 103 617 8.67 0.0615 0.0019 0.0858 0.0053
freeassoc 10 617 63 788 14.96 0.1118 0.0034 0.1532 0.0036
dblp-cite 12 591 49 728 5.04 0.1726 0.0071 0.7905 0.0451
subelj-cora 23 166 91 500 34.08 0.3026 0.0327 1.1598 0.1575
ego-twitter 23 370 33 101 8.47 0.0062 0.0001 0.0576 0.0003
ego-gplus 23 628 39 242 10.01 0.0024 0.0001 0.0026 0.0000
munmun-digg 30 398 85 247 78.09 0.2703 0.0073 0.2539 0.0099
linux 30 837 213 424 34.75 0.0692 0.0108 0.3019 0.0637

The last two columns report the standard deviation of the running times of AI and SI over the 100 edge insertions.

Table 3. Average Running Times of the Betweenness Algorithms on Undirected Real-World Graphs

Graph Nodes Edges Time Stat [s] Time AI [s] Time SI [s] SD AI [s] SD SI [s]
Mus-musculus 4 610 5 747 2.87 0.0337 0.0037 0.0261 0.0024
HC-BIOGRID 4 039 10 321 5.32 0.1400 0.0083 0.1450 0.0119
Caenor-eleg 4 723 9 842 4.75 0.0506 0.0025 0.0406 0.0014
ca-GrQc 5 241 14 484 4.15 0.0377 0.0033 0.0245 0.0017
advogato 7 418 42 892 12.65 0.1820 0.0024 0.1549 0.0008
hprd-pp 9 465 37 039 29.19 0.2674 0.0053 0.1873 0.0021
ca-HepTh 9 877 25 973 21.57 0.1404 0.0095 0.1108 0.0053
dr-melanog 10 625 40 781 38.18 0.2687 0.0067 0.2212 0.0029
oregon1 11 174 23 409 23.77 0.5676 0.0037 0.5197 0.0020
oregon2 11 461 32 730 27.98 0.5655 0.0039 0.5551 0.0026
Homo-sapiens 13 690 61 130 68.06 0.5920 0.0079 0.4203 0.0035
GoogleNw 15 763 148 585 76.17 2.4744 0.0044 4.1075 0.0045
CA-CondMat 21 363 91 342 168.44 1.1375 0.0486 0.7485 0.0358

The last two columns report the standard deviation of the running times of AI and SI over the 100 edge insertions.

Tables 2 and 3 show the running times for directed and undirected graphs, respectively. As
expected, both dynamic algorithms AI and SI are faster than the static approach and SI is the fastest
among all algorithms. This is expected, since SI is the one that performs the smallest number of
operations. Also, notice that the standard deviation of the running times of both AI and SI is very
high, sometimes even higher than the average. This is actually not surprising, since different edge
insertion might affect portions of the graph of very different sizes. Figures 13 and 14 report the
running times of AI and SI as a function of the number of affected node pairs for two directed
and undirected graphs, respectively (similar results can be observed for the other tested graphs).
As expected, the running time of both algorithms (as well as the difference between the running
time of AI and that of SI) mostly increases as the number of affected pairs increases. However, AI

presents a much larger deviation than SI. This is due to the fact that its running time also depends
on the number of nodes that used to lie in old shortest paths between the affected pairs. Indeed,
the number of nodes whose betweenness gets affected does not only depend on the number of
affected pairs (which we recall to be the ones for which the edge insertion creates a shortcut or a

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:25

Fig. 13. Top: Running time of AI and SI as a function of the number of affected node pairs for two directed

graphs (left: ego-gplus, right: munmun-digg). Bottom: Same as the two plots above, but zoomed on the

running times of SI. The points are the computed running times, the lines are the results of a linear regression

and the area around the lines is a 95% confidence interval for the regression.

new shortest paths), but also on how many shortest paths there used to be between the affected
pairs before the insertion and how long these paths were.

Table 4 and Table 5 show the speedups of SI on AI and those of SI on Stat, for directed and undi-
rected graphs, respectively. Although the speedups vary considerably among the networks and the
edge insertions, SI is always at least as fast as AI and up to 1,560 times faster (maximum speedup
for GoogleNw). On average (geometric mean of the average speedups over the tested networks), SI

is 29 times faster than AI for undirected graphs and 18 times faster for directed graphs. The high
speedups on the dynamic algorithm for all nodes is due to the fact that, when focusing on a single
node, we do not need to update the scores of all the nodes that lie in some shortest path affected
by the edge insertion. On the contrary, for each affected source node s , AI has to recompute the
change in dependencies by iterating over all nodes that lie in either a new or an old shortest path
from s . As a result, SI is extremely fast: on all tested instances, its running time is always smaller
than 0.05 seconds, whereas AI can take up to seconds to update betweenness.

Compared to recomputation, SI is on average about 4,200 times faster than Stat on directed and
about 33,000 times on undirected graphs (geometric means of the speedups). Since SI has shown
to outperform other approaches in the context of updating the betweenness centrality of a single
node after an edge insertion, we use it to update the betweenness in the greedy algorithm for the
MBI problem (Section 5). Therefore, in all the following experiments, what we refer to as Greedyis
the Algorithm of Section 5, where we recompute betweenness after each edge insertion with SI.

7.2.2 Running Times of the Greedy Algorithm for Betweenness Maximization. In Section 5, we
already showed that Greedy outperforms all other heuristics in terms of solution quality, both

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:26 E. Bergamini et al.

Fig. 14. Top: Running time of AI and SI as a function of the number of affected node pairs for two undirected

graphs (left: dr-melanog, right: Homo-sapiens). Bottom: same as the two plots above, but zoomed on the

running times of SI. The points are the computed running times, the lines are the results of a linear regression

and the area around the lines is a 95% confidence interval for the regression.

on directed and on undirected graphs (although we recall that the theoretical guarantee on the
approximation ratio holds only for directed graphs). In this section, we report the running times
of Greedy, using SI to recompute betweenness. Tables 6 and 7 show the results on directed and
undirected graphs, respectively. For each value of k , the tables show the running time required by
Greedy when k edges are added to the graph. Notice that this is not the running time of the kth
iteration, but the total running time of Greedy for a certain value of k . Since on directed graphs
the betweenness of x is a submodular function of the solutions for MBI (see Theorem 5.2), we can
speed up the computation for k > 1 (see Algorithm 5). This technique was originally proposed in
Reference [40] and it was used in Reference [16] to speed up the greedy algorithm for harmonic
centrality maximization. Let Δbv (u) = bv (S ∪ {(u,v )}) − bv (S ), where S is the solution computed
at some iteration i ′ < i , that is, Δbv (u) is the increment to bv given by adding the edge (u,v ) to S at
iteration i ′. Let LB be the current best solution at iteration i . We avoid to compute bv (S ∪ {(u,v )})
at Line 8 if LB ≥ bv (S ) + Δbv (u). In fact, by definition of submodularity, Δbv (u) is monotonically
non-increasing and bv (S ) + Δbv (u) is an upper bound for bv (S ∪ {(u,v )}). Then, LB ≥ bv (S ) +
Δbv (u) implies LB ≥ bv (S ∪ {(u,v )}).

Although the standard deviation is quite high, we can clearly see that exploiting submodularity
has significant effects on the running times: for all graphs in Table 6, we see that the difference in
running time between computing the solution for k = 1 and k = 10 is at most a few seconds. Also,
for all graphs the computation never takes more than a few minutes.

Unfortunately, submodularity does not hold for undirected graphs, therefore for each k we need
to apply SI to all possible new edges between x and other nodes. Nevertheless, apart from the

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:27

Table 4. Speedups on the Static Algorithm and on the Dynamic Algorithm

for All Nodes on Directed Networks

Speedups on Stat Speedups on AI

Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum
subelj-jung 21945.7 109706.5 145.2 9.7 63.7 0.6
wiki-Vote 24393.0 401758.5 269.9 37.9 310.7 1.0
elec 23373.2 456358.8 169.1 28.8 285.1 0.5
freeassoc 6779.5 354843.2 725.3 13.0 94.0 1.1
dblp-cite 25682.7 168691.7 12.7 12.3 314.5 0.9
subelj-cora 20835.3 541240.1 22.9 29.2 257.5 0.9
ego-twitter 114305.1 144525.1 3345.3 3.0 216.3 0.8
ego-gplus 115958.8 164541.7 58359.8 14.2 74.5 0.9
munmun-digg 39003.2 1003927.8 1802.0 26.7 188.3 0.8
linux 104903.2 435984.4 59.0 31.0 94.6 1.0

For both stat and AI, the first column reports the geometric mean of the speedups over the 100 insertions, the second

column reports the maximum speedups and the third column the Minimum speedup.

Table 5. Speedups on the Static Algorithm and on the Dynamic

Algorithm for All Nodes on Undirected Networks

Speedups on Stat Speedups on AI

Graph Geometric mean Maximum Minimum Geometric mean Maximum Minimum
Mus-musculus 1018.6 158992.7 184.5 7.7 21.9 1.7
HC-BIOGRID 957.1 3811.7 47.8 17.0 51.1 4.5
Caenor-eleg 2136.9 331429.8 426.5 15.0 49.4 1.3
ca-GrQc 1504.7 290439.1 381.3 10.0 22.8 2.1
advogato 5811.0 680406.0 2714.1 43.4 192.7 1.9
hprd-pp 5844.2 11270.4 1637.9 39.2 119.5 3.2
ca-HepTh 2642.5 444438.1 537.2 12.3 35.7 2.8
dr-melanog 6105.6 10710.8 1840.4 29.9 88.3 3.1
oregon1 7405.1 726941.0 1584.7 72.6 493.4 2.4
oregon2 9190.7 617383.6 1578.2 68.8 470.5 2.5
Homo-sapiens 9216.0 17182.0 2682.4 57.0 165.2 3.4
GoogleNw 34964.3 503762.1 3784.6 137.3 1560.3 2.9
CA-CondMat 4073.8 10670.8 537.6 20.8 69.4 2.8

For both Stat and AI, the first column reports the geometric mean of the speedups over the 100 insertions, the second

column reports the maximum speedups and the third column the minimum speedup.

CA-CondMat graph (where, on average, it takes about 10 hours for k = 10) and ca-HepTh (where
it takes about 1.5 hours), Greedy never requires more than 1 hour for k = 10. For k = 1, it takes
at most a few minutes. Quite surprisingly, the running time of the first iteration is often smaller
than that of the following ones, in particular if we consider that the first iteration also includes
the initialization of SI. This might be due to the fact that, initially, the pivots are not very central
and therefore many edge insertions between the pivots and other nodes affect only a few shortest
paths. Since the running time of IA is proportional to the number of affected node pairs, this makes
it very fast during the first iteration. On the other hand, at each iteration the pivot x gets more
and more central, affecting a greater number of nodes when a new shortcut going through x is
created.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



1.5:28 E. Bergamini et al.

Table 6. The Left Part of the Table Reports the Running Times (in Seconds) of Greedy on Directed

Real-World Graphs for Different Values of k ; the Right Part Shows the Standard Deviations

Running time Greedy STD. DEV. Greedy

Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10
subelj-jung 1.79 1.91 1.99 2.10 0.56 0.58 0.61 0.68
wiki-Vote 14.32 14.44 14.74 15.19 10.75 10.81 11.04 11.46
elec 12.47 12.57 12.81 13.13 7.80 7.83 7.99 8.16
freeassoc 81.52 83.01 87.00 96.60 66.27 67.88 70.84 82.01
dblp-cite 584.90 694.19 710.90 729.73 1060.50 1268.18 1296.99 1328.83
subelj-cora 1473.04 1504.96 1600.68 1688.39 1491.48 1526.95 1657.98 1784.74
ego-twitter 164.43 179.13 217.19 229.39 200.10 211.52 259.85 275.22
ego-gplus 211.39 225.58 230.26 240.29 195.22 186.00 188.82 196.78
munmun-digg 736.13 739.82 749.74 759.58 313.45 313.50 313.66 316.35
linux 1145.94 1239.16 1271.74 1311.28 822.06 917.50 933.02 951.61

Table 7. The Left Part of the Table Reports Running Times (in Seconds) of Greedy on Undirected

Real-World Graphs for Different Values of k ; the Right Part Shows Standard Deviations

Running time Greedy STD. DEV. Greedy

Graph k = 1 k = 2 k = 5 k = 10 k = 1 k = 2 k = 5 k = 10
Mus-musculus 27.06 87.80 394.30 1155.46 15.53 36.35 176.05 630.80
HC-BIOGRID. 34.54 85.98 289.84 701.50 9.63 25.63 100.04 217.76
Caenor-elegans 11.17 25.47 94.94 320.85 3.23 10.23 23.66 55.19
ca-GrQc. 19.76 43.01 149.43 438.98 8.64 20.65 53.63 96.31
advogato 12.42 28.07 81.79 299.05 1.56 13.96 28.23 147.66
hprd-pp 47.08 111.85 460.31 1561.82 12.84 29.65 59.01 439.32
ca-HepTh 100.34 464.66 2069.34 5926.75 42.83 282.09 604.61 1320.20
dr-melanog 71.43 160.89 614.92 2084.71 18.01 31.55 46.88 333.84
oregon1 30.66 69.06 191.63 441.09 4.87 9.41 23.99 76.51
oregon2 36.44 73.35 233.28 594.53 9.63 16.92 25.26 44.3 7
Homo-sapiens 99.82 276.09 1155.97 3554.53 20.30 54.42 258.89 673.55
GoogleNw 68.33 102.35 220.32 451.29 11.71 17.18 36.19 76.37
CA-CondMat 1506.68 3402.10 12177.24 36000.24 381.00 927.40 2178.47 17964.74

To summarize, our experimental results show that our incremental algorithm for the between-
ness of one node is much faster than existing incremental algorithms for the betweenness of all
nodes, taking always fractions of seconds even when the competitor takes seconds. The combina-
tion of it with our greedy approach for the MBI problem allows us to maximize betweenness of
graphs with hundreds of thousands of edges in reasonable time. Also, our results in Section 7.1
show that Greedy outperforms other heuristics both on directed and undirected graphs and both
for the problem of betweenness and ranking maximization.

8 CONCLUSIONS

Betweenness centrality is a widely-used metric that ranks the importance of nodes in a network.
Since in several scenarios a high centrality directly translates to some profit, in this article, we
have studied the problem of maximizing the betweenness of a vertex by inserting a predetermined

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:29

ALGORITHM 5: Greedy algorithm with pruning (exploiting submodularity).

Input: A directed graph G = (V ,E); a vertex v ∈ V ; and an integer k ∈ N
Output: Set of edges S ⊆ {(u,v ) |u ∈ V \ Nv } such that |S | ≤ k

1 S ← ∅;
2 foreach u ∈ V \ (Nv (S )) do

3 Δbv (u) ← 0;

4 for i = 1, 2, . . . ,k do

5 LB ← 0;

6 foreach u ∈ V \ (Nv (S )) do

7 if (i = 1) ∨ (LB < (bv (S ) + Δbv )) then

8 Compute bv (S ∪ {(u,v )});
9 Δbv (u) ← bv (S ∪ {(u,v )}) − bv (S );

10 LB ← max(LB,bv (S ∪ {(u,v )}));

11 umax ← arg max{bv (S ∪ {(u,v )}) |u ∈ V \ (Nv (S ))};
12 S ← S ∪ {(umax,v )};
13 return S ;

number of new edges incident to it. Our greedy algorithm, which is a (1 − 1
e

)−approximation of the
optimum for directed graphs, yields betweenness scores that are significantly higher than several
other heuristics, both on directed and undirected graphs. Our results are drawn from experiments
on a diverse set of real-world directed and undirected networks with up to 105 edges.

Also, combining our greedy approach with a new incremental algorithm for recomputing the
betweenness of a node after an edge insertion, we are often able to find a solution in a matter of
seconds or few minutes. Our new incremental algorithm extends a recently published APSP algo-
rithm and is the first to recompute the betweenness of one node in O (n2) time. All other existing
approaches recompute the betweenness of all nodes and require at least O (nm) time, matching
the worst-case complexity of the static algorithm. Although extremely fast, our betweenness up-
date algorithm has a memory footprint of Θ(n2), which is a limitation for very large networks. A
possible direction for future work could be to combine our greedy approach with dynamic algo-
rithms that compute an approximation of betweenness centrality. Since these algorithms require
less memory than the exact ones, they might allow us to target even larger networks.

Also, future work could consider extensions of the problem studied in this article, such as al-
lowing additions of edges incident to other vertices or weight changes to the existing edges.

REFERENCES

[1] Konstantin Avrachenkov and Nelly Litvak. 2006. The effect of new links on Google pagerank. Stoc. Models 22, 2 (2006),

319–331.

[2] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes, and Dorothea Wagner. 2014.

Benchmarking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis and Mining. Springer,

73–82.

[3] Vladimir Batagelj and Andrej Mrvar. 2006. Pajek datasets. Retrieved July 23, 2018 from http://vlado.fmf.uni-lj.si/pub/

networks/data.

[4] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling, Andrea Schumm, and Dorothea Wagner. 2012. The shortcut

problem - Complexity and algorithms. J. Graph Algorithms Appl. 16, 2 (2012), 447–481.

[5] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. 2009. Branching and bounds tightening

techniques for non-convex MINLP. Opt. Meth. Softw. 24, 4–5 (2009), 597–634.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.

http://vlado.fmf.uni-lj.si/pub/networks/data


1.5:30 E. Bergamini et al.

[6] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Henning Meyerhenke. 2016. Com-

puting top-k Closeness Centrality Faster in Unweighted Graphs. In Proceedings of the 18th Workshop on Algorithm

Engineering and Experiments (ALENEX’16). 68–80.

[7] Elisabetta Bergamini and Henning Meyerhenke. 2016. Approximating betweenness centrality in fully dynamic net-

works. Int. Math. 12, 5 (2016), 281–314.

[8] Elisabetta Bergamini, Henning Meyerhenke, Mark Ortmann, and Arie Slobbe. 2017. Faster betweenness centrality

updates in evolving networks. In 16th International Symposium on Experimental Algorithms (SEA’17), C. S. Iliopoulos,

S. P. Pissis, S. J. Puglisi, and R. Raman (Eds.). Vol. 75 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

23:1–23:16.

[9] Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. 2015. Approximating betweenness centrality in

large evolving networks. In Proceedings of the 17th Workshop on Algorithm Engineering and Experiments, (ALENEX’15),

Ulrik Brandes and David Eppstein (Eds.). SIAM, 133–146.

[10] Davide Bilò, Luciano Gualà, and Guido Proietti. 2012. Improved approximability and non-approximability results for

graph diameter decreasing problems. Theor. Comput. Sci. 417 (2012), 12–22.

[11] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. 2003. Directed scale-free graphs. In Proceedings

of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03). SIAM, 132–139.

[12] Michele Borassi and Emanuele Natale. 2016. KADABRA is an adaptive algorithm for betweenness via random ap-

proximation. CoRR abs/1604.08553.

[13] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Soc. 25 (2001), 163–177.

[14] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Alessandro Panconesi, and Prabhakar Raghavan. 2009. Models for

the compressible web. In Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS’09).

IEEE, 331–340.

[15] Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. 2015. Greedily improving our own

centrality in a network. In Proceedings of the 14th International Symposium on Experimental Algorithms (SEA’15).

Lecture Notes in Computer Science, Vol. 9125. Springer, 43–55.

[16] Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. 2016. Greedily improving our own

closeness centrality in a network. ACM Trans. Knowl. Discov. Data 11, 1, Article 9 (2016), 32 pages.

[17] Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. 2016. On the maximum betweenness improvement problem.

In Proceedings of the 16th Italian Conference on Theoretical Computer Science (ICTCS’15) (Electr. Notes Theor. Comput.

Sci.), Vol. 322. 153–168.

[18] Sina Dehghani, Mohammad Amin Fazli, Jafar Habibi, and Sadra Yazdanbod. 2015. Using shortcut edges to maximize

the number of triangles in graphs. Op. Res. Lett. 43, 6 (2015), 6.

[19] Erik D. Demaine and Morteza Zadimoghaddam. 2010. Minimizing the diameter of a network using shortcut edges. In

Proceedings of the 12th Scandinavian Symposium and Work. on Algorithm Theory (SWAT’10). Lecture Notes in Com-

puter Science, Vol. 6139. Springer, 420–431.

[20] Martin G. Everett and Thomas W. Valente. 2016. Bridging, brokerage and betweenness. Soc. Netw. 44 (2016), 202–208.

[21] Uriel Feige. 1998. A threshold of Ln N for approximating set cover. J. ACM 45, 4 (1998).

[22] Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, and Luke Mathieson. 2015. Augmenting graphs to minimize

the diameter. Algorithmica 72, 4 (2015), 995–1010.

[23] Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35–41.

[24] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability, a Guide to the Theory of NP-Completeness. W.H.

Freeman and Company, New York.

[25] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better approximation of betweenness centrality. In

Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX’08), San Francisco, California,

USA, January 19, 2008, J. Ian Munro and Dorothea Wagner (Eds.). SIAM, 90–100.

[26] Oded Green, Robert McColl, and David A. Bader. 2012. A fast algorithm for streaming betweenness centrality. In

SocialCom/PASSAT. IEEE, 11–20.

[27] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully dynamic betweenness centrality maintenance on

massive networks. In Proceedings of the VLDB Endowment 9, 2 (2015), 48–59.

[28] Vatche Ishakian, Dóra Erdös, Evimaria Terzi, and Azer Bestavros. 2012. A framework for the evaluation and manage-

ment of network centrality. In Proceedings of the 12th SIAM Int. Conf. on Data Mining (SDM’12). SIAM, 427–438.

[29] Miray Kas, Matthew Wachs, Kathleen M. Carley, and L. Richard Carley. 2013. Incremental algorithm for updating

betweenness centrality in dynamically growing networks. In Advances in Social Networks Analysis and Mining 2013

(ASONAM’13). ACM, 33–40.

[30] N. Kourtellis, G. De Francisci Morales, and F. Bonchi. 2015. Scalable online betweenness centrality in evolving graphs.

IEEE Trans. Knowl. Data Eng. PP, 99 (2015), 1–1.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.



Improving the Betweenness Centrality of a Node by Adding Links 1.5:31

[31] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins, and Eli Upfal. 2000. Sto-

chastic models for the web graph. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science

(FOCS’00). IEEE, 57–65.

[32] Jérôme Kunegis. 2013. KONECT: The Koblenz network collection. In Proceedings of the 22nd International World Wide

Web Conference (WWW’13). 1343–1350. http://dl.acm.org/citation.cfm?id=2488173

[33] Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. 2016. Efficient algorithms for updating betweenness centrality

in fully dynamic graphs. Inf. Sci. 326 (2016), 278–296.

[34] Min-Joong Lee and Chin-Wan Chung. 2014. Finding k-highest betweenness centrality vertices in graphs. In Proceedigs

of the 23rd International World Wide Web Conference (WWW’14), Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim,

and Torsten Suel (Eds.). ACM, 339–340.

[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved June

2014 from http://snap.stanford.edu/data.

[36] Rong-Hua Li and Jeffrey Xu Yu. 2015. Triangle minimization in large networks. Knowl. Inform. Syst. 45, 3 (2015),

617–643.

[37] Ahmad Mahmoody, Charalampos E. Tsourakakis, and Eli Upfal. 2016. Scalable betweenness centrality maximization

via sampling. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016. ACM, 1765–1773.

[38] Paolo Malighetti, Gianmaria Martini, Stefano Paleari, and Renato Redondi. 2009. The Impacts of Airport Centrality in

the EU Network and Inter-Airport Competition on Airport Efficiency. Technical Report MPRA-7673. http://econpapers.

repec.org/paper/pramprapa/17673.htm.

[39] Adam Meyerson and Brian Tagiku. 2009. Minimizing average shortest path distances via shortcut edge addition.

In Proceedings of the 13th International Workshop on Approx. Algorithms for Combinatorial Optimazation Problems

(APPROX’09) Lecture Notes in Computer Science Vol. 5687. Springer, 272–285.

[40] Michel Minoux. 1978. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization Tech-

niques, J. Stoer (Ed.). Springer Berlin Heidelberg, 234–243. https://link.springer.com/chapter/10.1007/BFb0006528

[41] Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. 2014. Betweenness centrality - Incremental and faster.

In Mathematical Foundations of Computer Science 2014—39th Int. Symp., MFCS 2014. Lecture Notes in Computer Science

Vol. 8635. Springer, 577–588.

[42] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approximations for maximizing submodular set

functions–I. Math. Program. 14, 1 (1978), 265–294.

[43] Martin Olsen and Anastasios Viglas. 2014. On the approximability of the link building problem. Theor. Comput. Sci.

518 (2014), 96–116.

[44] Manos Papagelis. 2015. Refining social graph connectivity via shortcut edge addition. ACM Trans. Knowl. Discov. Data

10, 2 (2015), 12.

[45] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. 2011. Suggesting ghost edges for a smaller world. In Pro-

ceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM’11). ACM, 2305–

2308.

[46] Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2015. Selecting shortcuts for a smaller world. In Pro-

ceedings of the 2015 SIAM International Conference on Data Mining. SIAM, 28–36.

[47] S. Perumal, P. Basu, and Ziyu Guan. 2013. Minimizing eccentricity in composite networks via constrained edge ad-

ditions. In Proceedings of the Military Communications Conference (MILCOM’13) IEEE. 1894–1899.

[48] Matteo Pontecorvi and Vijaya Ramachandran. 2015. Fully dynamic betweenness centrality. In Proceedings of the Al-

gorithms and Computation—26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Lec-

ture Notes in Computer Science, Khaled M. Elbassioni and Kazuhisa Makino (Eds.), Vol. 9472. Springer, 331–

342.

[49] G. Ramalingam and Thomas W. Reps. 1996. On the computational complexity of dynamic graph problems. Theor.

Comput. Sci. 158, 1&2 (1996), 233–277.

[50] Matteo Riondato and Evgenios M. Kornaropoulos. 2016. Fast approximation of betweenness centrality through sam-

pling. Data Min. Knowl. Discov. 30, 2 (2016), 438–475.

[51] Matteo Riondato and Eli Upfal. 2016. ABRA: Approximating betweenness centrality in static and dynamic graphs

with rademacher averages. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’16). ACM, 1145–1154.

[52] Sudip Saha, Abhijin Adiga, B. Aditya Prakash, and Anil Kumar S. Vullikanti. 2015. Approximation algorithms for

reducing the spectral radius to control epidemic spread. In Proceedings of the 2015 SIAM International Conference on

Data Mining. SIAM, 568–576.

[53] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. NetworKit: A tool suite for high-performance

network analysis. Network Science 4, 4 (2016), 508–530.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.

http://dl.acm.org/citation.cfm?id$=$2488173
http://snap.stanford.edu/data
http://econpapers.repec.org/paper/pramprapa/17673.htm
https://link.springer.com/chapter/10.1007/BFb0006528


1.5:32 E. Bergamini et al.

[54] Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos Faloutsos. 2012. Gelling, and

melting, large graphs by edge manipulation. In Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (CIKM’12). ACM, 245–254.

[55] Thomas W. Valente and Kayo Fujimoto. 2010. Bridging: Locating critical connectors in a network. Social Networks 32,

3 (2010), 212–220. DOI:http://dx.doi.org/10.1016/j.socnet.2010.03.003

[56] D. P. Williamson and D. B. Shmoys. 2011. The Design of Approximation Algorithms. Cambridge University Press.

[57] Baoning Wu and Brian D. Davison. 2005. Identifying link farm spam pages. In Proceedings of the 14th International

Conference on World Wide Web (WWW’05), Allan Ellis and Tatsuya Hagino (Eds.). ACM, 820–829.

Received October 2016; revised July 2017; accepted October 2017

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.5. Publication date: August 2018.

http://dx.doi.org/10.1016/j.socnet.2010.03.003

