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Abstract 

Background: The COVID‑19 outbreak has become the worst pandemic in at least a century. To fight this disease, a 
global effort led to the development of several vaccines at an unprecedented rate. There have been, however, several 
logistic issues with its deployment, from their production and transport, to the hesitancy of the population to be 
vaccinated. For different reasons, an important amount of individuals is reluctant to get the vaccine, something that 
hinders our ability to control and—eventually—eradicate the disease.

Materials and methods: Our aim is to explore the impact of vaccine hesitancy when highly transmissible SARS‑
CoV‑2 variants of concern spread through a partially vaccinated population. To do so, we use age‑stratified data from 
surveys on vaccination acceptance, together with age‑contact matrices to inform an age‑structured SIR model set in 
the US.

Results: Our results show that per every one percent decrease in vaccine hesitancy up to 45 deaths per million 
inhabitants could be averted. A closer inspection of the stratified infection rates also reveals the important role played 
by the youngest groups. The model captures the general trends of the Delta wave spreading in the US (July‑October 
2021) with a correlation coefficient of ρ = 0.79.

Conclusions: Our results shed light on the role that hesitancy plays on COVID‑19 mortality and highlight the impor‑
tance of increasing vaccine uptake in the population, specially among the eldest age groups.
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Background
After more than two years since the onset of the COVID-
19 outbreak, firstly reported by the Chinese authorities 
on December 31, 2019, it is clear that this pandemic has 
become the worst one in at least a century.

Multiple aspects of our life have been severely affected 
at various scales: psychological [1, 2] and social [3]; 
human-related systems and infra-structures [4, 5]; sup-
ply chains [6, 7]; and the economy in general [8, 9]. To 

manage the disease, it was mandatory to adopt a plethora 
of measures aimed at reducing the mixing and interac-
tion among individuals in order to mitigate SARS-CoV-2 
transmission and propagation. Lockdowns [10–14], cur-
fews and mobility restrictions [15–18], social distanc-
ing [19–21], personal protection [22, 23] are now part of 
the new normalcy across the world. This “new normal” 
[24–26], being its impact as critical as the virus itself, 
was conceived and promised as something that should be 
ephemeral, a toll to pay, just until the ultimate solution 
arrives: the vaccines.

A rapid and massive scientific effort [27, 28] to develop 
a vaccine against SARS-CoV-2 was deployed and 
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successfully achieved in less than a year; another unprec-
edented fact. From December 2020, just a year after the 
onset of the pandemic, several nations started their vac-
cination campaigns in the pursue of herd immunity to 
control the pandemic. But again, further problems prolif-
erated. From lack of confidence due to the relative short 
time for vaccine development and approval, to the fear of 
suffering serious side effects, or due to outlandish con-
spiracy theories, some people hesitate or are reluctant to 
vaccination [29–32]. For good or bad, this phenomenon 
is neither exclusive nor new [29, 33]. To be vaccinated (or 
not) is, in most countries, a choice of the individual, even 
though the consequences of such a choice go beyond 
the self and affect the social sphere. Hesitancy poses an 
ethical problem since if a critical fraction of individuals 
declines vaccine uptake for any disease, resurgence is to 
be expected [34–36]. This already happened in the UK, 
which was declared measles-free in 2017 but lost this 
status just 2 years later due to sub-optimal vaccination 
uptake [37].

Our aim is to quantify the effects of vaccine hesitancy 
in the US during the COVID-19 pandemic. In particu-
lar, given the large heterogeneity found across the US 
population, we perform our analysis on each state. It is 
worth noting that we do not intend to replicate the real 
trajectory of the COVID-19 pandemic in the US, neither 
we aim to accurately forecast the unfolding of future out-
breaks and epidemic sizes. Instead, we focus on looking 
at correlations between variables related to hesitancy and 
the disease impact on the population, i.e., attack rates 
and deaths. We also explore the role that age structure 
plays in conditioning the outcomes and estimate poten-
tially averted deaths if a 1% point more of the hesitant 
fraction of the population would change its attitude. 
Finally, we compare the model output from our hypo-
thetical scenario with the epidemic impact caused during 
the COVID-19 Delta wave during July-November 2021.

Materials and methods
We make use of an age-structured SIR model to simulate 
the spreading dynamics, which is fed with real and up-to-
date data of the US age-distributed population and contact 
matrices, as well as with survey-based seroprevalence esti-
mations [38]. We propose a hypothetical scenario in which 
COVID-19 outbreaks emerge in each state, independently, 
with a mitigated propagation due to the presence of some 
restrictions, while there is an ongoing vaccination cam-
paign designed following the information obtained from 
public surveys [39]. Once the vaccination and this first out-
break end, we assume a back to normal situation, where all 
restrictions are lifted, disease awareness vanishes, and a 
new outbreak sets in. We assume that these successive out-
breaks happen for a more transmissible variant of the virus, 

mimicking in this way the observed evolutionary path of 
the SARS-CoV-2 variants of concern.

Epidemic model
Given the utmost relevance of age in the effects of COVID-
19, it is compulsory to introduce the age distribution of the 
population and the specific interaction between age groups 
to adequately model the dynamics of the disease [40–42]. 
We use the estimated age-contact matrices provided by 
Mistry et  al. [43] updated to the population structure of 
2019 [44, 45]. Then, we build an age-structured SIR model 
defined by this set of equations [43]:

where Sa is the number of susceptible individuals of age 
a, Ia is the number of infected individuals of age a, Ra is 
the number of removed individuals of age a, and γ−1 is 
the infectious period, which is assumed to be the same 
for all age classes and equal to γ−1

= 4.5 days. COVID-
19 is a disease with a more complex natural history than 
a SIR model can account for, being required to add some 
pre-symptomatic or asymptomatic compartments, as 
well as a latency period, for certain applications. None-
theless, it has been shown that SIR models can correctly 
describe the overall evolution of the disease [46], which is 
enough for the scope of this paper. Lastly, �a is the force 
of infection for individuals of age a and it is expressed as

where β is the transmissibility of the virus, Na is the total 
number of individuals of age a, and Maa′ measures the 
average number of contacts of an individual of age a with 
individuals of age a′ . Finally, χa is an age-dependent sus-
ceptibility factor accounting for the lower susceptibility 
of children to the disease, i.e. χa = 0.56 if a ≤ 19 and 1 
otherwise [47].

The basic reproductive number R0 is defined in this 
model as

where ρ(χM) is the spectral radius, or largest eigenvalue, 
of the age-contact matrix (in this case also incorporating 
the susceptibility factor) [48].

(1)

dSa

dt
= −�aSa,

dIa

dt
= �aSa − γ Ia,

dRa

dt
= γ Ia,

(2)�a = βχa

∑

a′

Maa′
Ia′

Na′
,

(3)R0 =
β

γ
ρ(χM),
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Scenario
First, we collect the seroprevalence data measured in 
September 2020 for each age group and US state. We set 
the corresponding fraction of the population in each state 
into the removed compartment. Second, we simulate an 
initial outbreak with an R0 = 1.5 . This basic reproduc-
tive number is below the estimated R0 value for unmiti-
gated transmission of the original variant of SARS-CoV-2 
that is around 2.5–3 [49]. With this choice, we mimic a 
scenario in which there are some restrictions, social dis-
tancing and other protective measures in place, yielding a 
smaller effective R0 . During this outbreak, we implement 
a vaccination campaign (described below). By the end of 
the campaign, all individuals that have not refused vac-
cine uptake will have been vaccinated.

Once the vaccination campaign is completed, we 
assume that societies have returned to normalcy, i.e., 
any kind of restrictions and precautionary measures 
are lifted. Then, a new outbreak is seeded in each state, 
emulating a spill over from other states in the country 
or importation from other countries. In this second out-
break, we set R0 = 6 which is closer to the dominant var-
iant of concern (delta variant) [50], predominant in the 
US since mid 2021 until the emergence of the Omicron 
strain by the end of 2021 [51, 52], being this last variant of 
concern more highly transmissible with respect to Delta 
even though with lower pathogenicity [53]. The reason to 
propose these secondary outbreaks in each US state with 
an R0 more in line with Delta is the availability of data to 
compare our hypothetical scenario with reality. Note that 
we assume that no awareness or other non-pharmaceuti-
cal interventions are in place during this outbreak. Thus, 
it can be thought as the worst case scenario of resurgence 
after a vaccination campaign.

As a visual example of the proposed scenario, in Fig. 1 
we show how the incidence would evolve at the level of 
state for the full epidemic if no vaccination campaigns 
were deployed during the first outbreak. When an 
aggressive variant sets in, secondary outbreaks may still 
cause havoc. The inset depicts the evolution of the preva-
lence, which can reach almost the whole population for 
large enough R0 . In Sect. 3, we explore how the vaccina-
tion efforts modify this baseline scenario.

Vaccination
We use data from The COVID States Project (https:// 
covid states. org), in particular the surveys in Report 
#43: COVID-19 vaccine rates and attitudes among 
Americans [39]. These surveys provide information on 
vaccination acceptance/hesitancy by age at the state 
level. Therein, several degrees of predisposition toward 
vaccines are reported. The following categories are 

distinguished: individuals who are “already vaccinated”, 
individuals who are inclined to be vaccinated “as soon 
as possible”, “after at least some people I know”, “after 
most people I know”, and finally people who “would 
not get the COVID-19 vaccine”. The shares of people 
in each category is given at a national level for differ-
ent age groups. The data shows an important amount 
of heterogeneity in each of those categories by age 
group. However, at the level of state, the data is not dis-
aggregated by age groups, only the share of people in 
each vaccine acceptance category is shown. More spe-
cifically, we are looking for the coefficients g statec,a  , which 
represent the share of people for every acceptance cat-
egory, c, and age-class, a in every US state. These coeffi-
cients satisfy Nstate

c =
∑

a g
state
c,a N state

a  , where N state
a  is the 

population of the state in the age class a and N state
c  is 

the population of the state in the acceptance category 
c. These N state

c  values are provided in appendix A within 
the report, but the information is not disaggregated by 
age at the level of state [39].

The report offers information at a national level about 
how people are distributed within acceptance catego-
ries by age groups. We refer to the shares shown in the 
report as hnationalc,a  , which are normalized by age-class, 
that is, 1 =

∑
a h

national
c,a  for a particular category c. The 

quantity 
∑

a h
national
c,a Nstate

a  would be the number of 
people if national coefficients apply for a certain state 
and vaccine acceptance category c. We relate these 

Fig. 1 Proposed baseline scenario. Following the first wave of the 
epidemic, part of the population acquires natural immunity. Then, 
we simulate the propagation of a mitigated outbreak due to the 
presence of some restrictions, social distancing and prophylaxis 
measures, leading to a slower propagation of the original variant 
of the disease ( R0 = 1.5 ). After the outbreak extinguishes a 
back‑to‑normal situation is assumed and all prevention measures 
are lifted. Then, an outbreak is seeded again with a higher basic 
reproductive number, R0 = 6 . On top of this baseline scenario, we 
will introduce a vaccination campaign during the first outbreak and 
explore the impact of vaccination hesitancy on the second outbreak

https://covidstates.org
https://covidstates.org
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coefficients hnationalc,a  to coefficients g statec,a  through a linear 
transformation:

This transformation preserves the shares of people in a 
certain vaccine acceptance category c in every state and 
also allows for the introduction of age heterogeneity 
adapted from the national-level data.

Vaccination campaigns are complex and depend highly 
on several properties of the population: age, risk groups, 
professions, supplies, infrastructure, etc. Since we are 
mostly interested in the aftermath after the vaccination 
campaign, we adopt a simple scheme. From the afore-
mentioned surveys, we extract the fraction of the popu-
lation within each age group and state that is willing to 
be vaccinated, V state

a  . We set the length of the vaccination 
campaign to be �tv = 150 days and assume that the frac-
tion of population vaccinated per unit time is constant 
and equals to V state

a /�tv . Both susceptible and recovered 
individuals can be vaccinated. For simplicity, the vac-
cine is assumed to be 100% effective in preventing the 
infection.

Results
In Fig. 2, we show how the incidence and prevalence of 
the disease changes from the baseline scenario depicted 
in Fig.  1 when vaccination is in place. In particular, we 
consider the state with the highest vaccine hesitancy, 
Oklahoma (OK), and the state with the lowest one, Mas-
sachusetts (MA). Additionally, for a fairer comparison, 
the simulations were started with a null initial condition 

(4)g statec,a = hnationalc,a

N state
c∑

a h
national
c,a N state

a

for prevalence ( Ra(t = 0) = 0 ) (i.e. considering that the 
whole population is in the susceptible state). Dotted lines 
in the figure show the case without vaccination. We can 
see that the impact, in each isolated outbreak and for the 
full epidemic, is more or less the same for both states, dif-
ferences owing to population internal structure. When 
vaccination is introduced in the model (continuous 
lines), we can appreciate the reduction of peak incidence 
and epidemic final sizes for both states during the first 
outbreak. However, when we simulate the second out-
break, the state with the lowest vaccine hesitancy shows 
a remarkably lower impact, while the other state expe-
riences a sizable second outbreak. The peak of the out-
breaks is similar in both outbreaks for Massachussetts, 
while in Oklahoma, the secondary outbreak is around 
twice as large as the first outbreak.

Next, we focus on the overall effect of vaccination on 
the spreading. We explore the relationship between the 
final attack rate (total fraction of the population that was 
infected) and the fraction of non-vaccinated individuals 
in each state. At the time of the surveys vaccine uptake 
on underage people was not being considered and there 
was no data regarding the attitudes of this age group. 
Thus, this set of individuals is composed by both under-
age people and adults who manifested vaccine hesitancy 
in the aforementioned surveys [39].

In order to look for a possible correlation between 
state-level attack rates and the fraction of non-vaccinated 
individuals, we performed a linear regression. Figure 3A 
depicts a scatter plot of the attack rates versus the frac-
tion of non-vaccinated individuals for the simulated 
full epidemic unfolding in every state. The coefficient of 
determination, R2

= 0.936 , shows a clear relationship 

Fig. 2 Comparison of spreading dynamics. Comparison of peak incidences and final epidemic sizes for the states of Oklahoma (OK), which has the 
highest vaccine hesitancy, and Massachusetts (MA), where the vaccine hesitancy is the lowest according to surveys [39]. Continuous trajectories 
(blue and red) represent the simulation with vaccination campaign, whereas dotted trajectories represent the simulation without introducing the 
vaccination campaign. All simulations started with a fully susceptible population
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between attack rates and vaccine hesitancy for the full 
period. Note that we have added a simulation for the 
whole country (the red dot in the scatter plots) with 
the age-structure from the whole population. Figure  3B 
shows a scatter plot of the attack rate of the second 
outbreak, versus the fraction of remaining susceptible 
individuals at the end of the first outbreak. Here, the 
coefficient of determination is also very high, R2

= 0.971 . 
Note that the use of the remaining susceptible fraction 
rather than directly the fraction of non-vaccinated indi-
viduals owes to the fact that once the first outbreak and 
the vaccination campaign have ended, the demographic 
structure of the pool of susceptible individuals has 
changed dramatically. This pool is all conformed by indi-
viduals that either declined vaccination or are underage. 

Since, according to data, hesitancy rates are low in older 
people, there is a predominance now of younger suscep-
tible individuals. Additionally, Fig. 4 represents the very 
same data of Fig.  3A on the map of the United States. 
We observe some geographical clustering, even though 
we are treating each state as a completely isolated pop-
ulation. The states with higher attack rates or, similarly, 
the states with a higher fraction of vaccine hesitancy, are 
concentrated mainly in the interior of the country (inner 
Pacific west, Intermountain), ranging from north (Mid-
west) to south (inner Southeast).

Let us next try to get a deeper understanding of what is 
happening during our simulated second outbreak. Look-
ing at some particular extreme examples, we can appreci-
ate that the state of Massachusetts (MA), with the lowest 

Fig. 3 Attack rates scatter plots. Scatter plot of attack rates after the full epidemic (first outbreak with R0 = 1.5 and the second one with R0 = 6 ) 
versus the non‑vaccinated fraction of individuals (A), and attack rates of the second outbreak ( R0 = 6 ) versus the remaining susceptible fraction 
after the first outbreak (B) for every US state. The red dot corresponds to a simulation on a population representing the whole country. It is clearly 
seen that higher hesitancy translates into higher attack rates

Fig. 4 US map. Representation on the US map of the attack rates of every state after the end of the epidemic trajectory proposed in this paper (A), 
and the fraction of non‑vaccinated individuals (B). Some spatial clustering can be appreciated along the country, even though in the simulations all 
states are completely isolated
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vaccine hesitancy (9% of adult population), has the low-
est epidemic size during the first outbreak and also dur-
ing the second outbreak. On the other hand, Alaska (AK) 
shows one of the lowest attack rates in the first outbreak, 
but the highest one in the second outbreak, together with 
the highest fraction of remaining susceptible at the end of 
the first outbreak, whereas its hesitancy amounts to 23% 
of the adult population, way behind the most reluctant 
states. Interestingly, there are other states with a rela-
tive low hesitancy rate that also show a sizable second 
outbreak. This is the case of the state of Utah (UT), with 
a hesitancy of about 15% among the adult population 
but nevertheless ranking high in the size of the second 
outbreak. One could hypothesize that these two states 
should have a similar number of deaths during the sec-
ond outbreak. But, remarkably, as we show below, there 
is indeed more than a simple extrapolation of the cor-
relation between the outbreak size and the number of 
non-vaccinated/susceptible individuals when it comes to 
forecasting mortality. The reason is that the age of non-
vaccinated and/or remaining susceptible matters, not 
only because it usually determines behavior (and risk 
of infection) but also because the infection fatality rate 
heavily depends on it. As [40] emphasizes, considering 
transmission through the lens of (age-based) contact pat-
terns is fundamental to understanding which population 
groups are driving disease transmission. Several reports, 
at least for the US, point to the fact that transmission 
dynamics shifted from older adults in the first stages of 
the pandemic to younger groups later [40, 54, 55]. This is 
understandable since once the harshest lockdowns were 
lifted, naturally younger groups are more socially active. 
In contrast, elders are less active and due to epidemic 
awareness, one should expect that they mix more care-
fully. Regarding mortality, it has been well documented 
the increasing risk of suffering severe disease and death 
for the oldest age groups, specially beyond 65 years old 
[41, 56–60].

In Fig.  5, we show a scatter plot of deaths per mil-
lion individuals in the second outbreak versus the frac-
tion of non-vaccinated individuals at the end of the first 
outbreak. We estimate the number of deaths in each age 
group by applying the corresponding infection fatality 
rate (IFR) [56], so that:

where Ra(∞) and Da(∞) are, respectively, the prevalence 
and the number of deceased individuals at the end of a 
particular outbreak.

Even though a high coefficient of determination is 
obtained, its explanatory power is smaller than for the 
attack rate, which suggests that there are other factors 
playing a relevant role. Certainly, we can appreciate that 

(5)Da(∞) = IFRa × Ra(∞),

higher proportions of deaths tend to occur in those states 
with higher hesitancy. Bringing back the case of Alaska 
(AK), and contrary to what could be naively expected, 
we see that it has been overtaken by several states. Even 
more striking is the case of Utah (UT), being in the lower 
part of the ranking. This clearly reveals that apart from 
vaccine hesitancy, the age structure is playing a key role 
in the disease dynamics and COVID-related fatalities [56, 
58, 59].

To understand better these interdependencies, we next 
look at the attack rates during the second outbreak by 
coarse-graining the 85 age groups resolved in our model 
into four main relevant categories for the sake of the 
analysis. In Fig.  6, we show results for 0–18 (A), 18–45 
(B), 45–65 (C), and more than 65 year old age groups 
(D). For each one, the attack rates during the second out-
break are computed as Ra(∞)/R(∞) , while the fractions 
of remaining susceptible individuals at the end of the 
first outbreak are computed as S1a/S1 , where R(∞) is the 
final attack rate, and S1 is the total fraction of remaining 
susceptible subjects. Thus, these figures tell us the share 
of people in each group a within the susceptible and 
removed pools.

Discussion
The results by age groups exhibit a very high correlation 
for the linear fittings, which indicate the relevance of age 
structure in the transmission of the disease. For every age 
group, states with higher hesitancy tend to experience 
larger epidemic sizes. Regarding the cases mentioned 
before, namely, Utah (UT) and Alaska (AK), one can see 

Fig. 5 Death scatter plots. Scatter plot of deaths per million during 
the second outbreak versus the non‑vaccinated fraction at the 
end of the first outbreak for every US state. Results also shown for 
a simulation of the epidemic for the whole country as if it were a 
single age‑structured population (red dot). The model does not 
include deaths as part of the dynamics, but they can be estimated by 
applying the infection fatality rate to the final fraction of individuals in 
the removed compartment for each age class (Eq. (5))
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that their fractions of remaining susceptible individuals 
are large in the youngest age groups and rather small (null 
for Alaska) in the 65 + age strata. This ultimately explains 
why these two states undergo large secondary outbreaks 
that are not translated into a higher number of deaths. 
Finally, we also note that the fraction of remaining sus-
ceptible individuals is the highest for roughly every state 
in the two youngest age brackets (around or higher than 
50%), which means that the younger age groups will be 
the driving group of the second outbreak.

It is thus clear the relevance of both vaccine hesitancy 
and of age heterogeneity in order to project the impact 
of the epidemic spreading on a territory. To showcase 
this, we look for an estimation of how many deaths could 
potentially be averted just by reducing the fraction of 
individuals in the “would not get the COVID-19 vaccine” 
category in one percentage point. It may occur that for 
states with an important share of younger population 
and not very high hesitancy, an extra effort does not pay 
off. Conversely, in states with an older population and 
for those with high hesitancy, such additional increase 
in the percentage of vaccinated may represent an impor-
tant benefit. We believe these are important considera-
tions for public health policy making. Table 1 shows the 

number of averted deaths per million people if vaccine 
hesitancy is reduced by one per cent during the vacci-
nation campaign in every state. A first look at the table 
would take us to believe that, overall, states with higher 
hesitancy will tend to avert more deaths by improv-
ing their vaccine roll out. But if we look for correlations 
between the total number of averted deaths in both out-
breaks and the fraction of non vaccinated individuals, we 
obtain a not so high Pearson coefficient of ρ = 0.61 , sig-
nalling correlations but not quite strongly. We have learnt 
throughout the discussion and related literature review 
the severe impact that disease has on the eldest groups 
within a population and specially in this work, the impor-
tance of having a low pool of remaining susceptible indi-
viduals in the oldest age groups (65 +) for having lower 
deaths rates in secondary outbreaks. If then we correlate 
this quantity with the total number of averted deaths, we 
obtain a Pearson coefficient of ρ = 0.92 and thus very 
high correlation and greater explanatory power.

The results shown in this work are based on a stand-
ard and sound epidemiological approach based on 
compartmental ODE modeling with a heavily-based 
data-driven input for several aspects: population age 
structure, mixing patterns by age, and vaccine uptake 

Fig. 6 Attack rate scatter plots by age. Scatter plot of attack rates during the second outbreak versus the remaining susceptible fraction for every 
US state. Top‑left (A): 0–18 years old group. Top‑right (B): 18–45 years old group. Bottom‑left (C): 45–65 years old group. Bottom‑right (D): over 65 
years old group. Results also shown for a simulation of the epidemic for the whole country as if it were a single age‑structured population (red dot). 
These high correlations show also the relevant role of age structure in the disease propagation
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attitudes. The proposed scenario on which the model 
is run, however, does not maps exactly any real situ-
ation experienced in the US and thus our aim was 
not to reproduce neither forecast accurately realis-
tic COVID-19 trajectories. The particular outcomes 
brought should be regarded as what-if scenarios or 
hypothetical outcomes of what to expect overall given 
the premises hold. If, for instance, vaccine acceptation 
fractions should differ, as well as the transmissibility of 
a given virus strain, the specific figures could change 
dramatically, but not so the underlying conclusions. 
Additionally, from the beginning the model confection 
and the devised scenario was not conceived to realisti-
cally simulate or reproduce the myriad of complexities 
and heterogeneities involved in COVID-19 spreading 
country-wise. However, we can still check to a certain 
point how the model performed with respect to real-
ity and thus gain confidence on the conclusions derived 
from it or rather discard the approach as insufficient or 
unsatisfactory.

As explained above, we proposed a hypothetical situ-
ation in which the epidemic spreading was ongoing but 
under rather mild transmission conditions due to dis-
ease awareness and general restrictions, while at the 
same time a mass vaccination campaign was deployed. 
After vaccination was completed and the epidemic 
wave was rather halted, then we simulated that societies 
turned back to normal from very low daily incidence, but 
the virus was still there and new secondary outbreaks 
emerged.

In reality, vaccine roll out in the US took off in the 
beginning of 2021 among concerns about vaccine hesi-
tancy, a few months before we posed our research ques-
tions and designed the aforementioned hypothetical 
scenario. By mid February the highest epidemic wave 
experienced by the country until that moment was end-
ing and reaching a plateau of rather low incidence. Over-
all, the situation stayed under control except for  a very 
slight peak around mid April and then a relaxed decrease 

Table 1 Average number of averted deaths per million (95% CI in brackets), separately in the 1st and 2nd outbreak, due to reducing 
vaccine hesitation in one percent point

Results shown for every state and for the whole country (US)

State Averted deaths (1st 
outbreak)

Averted deaths (2nd 
outbreak)

State Averted deaths (1st 
outbreak)

Averted deaths 
(2nd outbreak)

AK 5.12 [2.83–10.57] 16.78 [9.37–35.14] MT 12.03 [6.62–23.86] 34.49 [18.93–67.57]

AL 8.62 [4.73–17.13] 39.18 [21.49–76.94] NC 8.08 [4.44–16.11] 34.3 [18.83–67.7]

AR 10.23 [5.61–20.29] 42.38 [23.17–82.64] ND 10.83 [5.92–21.52] 35.56 [19.34–69.23]

AZ 9.66 [5.29–19.12] 39.74 [21.73–77.58] NE 9.75 [5.34–19.35] 27.7 [15.11–54.23]

CA 8.79 [4.81–17.45] 24.96 [13.62–49.08] NH 12.1 [6.67–24.09] 33.04 [18.19–65.35]

CO 7.66 [4.21–15.43] 26.57 [14.62–53.06] NJ 4.49 [2.47–8.91] 27.55 [15.08–54.42]

CT 10.43 [5.72–20.71] 28.18 [15.43‑ 55.57] NM 10.73 [5.9–21.38] 37.28 [20.45–73.19]

DC 4.09 [2.22–8.28] 9.43 [5.16–20.01] NV 7.57 [4.16–15.1] 34.65 [19.04–68.39]

DE 8.34 [4.59–16.6] 26.71 [14.71–52.98] NY 4.18 [2.29–8.29] 31.78 [17.35–62.54]

FL 10.3 [5.62–20.2] 48.74 [26.54–94.48] OH 10.55 [5.79–20.98] 32.53 [17.83–63.96]

GA 5.89 [3.24–11.8] 38.9 [21.38–76.83] OK 9.74 [5.34–19.41] 38.24 [20.93–74.83]

HI 9.31 [5.09–18.44] 10.87 [6.06–22.76] OR 11.05 [6.07–21.97] 35.75 [19.61–70.23]

IA 7.31 [4.0–14.56] 31.54 [17.25–62.05] PA 7.84 [4.3–15.2] 36.33 [19.88–71.2]

ID 10.18 [5.59–20.29] 35.19 [19.29–68.9] RI 10.26 [5.63–20.38] 26.66 [14.59–52.55]

IL 9.28 [5.08–18.44] 30.61 [16.73–60.12] SC 9.66 [5.32–19.19] 39.87 [21.91–78.17]

IN 9.00 [4.95–18.04] 30.06 [16.51–59.43] SD 10.53 [5.79–21.03] 35.13 [19.24–68.87]

KS 9.08 [4.99–18.16] 33.38 [18.29–65.69] TN 9.54 [5.24–19.0] 39.14 [21.47–76.84]

KY 11.88 [6.52–23.52] 37.12 [20.32–72.48] TX 5.99 [3.29–12.05] 27.89 [15.3–55.49]

LA 7.68 [4.22–15.25] 45.27 [24.79–88.51] UT 5.68 [7.38–26.53] 17.02 [9.31–34.05]

MA 8.37 [4.59–16.67] 16.94 [9.29–33.83] VA 8.31 [4.57–16.66] 27.93 [15.37–55.55]

MD 5.64 [3.1–11.27] 25.95 [14.27–51.71] VT 13.40 [7.38–26.53] 31.36 [17.21–61.56]

ME 14.13 [7.77–27.89] 29.7 [16.29–58.21] WA 8.14 [4.48–16.35] 22.54 [12.4–45.11]

MI 12.03 [6.6–23.82] 40.84 [22.34–79.66] WI 10.70 [5.88–21.28] 30.5 [16.71–59.9]

MN 7.42 [4.08–14.82] 31.34 [17.18–61.9] WV 13.25 [7.28–26.2] 44.72 [24.5–87.12]

MO 10.60 [5.81–21.04] 34.9 [19.09–68.37] WY 12.39 [6.82–24.64] 39.78 [21.81–77.73]

MS 8.78 [4.82–17.48] 38.48 [21.09–75.36] US 7.95 [4.36–15.85] 32.15 [17.62–63.43]
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until reaching the lowest national incidence levels by 
June 2021 since the beginning of the pandemic. Thus, we 
could draw some parallelisms here with our first wave in 
our experiment: a rather controlled and decaying pro-
gression with vaccination going on. Then, restrictions 
were overall lifted up and a new wave started to build 
up by the beginning of July 2021. This wave was mainly 
driven by the Delta variant of concern, peaking on the 
first days of September, reaching a higher plateau than 
the previous wave by early November 2021, and imme-
diately followed by the huge Omicron wave. Given the 
history of the spreading dynamics in the US, we con-
sider that our hypothesized secondary outbreaks in every 
state, describing a rather unmitigated scenario with a 
more aggressive strain, could match reasonably well the 
Delta wave that took place across the described period. 
Therefore, it is informative to check how the model out-
put relates to the real impact of the epidemic during the 
aforementioned period. In Fig.  7, we looked at the fol-
lowing pairs of observables to check for correlations: 
real data [61] vs. model/survey vaccination fractions 
(Fig. 7A), data-based deaths [62] vs. real vaccination frac-
tions (Fig.  7B), and data-based deaths vs. model deaths 
(Fig.  7C). We can see that all confronted observables 
show a high correlation. First, in panel A, comparing 
data and model vaccination fractions we obtain a Pear-
son correlation coefficient of ρ = 0.8 . Overall, we can say 
that surveys on attitude towards vaccination were good, 
strengthening subsequent model results. Second, in 
panel B we obtain a value of ρ = 0.81 when correlating 
what happened in reality regarding deaths and vaccina-
tion. As expected, the higher the vaccination fraction in 
a state, the lower the deaths that took place due to the 

COVID-19. When comparing in the paper the model 
deaths per million with the non-vaccinated fraction (for 
the matter, this is equivalent to comparing it to the vac-
cinated fraction), we obtained an R2

= 0.729 and there-
fore a Pearson coefficient of ρ = 0.85 , a very high signal 
of correlation. We can then see that our model projec-
tions captured the real trend quite satisfactorily and this 
emphasizes the dominant role of the vaccine of mitigat-
ing the impact on the population. Finally, in panel C we 
obtained a Pearson coefficient ρ = 0.79 when comparing 
this time the real data-based estimation of deaths and the 
model-based estimation of deaths. Thus we find again a 
high correlation between our hypothesized scenario of 
secondary outbreaks and the Delta wave.

Conclusions
In this work, we have explored SARS-CoV-2 transmission 
dynamics on a population that is partially vaccinated and 
is seeded again with the virus when restrictions are fully 
lifted. We explored, in particular, to what extent vaccine 
hesitancy may still drive sizable outbreaks in a context 
where a more transmissible SARS-CoV-2 variant of con-
cern is dominant. We used data from vaccination accept-
ance surveys, together with up-to-date age distributed 
populations and contact matrices in the US to inform an 
age-structured SIR model.

Our results show a clear correlation between the size 
of experienced outbreaks, once all kinds of measures are 
lifted, and the fraction of vaccine hesitancy or, similarly, 
the fraction of remaining susceptible individuals at the 
onset of a second outbreak. Higher vaccine hesitancy 
ratios expose the population to larger outbreaks and, 

Fig. 7 Comparison of model output and real data for the Delta wave in the US. Correlation analysis (Pearson correlation coefficient) for data and 
model observables. Left A: Data vaccinated fraction until 31/10/2021 versus model/survey vaccinated fraction. Center B: Data based deaths per 
million versus real vaccinated fraction. Right C: Data based deaths vs. model deaths per million. High correlations are obtained between the model 
output and real data
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inversely, higher vaccine acceptance ratios can mitigate 
the impact to the point of negligible secondary waves due 
to immunity of the population.

We have also inspected in detail the role of the age 
structure of the population in both the attack rate and 
the mortality of secondary outbreaks. Our findings reveal 
that the prevalence is highly correlated with the fraction 
of remaining susceptible individuals by age classes, with 
the youngest contributing the most to the attack rate. It 
is however not immediate to project such a correlation 
to the expected number of deaths, as here too age plays 
a role, though in the opposite direction, e.g., the younger 
the population, the lower the mortality.

Lastly, we estimated the number of potentially averted 
deaths during the course of the simulated epidemic if 
the number of people reluctant to vaccine uptake were 
reduced in one percentage point. Results show again the 
relevance of regarding age structure in transmission since 
not all the states with higher hesitancy rank highest in 
averting deaths. It is very relevant the fraction of hesitant 
individuals in the older groups.

To round up the analysis, we investigated how the 
model fared when comparing with real data. Even though 
the devised experiment here was not intended to accu-
rately replicate or forecast real COVID-19 trajectories, 
the data-driven approach and sound modeling offered 
very high correlations when comparing survey/model 
vaccination against real vaccination, and model death 
estimation against real data-based deaths during the 
Delta wave in the US.

We acknowledge that our model has several limitations. 
One is at the core of its compartmental structure, not 
including a more detailed progression of the natural his-
tory of the disease, which might affect our estimation of 
deaths, and does not consider hospitalizations of any kind. 
The vaccination campaign could be implemented in a more 
realistic way and owing to each state idiosyncrasy but, more 
importantly, vaccines are revealing to be not sterilizing 
and thus not fully preventing transmission and, on top of 
that, immunity decays over time. These facts do not affect 
the overall dynamics explored in this paper, but should be 
incorporated to provide reliable estimations on the exact 
amount of expected infections or deaths. Additionally, the 
behavioral responses are not completely accounted for. All 
these factors open important challenges for future works.

To conclude, the most important implications of the 
results reported here include: (i) data on vaccination by 
age is important to accurately capture the evolution of 
mortality in secondary waves; (ii) surveys on vaccination 
attitude are a valuable proxy to estimate the hesitancy 
of the population; (iii) allocation of additional resources 
is more important in states with relative high hesi-
tancy rates but specially in states where the remaining 

susceptible population is older; (iv) reintroduction of 
restrictions could be needed in states with very high 
attack rates to reduce pressure over healthcare systems; 
and (v) incentives to vaccination will reduce the number 
of deaths if they focus on the older generations.
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