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a b s t r a c t 

The dynamical and structural aspects of cluster synchronization (CS) in complex systems have been inten- 

sively investigated in recent years. Here, we study CS of dynamical systems with intra- and inter-cluster 

couplings. We exploit new metrics that describe the performance of such systems and evaluate them as 

a function of the strength of the couplings within and between clusters. We obtain analytical results that 

indicate that spectral differences between the Laplacian matrices associated with the partition between 

intra- and inter-couplings directly affect the metrics of system performance. Our results show that the 

dynamics of the system might exhibit an optimal balance that optimizes its performance. Our work pro- 

vides new insights into the way specific symmetry properties relate to collective behavior, and could lead 

to new forms to increase the controllability of complex systems and to optimize their stability. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The relationship between the structure of networks and the dy-

amics of the systems they represent plays a key role in a vari-

ty of collective phenomena exhibited by natural and engineered

ystems [1–5] . Of particular interest is the observation that in

any systems patterns that correspond to synchronized clusters

merge. This phenomenon, known as cluster synchronization (CS),

s a widespread (and characteristic) illustration of intra-cluster co-

erence and inter-clusters incoherence [6–9] . The understanding of

he characteristics of CS is of key relevance, as it has been argued

hat this phenomenon is of central importance for the proper func-

ioning of nonlinear systems that have evolved or been designed,

uch as the human brain [10–13] and power grids [14–17] . Despite

everal attempts, it is not year clear whether CS will occur and

ow to identify or predict in advance its emergence. 

On the one hand, a considerable amount of prior work has been

evoted to the issue of establishing a compact representation of
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he relationship between the structure and the dynamics [6,7,18–

1] in systems that display CS. Such a representation facilitates un-

erstanding the mechanisms that eventually produce cluster syn-

hronization. For instance, it has been observed that underlying

tructural symmetries can induce patterns of CS. Interestingly, the

everse is also true, namely, CS can reveal underlying symmetries

9,20] . Patterns of CS have also been shown, both experimentally

nd theoretically, to be induced by modulating structures and by

eterogeneous time-delayed couplings [22,23] . 

On the other hand, and leaving aside the identification of nu-

erous types of emergent CS patterns, the focus has recently been

laced in studying the persistence of CS. Group theory, for exam-

le, uses the connection between symmetries and nonlinear per-

ormance measures to get new insights into the dynamical behav-

or of both simple [21] and arbitrarily complex networks [9] . In-

eed, applying group theory to dynamically equivalent networks

acilitates the detection of cluster synchronization patterns [6] . Ad-

itionally, both the degree of cluster symmetry and the spatial

istribution of coupling strengths are key factors for the stabil-

ty of CS. Admittedly, higher symmetries lead to a reduced region

f stability [19] , whereas intra-cluster couplings that are higher

han inter-clusters couplings can induce stronger local exponen-

ial stability in networks of heterogeneous Kuramoto oscillators [7] .

https://doi.org/10.1016/j.chaos.2020.110065
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However, to the best of our knowledge, no prior work has investi-

gated the partitioning of coupling within and between clusters, and

its relation to nonlinear performance measures on realistic net-

works. 

In this work, we are concerned with the synchronization of

clusters in a general setting, as quantified by two performance

metrics. We address the effects of the differences between within

and between cluster couplings (henceforth called the balance be-

tween such couplings) on two performance metrics. We use irre-

ducible group representations to bridge the connection between

structural clusters and the nonlinear performance measures, and

provide a general theory that is shown to work for the Kuramoto

model and an ecological model. The analytical results are consis-

tent, to a good accuracy, with numerical simulations for several

combinations of intra- and inter-cluster couplings. 

2. Methodology 

We consider the following classical dynamical equations 

˙ x i (t) = F ( x i (t)) −
N ∑ 

j=1 

k i j A i j G ( x i (t ) , x j (t )) , i = 1 , 2 , . . . , N, (1)

where x i is an n -dimensional column vector characterizing the

state of the i th oscillator; F represents the intrinsic dynamics of

each oscillator; and k ij quantifies the strength of the coupling be-

tween nodes i and j . Moreover, A ij are the elements of a symmetric

adjacency matrix A = { A i j } which encodes the connectivity pattern

of the underlying network, with A ij equal to 1 if oscillators i and

j are connected and 0 otherwise. Finally, G is the output function

of adjacency oscillators, and is also an n -dimensional column vec-

tor. Eq. (1) governs the general dynamics of numerous network-

coupled systems and allows, for instance, to establish a connec-

tion between network symmetries and cluster formation [9] , and

to capture how the rules of spatiotemporal signal-propagation de-

pend on a network’s topology [24] . 

As it is know, the structure of a complex system often deter-

mines many emergent behaviors and the functioning of the sys-

tem. For the current phenomenon of interest, CS, the relationship

structure-dynamics is no less, that is, the underlying topological

features of a network play a key role in the emergence of clus-

ter synchronization. Based on group theory, we can identify sym-

metries of a network with N nodes and further partition nodes

into M clusters, where nodes within the same cluster have iden-

tical dynamical behavior [9] . For notational convenience, we use

C m 

( m = 1 , 2 , . . . , M) to denote the set of nodes in the m th cluster,

with all nodes in C m 

having identical states (i.e., identical x i ) that

are given by s m 

( t ) and which correspond to synchronous motion.

We introduce α( i ), within the range of [1, M ], which maps node i

onto its corresponding cluster. 

We impose small perturbations on the state of each oscilla-

tor, which corresponds to a small deviation away from the global

state of M synchronized clusters. If δx i is the perturbation of the

state of the i th oscillator, we have x i = s α(i ) + δx i . We define δx =
[ δx T 

1 
, δx T 

2 
, . . . , δx T 

N 
] T , which is an n -dimensional column vector that

contains all perturbations. The corresponding linearized equation

of the perturbations is 

δ ˙ x = [ D F ( s ) − D G ( s , s )] δx , (2)

where D F ( s ) = diag [ D F ( s α(1) ) , D F ( s α(2) ) , . . . , D F ( s α(N) ) ] , D F is

the n × n Jacobian matrix of F , and D G ( s , s ) is given by 

D G ( s , s ) i j = 

⎧ ⎨ 

⎩ 

N ∑ 

j=1 

k i j A i j D G 1 ( s α(i ) , s α( j) ) , i = j, 

k i j A i j D G 2 ( s α(i ) , s α( j) ) , i � = j, 

(3)
hile D G 1 and D G 2 are, respectively, the first and last n columns

f the n × 2 n Jacobian matrix of G . 

Let us now introduce a coherency metric, H , which represents

he energy expended when the system relaxes back to its stable

tate. In terms of a quadratic cost of phase differences between

ny pair of connecting nodes (following [25] ), the metric H is given

y 

 = 

∫ ∞ 

0 

n ∑ 

l=1 

N ∑ 

i, j=1 

A i j [ δx l i (t) − δx l j (t)] 2 d t 

= 2 

n ∑ 

l=1 

∫ ∞ 

0 

δx l 
T 

(t) L δx l (t )d t , (4)

here δx l 
i 

is the l th component of δx i and δx l =
 δx l 

1 
, δx l 

2 
, . . . , δx l 

N 
] T . L is the Laplacian matrix associated with

he adjacency matrix A , and it is defined as L = D − A where D is

he diagonal matrix whose elements are the nodes’ degree. 

The coherency metric, H , combines intra- and inter-clusters’ in-

eraction and separation, but this combination is hidden in the un-

erlying structure. In order to get a deeper insight into the differ-

nt contributions to H , we introduce another performance metric,

enceforth denoted by J , which is based on a simple 2 norm that

aptures the phase variance of the whole system. Therefore, we de-

ne 

 = 

∫ ∞ 

0 

‖ δx (t) ‖ 

2 
2 d t = 

∫ ∞ 

0 

δx T (t) δx (t )d t . (5)

Let us now define a new coordinate system. To this end, we

apitalize on some studies that have found that a unitary matrix

 , which depends on A , provides a powerful way to transform the

inearized equation, Eq. (2) , into a convenient new coordinate sys-

em. In this new coordinate system, the transformed coupling ma-

rix B = T AT −1 has a block diagonal form, reflecting the symmetry

tructure and revealing the hidden clusters’ interaction and separa-

ion [9] . Specifically, the upper-left block of B is an M × M matrix

hat describes the dynamics within the synchronization manifold.

he remaining diagonal blocks describe motion transverse to this

anifold. Applying T to Eq. (2) , we rewrite this linearized equation

s 

˙ = T [ D F ( s ) − D G ( s , s )] T −1 η, (6)

here T = T 
⊗ 

I n and η = T δx . Based on the new coordinate sys-

em, Eq. (5) can be rewritten as 

 = 

∫ ∞ 

0 
[ T δx (t) ] 

T 
[ T δx (t) ] d t = 

∫ ∞ 

0 

ηT (t) η(t)d t . (7)

enoting the first Mn and last (N − M) n exponents of η by η+ and

−, respectively, we divide J into 

 + = 

∫ ∞ 

0 

ηT 
+ (t) η+ (t)d t and J − = 

∫ ∞ 

0 

ηT 
−(t) η−(t)d t . (8)

 + and J − sum the intra-clusters integration and intra-clusters sep-

ration, respectively, across clusters. While J reveals more details

f the hidden intra- and inter-cluster combinations, both the co-

erency metric H and the transformed metric J capture the sys-

em stability but from different perspectives. Note that small val-

es of both metrics represent high levels of robustness of the sys-

em against disturbances. 

Of further interest is to investigate how a redistribution of the

ntra- and inter-cluster coupling strengths influence the values of

 and J . For simplicity, we consider the coupling strength matrix

 M × M 

, where the diagonal elements represent the homogeneous

ntra-coupling strengths between nodes within the same cluster

nd the off-diagonal elements stand for the heterogeneous inter-

oupling strengths between different clusters. The minimization
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roblem (recall that the smaller the value, the higher the robust-

ess) can be formulated as 

in H subject to ϕ(K) = c (9)

here ϕ( · ) is a constraint function on elements of K and c is

 constant. To address the minimization problem, we can further

olve the lagrangian 

 (K, λ) = H − λ[ ϕ(K 11 , . . . K MM 

) − c] , (10)

nd obtain the optimal solution satisfying 
 

 

 

 

 

∂L 

∂K i j 

= 

∂H 

∂K i j 

− λ
∂ϕ 

∂K i j 

= 0 , i, j = 1 , 2 , . . . , M, 

∂L 

λ
= ϕ(K) − c = 0 . 

(11) 

he above procedure can also be applied to the optimization solu-

ion for minimizing J . 

. Application to two paradigmatic dynamics 

.1. Kuramoto model 

To further analyze the stability of the system with respect to

he balance between intra- and inter-couplings, we first consider

he classical Kuramoto model, which is governed by the equations

˙ 
i = P i −

N ∑ 

j=1 

k i j A i j sin(θ j − θi ) , i = 1 , 2 , . . . , N , (12)

n which F (θi ) = P i , and G (θi , θ j ) = sin(θ j − θi ) . When the sys-

em operates within the regime of stable synchronization, we can

uild the corresponding Jacobian matrix and, from Eq. (3) , get that

G 1 (θi , θ j ) = −cos(θ j − θi ) ≈ −1 and DG 2 (θi , θ j ) = cos(θ j − θi ) ≈ 1 .

Regarding the coupling balance, one should (in theory) use

he Lagrangian of the problem to determine all elements of the

oupling-strength matrix K . Although this problem may be solv-

ble, in general, the results obtained are hard to interpret. For

implicity, we only consider diagonal elements of K equal to k 1 
the coupling strength within clusters), and the off-diagonal el-

ments of K equal to k 2 (the coupling strength between clus-

ers). After an arbitrary set of disturbances, δθ(0) = v , where v =
 v 1 , v 2 , . . . , v N ] T ∈ R 

N represents the magnitudes of the disturbances

n nodes, one can obtain the explicit solution of δθ from Eq. (2) as

θ = e −(k 1 L 1 + k 2 L 2 ) t v = e −L k t v , (13) 

here L 1 and L 2 are the intra-cluster and inter-cluster parts of

he Laplacian matrix L k , and L k = k 1 L 1 + k 2 L 2 . Here, L 1 = D 

(1) −
 

(1) and L 2 = D 

(2) − A 

(2) . Specifically, D 

(1) = diag { d (1) 
i 

} , where d (1) 
i 

ounts the number of intra-clusters links connecting i within the

ame cluster C α( i ) , and A 

(1) = { A 

(1) 
i j 

} , with A 

(1) 
i j 

representing intra-

lusters links between nodes i and j within C α( i ) . D 

(2) is defined

n the same way but for inter-cluster connections, that is, D 

(2) =
iag { d (2) 

i 
} counts the number of inter-clusters edges linking node i

o nodes that belong to different clusters, and A 

(2) = { A 

(2) 
i j 

} repre-

ents inter-cluster edges. 

Given the explicit solution of δθ, we can calculate the co-

erency metric as 

 = 2 

∫ ∞ 

0 

δθ
T 
(t) Lδθ(t) dt = v T 

( 

N ∑ 

i =2 

1 

λi 

u i u 

T 
i 

) 

L v , (14)

see S2 for the detailed calculation) where λi and u i ( i =
 , 3 , . . . , N) are the eigenvalues of L k from the smallest to the

argest except for λ1 = 0 and the corresponding eigenvectors, re-

pectively. 
We implement the constraint k 1 + k 2 = 1 , that forces a partition

f couplings, and allows the investigation of the effects of the intra

nd inter-coupling balance on the coherency metric H . We proceed

y obtaining the first and the second derivatives of H with respect

o k 1 (see S2), which leads to 
 

 

 

 

 

 

 

 

 

 

 

 

 

dH(k 1 ) 

dk 1 
= −v T 

( 

N ∑ 

i =2 

1 

λ2 
i 

u i u 

T 
i 

) 

(L 1 − L 2 ) L v , 

d 2 H(k 1 ) 

dk 2 
1 

= 2 v T 
( 

N ∑ 

i =2 

1 

λ3 
i 

u i u 

T 
i 

) 

(L 1 − L 2 ) 
2 L v . 

(15) 

q. (15) constitute the theoretical solution for H as a function of

 1 , being the λi the eigenvalues of the matrix L k = k 1 (L 1 − L 2 ) +
 2 . By varying k 1 (for instance, increasing it), one can explore how

he interplay of the spectra of L 1 − L 2 and L 2 might lead to non-

rivial phenomena. Of particular interest, as noted before, is the

et of parameters that optimize the system’s stability. This can be

epresented as 

in H subject to k 1 + k 2 = 1 with 0 � k 1 , k 2 < 1 , (16)

Similarly, the explicit solution of state change is 

 = 

∫ ∞ 

0 

[
T δθ(t) 

]T [
T δθ(t) 

]
dt = 

1 

2 

v T 
( 

N ∑ 

i =2 

1 

λi 

u i u 

T 
i 

) 

v . (17) 

ith the matrices 

 + = 

[
I M 

| O M ×(N−M ) 

]
, Q − = 

[
O (N−M) ×M 

| I (N−M) 

]
, (18)

here I is the identity matrix and O is the zero matrix. The quan-

ities J + and J − can be expressed as 

 + = 

∫ ∞ 

0 

ηT 
+ (t) η+ (t) dt = 

∫ ∞ 

0 

δθ
T 
(t) T T Q 

T 
+ Q + T δθ(t) dt , (19)

 − = 

∫ ∞ 

0 

ηT 
−(t) η−(t) dt = 

∫ ∞ 

0 

δθ
T 
(t) T T Q 

T 
−Q −T δθ(t) dt . (20)

In order to check the accuracy of the proposed theoretical

ramework, we next use a toy network model composed of 12

odes. Fig. 1 (a) shows the topology of the network, with nodes

f the same color belonging to the same cluster. The dark-color

dges link nodes within each clusters while the light-color edges

ink nodes between clusters. If a perturbation of nodes is restricted

o be within only one cluster, then we can use one unitary ma-

rix T of the toy model and determine which clusters will be in-

uenced (this depends on the nature of the perturbation). Fig. 1 (b)

llustrates the time series of each node (with color corresponding

o different clusters) after two kinds of perturbations are applied

s follows. At t = 0 , we apply perturbations to nodes of the purple

luster with 

∑ 12 
i =7 v i = 0 ; purple nodes are affected but other nodes

emain unaffected. At t = 2 . 0 , we again apply perturbations to pur-

le nodes with 

∑ 12 
i =7 v i � = 0 and all nodes are affected. After appli-

ation of the second perturbation, the system approaches a new

ynchronized state, and the coherency metric and state change

uantify the state displacement during this process. Perturbations

 v i } are in general assumed to obey a normal distribution N (0, σ ).

he strength of perturbations or variations σ is crucial to the sys-

em stability. Fig. 1(c,d) illustrates the validation of numerical and

heoretical solution of H and J with σ given, k 1 = 0 . 9 and k 2 = 0 . 1 .

ith the increase of σ , the difference between the numerical and

heoretical solution increases progressively as well as the standard

eviation. 

As noted before, the solutions Eq. (15) might depend on the in-

erplay/balance between L 1 and L 2 , which on its turn is determined

y how k ∗1 is changed. Here, we fix L 2 and proceed as follows to

ary L : i) we increase the connection strength by multiplying by
1 
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Fig. 1. Experimental observation of the model network. (a) The model network composed of 12 nodes with color representing cluster partition. (b) Disturbing the purple 

cluster subject to different conditions ( 
∑ 12 

i =7 v i = 0 at t = 0 and 
∑ 12 

i =7 v i � = 0 at t = 2 ) results in different steady states. (c) Variation between the numerical and the theoretical 

solutions of H with σ for the case of k 1 = 0 . 9 and k 2 = 0 . 1 , where { v i } obey a normal distribution N (0, σ ). Each curve corresponds to the average over 100 realizations and 

the error bars represent the standard deviation. (d) Variation between the numerical and the theoretical solutions of J with σ in the same situation. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Coherency metric and state change with ω = 1 , ω = 3 and ω = 5 for a given v . (a) Coherency metric H with different ω. (b) Change of the minimum k ∗1 with ω 

ranging from 1 to 5. (c) Relation between k ∗1 and dH(k 1 ) 
dk 1 

∣∣∣
k 1 = ε 

(set ε = 0 . 01 ) with ω = 5 and { v i } obeying the normal distribution N (0, 0.1) for 300 realizations. (d) State change 

J with different values of ω. (e) Intra-cluster state change J + with different ωs. (f) Inter-cluster state change J − with different ω. 
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Fig. 3. Coherency metric and state change with different average inter-cluster degrees for the purple cluster in Fig. 1 and for a given v . (a) Average inter-cluster degree 

equals to 2. (b) Average inter-cluster degree equals to 3. (c) Average inter-cluster degree equals to 4. (d) Average inter-cluster degree equals to 5. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. The figure shows a schematic representation of a mutualistic network (panel a) and results for the coherency and state change metrics for two different mutualism 

networks (panels (b through e). We have set B i = B = 0 . 01 , r i = r = 0 . 01 , C i = C = 5 , G i = G = 1 , D i = D = 5 , E i = E = 0 . 9 and H i = H = 0 . 1 . v obeys a normal distribution 

N (0, 0.01). (b) Coherency metric for a network composed of 16 plants and 44 pollinators with 278 mutualistic interactions (network MPL46). (c) State change for the same 

network used in panel b. (d) Coherency metric for the network composed of 11 plants and 38 pollinators with 106 mutualistic interactions (network MPL08). (e) State change 

for the same network used in panel d. 
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an arbitrary coefficient ω , i.e., L k = k 1 ω L 1 + k 2 L 2 , and ii) increase

the connectivity of L 1 . Fig. 2 (a) shows the coherency metric curve

with respect to ω. When ω is relatively small, H increases mono-

tonically with k 1 . However, when ω is relatively large, H first de-

creases and then increases with ω. In this case, H has one optimal

solution located at k ∗
1 
. Moreover, the value of k ∗

1 
increases with ω,

an the value of ω at which there is an optimal solution is larger

than the critical point ω 

∗, see Fig. 2 (b). Note that the critical value

ω 

∗ satisfies 0 = 

∂H(k 1 ,ω) 
∂k 1 

| k 1 = ε,ω = ω ∗ , where ε is close to 0. 

Fig. 2 (c) indicates that when 

dH(k 1 ) 
dk 1 

| k 1 = ε < 0 , the smaller the

slope of H ( ε), the closer k ∗
1 

is to 0. We also calculate J when ω
is varied. The explicit solutions of H and J , discussed above, indi-

cate that there is only the difference of a constant in the Lapla-

cian matrix between them. Thus, they share the same patterns, as

illustrated in Fig. 2 (d). The metric J corresponds to global proper-

ties of the whole system and consists of the intra-clusters integra-

tion across clusters J + and of the intra-clusters separation across

clusters J −. Further observation of J + and J − reveals that the inter-

cluster part is affected by different ωs, as illustrated in Fig. 2 (e)

and (f), due to the extra weight added to L 1 (the inter-cluster part

of the Laplacian matrix). This also implies that the dynamics be-

tween and within clusters are, in a sense, separated. 

In addition to the connection strength, we have also varied the

connectivity of the network. Results are shown in Fig. 3 . In par-

ticular, we find different coherency metric curves as well as state

change curves with respect to different average degrees of the

perturbed (purple) cluster. When the average degree is relatively

small, both H and J increase monotonically with k 1 . However, when

this average degree is relatively large (the fully connected network

in Fig. 3 (d)), H and J exhibit non-trivial solutions with a minimum

at k ∗
1 
. This situation is similar to that observed in Fig. 2 for high

values of ω. 

3.2. Dynamics of mutualism networks 

In addition to the Kuramoto model, we also consider another

paradigmatic dynamics corresponding to a real system, e.g., that of

mutualistic interactions among species in an ecological network.
e consider the following equations [26] to describe the evolution

f the number of individuals, or abundance, of species i, x i ( t ), 

˙ 
 i = B i + r i x i 

(
1 − x i 

C i 

)(
x i 
G i 

− 1 

)
+ 

N ∑ 

j=1 

A i j 

x i x j 

D i + E i x i + H j x j 
, (21)

here, on the right hand side of the equation, the first term, B i ,

aptures the incoming migration rate of i from neighboring ecosys-

ems; the second term accounts for the system’s logistic growth

ith a carrying capacity C i , and the Allee effect indicates that, for

ow population ( x i < G i < C i ), the population size of species i de-

reases; the third term encodes the mutualistic dynamics, which is

odulated by the mutualistic interactions ( i, j ) given by the ma-

rix A . Here, we use symbiotic interactions A ij constructed from

lant-pollinator relationships as a classic kind of mutualistic rela-

ionships. Plants need pollinators to reproduce and pollinators feed

ainly on nectar from plants. 

In this system, the abundance x i corresponds to one species i

r cluster. Therefore, the second term quantifies the intra-species

nfluence and the third term accounts for inter-species relations.

ased on this system, we aim to quantify the balance of intra-

nd inter-cluster effects on the stability of the system. With this

oal in mind, we additionally include the intra-species coupling

trength k 1 in the second term of the above system of equations

nd the inter-species coupling strength k 2 to its third term. The

dditional coupling strengths k 1 and k 2 could account for exoge-

ous factors with the capability of impacting the abundance of

pecies in the system. For instance, favorable environmental condi-

ions might create a better scenario in which pollinators and plants

eproduce more. This would correspond to an increase of the intra-

pecies coupling strength k 1 . We also note that the same condi-

ions that favor the increase of k 1 might imply a reduction of k 2 .

hus, the final equations are 

˙ 
 i = B i + k 1 r i x i 

(
1 − x i 

C i 

)(
x i 
G i 

− 1 

)
+ k 2 

N ∑ 

j=1 

A i j 

x i x j 

D i + E i x i + H j x j 
. 

(22)
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We shall investigate the system stability by adjusting the bal-

nce between k 1 and k 2 . Here, following the above procedure, we

ave the constraint k 1 + k 2 = 1 . Moreover, the underlying species

nteractions accounts for ecological interactions that are obtained

rom the web of life project. Specifically, each dataset is repre-

ented by a rectangular matrix M , with M ij representing the mutu-

listic relationship between plant i and pollinator j . We construct

he adjacency matrix A as 

 = 

[
0 M 

M 

T 0 

]
. (23) 

n other words, A represents interactions between different species

plants and pollinators) and competitive interactions between

lants and pollinators are not given by the interaction matrix.

owever, if one projects links between the plants as the edges

onnected by pollinators, it is possible to define the pollinators’

rojection network. The ( i, j ) element of the corresponding adja-

ency matrix C po equals 1 if pollinator i and pollinator j pollinate

he same plant, or equals to 0 otherwise. Similarly, one can also

efine plants’ projection links of the corresponding adjacency ma-

rix C pl . Altogether, the system of interactions can be considered as

 two-layer network, whose sketch map is shown in Fig. 4 (a). The

orresponding adjacency matrix is 

˜ 
 = 

[
C p� M 

M 

T C po 

]
. (24) 

o investigate the balance with respect to intra- and inter-species

oupling, we follow the above process. Specifically, we numerically

ntegrate Eq. (22) and consider the following nonlinear program-

ing problem 

in H subject to k 1 + k 2 = 1 with 0 � k 1 , k 2 < 1 . (25)

he same process can also be followed for J . Note that here each

ode represents one species (cluster), and therein J = J + and J − = 0 .

There are 149 mutualistic networks provided by the web of life

roject. We have arbitrarily selected some of such networks for our

umerical analysis. Results show that, depending on the selected

etworks, the coherency metric curves could either decrease first

nd then increase, or increase monotonically as shown in Fig. 5 .

he phenomena remain consistent for state change J . Fig. 5 shows

hese two limiting results obtained for two networks of the dataset

see S4 for more curves corresponding to different networks). 

. Conclusions 

Summarizing, in this manuscript we have investigated what is

he impact that changes of the balance between intra- and inter-

luster coupling strengths induce on the stability of the system. In

articular, we partition nodes into clusters using irreducible repre-

entation theory and linearize the system in the region of cluster

ynchronization. Depending on the nature of perturbations, only

ne or multiple clusters will be affected. We have exploited and

valuated two different metrics, namely H , which describes the

nergy that the system consumes to get back to a steady state,

nd J , which captures the state variations. The two metrics quan-

ify stability, but from different points of view with respect to

he coupling strength. Our results show that for both metrics the

ystem could exhibit nontrivial behavior with variations of the
ntra- and inter-coupling strengths. The proposed theoretical ap-

roach has been applied to analyze two explicit dynamical models,

.g., the Kuramoto model and the dynamics of a mutualistic eco-

ogical network. For the first case, we have used a synthetic net-

ork, whereas the latter implements realistic systems. Our results

ould provide new hints in the quest to control the dynamics of

etworked systems. 
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ppendix A. Details of mathematical derivations and further 

esults. 

1. A , T and B of the example 

Using a discrete algebra software, it is straightforward to de-

ermine the symmetries of A and the transformation matrix T . We

how the results applied to the network showed in Fig. 1 (a): 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 1 1 1 1 0 0 0 0 0 0 

1 0 1 0 0 0 1 1 1 1 1 1 

1 1 0 0 0 0 1 1 1 1 1 1 

1 0 0 0 1 1 1 1 1 1 1 1 

1 0 0 1 0 1 1 1 1 1 1 1 

1 0 0 1 1 0 1 1 1 1 1 1 

0 1 1 1 1 1 0 1 0 0 0 1 

0 1 1 1 1 1 1 0 1 0 0 0 

0 1 1 1 1 1 0 1 0 1 0 0 

0 1 1 1 1 1 0 0 1 0 1 0 

0 1 1 1 1 1 0 0 0 1 0 1 

0 1 1 1 1 1 1 0 0 0 1 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (26) 

here is one trivial cluster ({1}) and three non-trivial clusters

{2,3}, {4,5,6} and {7,8,9,10,11,12}). The transformation matrix is 

http://www.web-of-life.es
https://doi.org/10.13039/501100001809
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6 

 

−
√ 

6 

6 

−
√ 

6 

6 

−
√ 

6 

6 

−
√ 

6 

6 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 

 

−
√ 

6 

6 

√ 

6 

6 

−
√ 

6 

6 

√ 

6 

6 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 

 

1 

2 

0 −1 

2 

1 

2 

 

 

√ 

3 

6 

−
√ 

3 

3 

√ 

3 

6 

√ 

3 

6 

 

 

−1 

2 

0 

1 

2 

1 

2 

 

3 

 

√ 

3 

6 

√ 

3 

3 

√ 

3 

6 

−
√ 

3 

6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (27) 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

−1 0 0 

0 1 0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (28) 

er L 1 commutes with L 2 . The Laplacian matrix of the network is 

0 0 

−1 −1 

−1 −1 

−1 −1 

−1 −1 

−1 −1 

0 −1 

0 0 

0 0 

−1 0 

7 −1 

−1 7 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (29) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 −1 

0 0 

0 0 

−1 0 

2 −1 

−1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (30) 
T = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 −
√ 

6 

6 

−
√

6
1 0 0 0 0 0 0 0

0 −
√ 

2 

2 

−
√ 

2 

2 

0 0 0 0 0

0 0 0 −
√ 

3 

3 

−
√ 

3 

3 

−
√ 

3 

3 

0 0

0 0 0 0 0 0 −
√ 

6 

6 

√ 

6

6

0 −
√ 

2 

2 

√ 

2 

2 

0 0 0 0 0

0 0 0 −
√ 

6 

3 

√ 

6 

6 

√ 

6 

6 

0 0

0 0 0 0 

√ 

2 

2 

−
√ 

2 

2 

0 0

0 0 0 0 0 0 0 −1

2

0 0 0 0 0 0 −
√ 

3 

3 

√ 

3

6

0 0 0 0 0 0 0 −1

2

0 0 0 0 0 0 −
√ 

3 

3 

−
√

6

and the block diagonal coupling matrix is 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 0 2 

√ 

3 3 

√ 

2 0 0 0 0 0 

0 0 −
√ 

2 −
√ 

3 0 0 0 0 0 

2 

√ 

3 −
√ 

2 1 0 0 0 0 0 0 

3 

√ 

2 −
√ 

3 0 2 0 0 0 0 0 

0 0 0 0 −2 0 0 0 0 

0 0 0 0 0 −1 0 0 0 

0 0 0 0 0 0 −1 0 0 

0 0 0 0 0 0 0 −1 0 

0 0 0 0 0 0 0 0 −1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

S2. Detailed proof of the explicit solution of H and its derivative 

The key point of the equality in Eqs. (14) and (15) lies in wheth

L = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

5 −1 −1 −1 −1 −1 0 0 0 0 

−1 8 −1 0 0 0 −1 −1 −1 −1 

−1 −1 8 0 0 0 −1 −1 −1 −1 

−1 0 0 9 −1 −1 −1 −1 −1 −1 

−1 0 0 −1 9 −1 −1 −1 −1 −1 

−1 0 0 −1 −1 9 −1 −1 −1 −1 

0 −1 −1 −1 −1 −1 7 −1 0 0 

0 −1 −1 −1 −1 −1 −1 7 −1 0 

0 −1 −1 −1 −1 −1 0 −1 7 −1 

0 −1 −1 −1 −1 −1 0 0 −1 7 

0 −1 −1 −1 −1 −1 0 0 0 −1 

0 −1 −1 −1 −1 −1 −1 0 0 0 

The intra-cluster part is 

L 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 0 0 0 0 

0 1 −1 0 0 0 0 0 0 0 

0 −1 1 0 0 0 0 0 0 0 

0 0 0 2 −1 −1 0 0 0 0 

0 0 0 −1 2 −1 0 0 0 0 

0 0 0 −1 −1 2 0 0 0 0 

0 0 0 0 0 0 2 −1 0 0 

0 0 0 0 0 0 −1 2 −1 0 

0 0 0 0 0 0 0 −1 2 −1 

0 0 0 0 0 0 0 0 −1 2 

0 0 0 0 0 0 0 0 0 −1 

0 0 0 0 0 0 −1 0 0 0 
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a

L

0 0 

−1 −1 

−1 −1 

−1 −1 

−1 −1 

−1 −1 

0 0 

0 0 

0 0 

0 0 

5 0 

0 5 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (31) 

their matrix product is symmetric, we just need to prove that L 1 L 2 is 

s L 2 = [ � (2) 
1 

, � 
(2) 
2 

, . . . , � 
(2) 
N 

] , we need to prove � (1) T 

i 
� 
(2) 
j 

= � 
(1) T 

j 
� 
(2) 
i 

for any 

1

 C α(i ) = [ i 1 , i 2 , . . . , i N α(i ) 
] . Because of the definition of L 1 , only the i 1 th, 

heir sum equals 0. The corresponding components of � (2) 
j 

all equal to 

ise. No matter whether cluster C α( i ) and cluster C α( j ) are connected, 

� 
(2) 
i 

. 

in i), only the i 1 th, i 2 th, . . . , i N α(i ) 
th components of � (1) 

i 
have nonzero 

 if they are diagonal elements of L , or 0 otherwise. � (1) T 

i 
� 
(2) 
j 

equals to 

rly, we get the same case of � (1) T 

j 
� 
(2) 
i 

and � 
(1) T 

i 
� 
(2) 
j 

= � 
(1) T 

j 
� 
(2) 
i 

. 

 combination of L 1 and L 2 so that every pair of these four matrices is 

c 3) into Eq. (4) , we obtain 

H (32) 

T

e k 1 L 1 ) 
m (k 2 L 2 ) 

n −m , (33) 

a

H (34) 

A 2 λi u i u 
T 
i 
, where λi and u i (i = 2 , 3 , . . . , N) are the eigenvalues of L k from 

t sponding eigenvectors. Furthermore, as L k is positive semidefinite, all 

e  rest of eigenvalues are all positive so that the integral 
∫ ∞ 

0 e −2 λi t d t is 

c

H  

( 

N ∑ 

i =2 

1 

λi 

u i u 

T 
i 

) 

L v . (35) 

 

(L 1 − L 2 ) L v , (36) 

a

 

T 
i 

) 

(L 1 − L 2 ) 
2 L v . (37) 

S

um value in (0,1). The key point lies in the sign of 
dH(k 1 ) 

dk 1 

∣∣∣
k 1 = ε 

. 

ectors compose an orthogonal basis. Denote its eigenvalues and eigen- 

v bination of { q i } N i =1 
, i.e., v = 

∑ 

i βi q i . 
dH(k 1 ) 

dk 1 
can be expressed as: 

−
∑ 

i, j 

μ j βi β j q 
T 
i q j = −

∑ 

i 

μi β
2 
i . (38) 

T Eq. (38) is less than 0 and H has the minimum point in (0,1). 
nd the inter-cluster part is 

 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

5 −1 −1 −1 −1 −1 0 0 0 0 

−1 7 0 0 0 0 −1 −1 −1 −1 

−1 0 7 0 0 0 −1 −1 −1 −1 

−1 0 0 7 0 0 −1 −1 −1 −1 

−1 0 0 0 7 0 −1 −1 −1 −1 

−1 0 0 0 0 7 −1 −1 −1 −1 

0 −1 −1 −1 −1 −1 5 0 0 0 

0 −1 −1 −1 −1 −1 0 5 0 0 

0 −1 −1 −1 −1 −1 0 0 5 0 

0 −1 −1 −1 −1 −1 0 0 0 5 

0 −1 −1 −1 −1 −1 0 0 0 0 

0 −1 −1 −1 −1 −1 0 0 0 0 

Since two symmetric matrices are commutative if and only if 

ymmetric. In other words, if we let L 1 = [ � (1) 
1 

, � 
(1) 
2 

, . . . , � 
(1) 
N 

] and 

 ≤ i, j ≤ N . Consider the following two situations: 

i) Node i and node j belong to different clusters. We set cluster

i 2 th, . . . , i N α(i ) 
th components of � (1) 

i 
have nonzero values and t

−1 if cluster C α( i ) and cluster C α( j ) are connected, or 0 otherw

� 
(1) T 

i 
� 
(2) 
j 

= 0 . Similarly, we get � (1) T 

j 
� 
(2) 
i 

= 0 and � 
(1) T 

i 
� 
(2) 
j 

= � 
(1) T 

j 

ii) Node i and node j belong to the same cluster. As mentioned 

values. The corresponding components of � (2) 
j 

are equal to d (2)
j 

−d (2) 
j 

if node i and node j are connected, or 0 otherwise. Simila

To sum up, L 1 and L 2 are commutative. L and L k are the linear

ommutative. Next, we prove Eqs. (14) and (15) . Substituting Eq. (1

 = 2 

∫ ∞ 

0 

δθ T Lδθd t = 2 

∫ ∞ 

0 

v T e −L k t Le −L k t v d t. 

he expansion of e −L k t in matrix power series reads 

 

−L k t = 

∑ 

n =0 

1 

n ! 
(−L k t) 

n = 

∑ 

n =0 

(−t) n 

n ! 
(k 1 L 1 + k 2 L 2 ) 

n = 

∑ 

n =0 

(−t) n 

n ! 

n ∑ 

m =0 

(

nd e −L k t commutes with L . This gives 

 = 2 v T 
∫ ∞ 

0 

e −2 L k t dt L v . 

ccording to the theory of spectral decomposition, e −2 L k t = 

∑ N 
i =2 e 

−

he smallest to the largest (except for λ1 = 0 ) and u i their corre

igenvalues of L k are non-negative. Actually, except for λ1 = 0 , the

onvergent. These conclusions combined lead to 

 = 2 v T 
∫ ∞ 

0 

N ∑ 

i =2 

e −2 λi t u i u 

T 
i dt L v = 2 v T 

N ∑ 

i =2 

∫ ∞ 

0 

e −2 λi t dt u i u 

T 
i L v = v T

Similarly, the first derivative of H is 

dH(k 1 ) 

dk 1 
= 2 v T 

∫ ∞ 

0 

d 

dk 1 
(e −2[ k 1 (L 1 −L 2 )+ L 2 ] t ) dt L v = −v T 

( 

N ∑ 

i =2 

1 

λ2 
i 

u i u 

T 
i 

)

nd the second derivative of H is 

d 2 H(k 1 ) 

dk 2 
1 

= −4 v T 
∫ ∞ 

0 

d 

dk 1 
(e −2 L k t ) tdt (L 1 − L 2 ) L v = 2 v T 

( 

N ∑ 

i =2 

1 

λ3 
i 

u i u

3. Further explanation of the choice of v . 

The choice of v has a direct effect on whether H has the minim

Let Q = 

∑ N 
i =2 

1 

λ2 
i 

u i u 
T 
i 
(L 1 − L 2 ) L . Q is symmetric so that its eigenv

ectors by { μi } N i =1 
and { q i } N i =1 

. v can be rewritten as the linear com

dH(k 1 ) 

dk 1 
= −v T Q v = −( 

∑ 

i 

βi q 
T 
i ) Q( 

∑ 

j 

β j q j ) = −
∑ 

i, j 

βi β j q 
T 
i Qq j = 

hat is, for the given k = ε, we can distribute { β } to ensure that 
1 i 
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a) b) c)

d) e) f)

Fig. 5. Coherency metric curve corresponding to six different mutualism networks. We set B i = B = 0 . 01 , r i = r = 0 . 01 , C i = C = 5 , G i = G = 1 , D i = D = 5 , E i = E = 0 . 9 and 

H i = H = 0 . 1 . v obeys a normal distribution N (0, 0.01). (a) 11 plants and 38 pollinators with 106 mutualistic interactions (network MPL08). (b) 14 plants and 13 pollinators 

with 52 mutualistic interactions (network MPL11). (c) 7 plants and 33 pollinators with 65 mutualistic interactions (network MPL32). (d) 10 plants and 12 pollinators with 

30 mutualistic interactions (network MPL36). (e) 16 plants and 44 pollinators with 278 mutualistic interactions (network MPL46). (f) 14 plants and 35 pollinators with 86 

mutualistic interactions (network MPL50). 
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S4. More curves corresponding to different mutualism networks 

Fig. 5 shows the coherency metric curve corresponding to six

different mutualism networks. State change curves have similar

patterns, which are omitted here. The result indicates that both

patterns of coherency metric and state change are common in na-

ture. 

References 

[1] Strogatz SH . Exploring complex networks. Nature 2001;410(6 825):26 8–76 . 

[2] Newman ME , Barabási A-LE , Watts DJ . The structure and dynamics of net-
works.. Princeton university press; 2006 . 

[3] Boccaletti S , Latora V , Moreno Y , Chavez M , Hwang D-U . Complex networks:

structure and dynamics. Phys Rep 2006;424(4–5):175–308 . 
[4] Rodrigues FA , Peron TKD , Ji P , Kurths J . The kuramoto model in complex net-

works. Phys Rep 2016;610:1–98 . 
[5] Boccaletti S , Almendral J , Guan S , Leyva I , Liu Z , Sendiña-Nadal I , et al. Explo-

sive transitions in complex networks structure and dynamics: percolation and
synchronization. Phys Rep 2016;660:1–94 . 

[6] Sorrentino F , Pecora LM , Hagerstrom AM , Murphy TE , Roy R . Complete char-
acterization of the stability of cluster synchronization in complex dynamical

networks. Sci Adv 2016;2(4):e1501737 . 

[7] Menara T , Baggio G , Bassett D , Pasqualetti F . Stability conditions for cluster
synchronization in networks of heterogeneous Kuramoto oscillators. IEEE Trans

Control Netw Syst 2019;7(1):302–14 . 
[8] Cho YS , Nishikawa T , Motter AE . Stable chimeras and independently synchro-

nizable clusters. Phys Rev Lett 2017;119(8):084101 . 
[9] Pecora LM , Sorrentino F , Hagerstrom AM , Murphy TE , Roy R . Cluster synchro-

nization and isolated desynchronization in complex networks with symme-

tries. Nat Commun 2014;5(1):1–8 . 
[10] Bullmore E , Sporns O . Complex brain networks: graph theoretical analysis of

structural and functional systems. Nat Rev Neurosci 2009;10(3):186–98 . 
[11] Sporns O . Structure and function of complex brain networks. Dialogues Clin

Neurosci 2013;15(3):247–62 . 
[12] Zhou C , Zemanová L , Zamora G , Hilgetag CC , Kurths J . Hierarchical organization
unveiled by functional connectivity in complex brain networks. Phys Rev Lett

2006;97(23):238103 . 

[13] Kim JZ , Soffer JM , Kahn AE , Vettel JM , Pasqualetti F , Bassett DS . Role of graph
architecture in controlling dynamical networks with applications to neural sys-

tems. Nat Phys 2018;14(1):91–8 . 
[14] Rohden M , Sorge A , Timme M , Witthaut D . Self-organized synchronization in

decentralized power grids. Phys Rev Lett 2012;109(6):064101 . 
[15] Dörfler F , Bullo F . Synchronization in complex networks of phase oscillators: a

survey. Automatica 2014;50(6):1539–64 . 

[16] Menck PJ , Heitzig J , Kurths J , Schellnhuber HJ . How dead ends undermine
power grid stability. Nat Commun 2014;5(1):1–8 . 

[17] Yang Y , Motter AE . Cascading failures as continuous phase-space transitions..
Phys Rev Lett 2017;119(24):248302 . 

[18] Zhang L , Motter AE , Nishikawa T . Incoherence-mediated remote synchroniza-
tion. Phys Rev Lett 2017;118(17):174102 . 

[19] Whalen AJ , Brennan SN , Sauer TD , Schiff SJ . Observability and controllability of
nonlinear networks: the role of symmetry. Phys Rev X 2015;5(1):011005 . 

[20] Nicosia V , Valencia M , Chavez M , Díaz-Guilera A , Latora V . Remote synchro-

nization reveals network symmetries and functional modules. Phys Rev Lett
2013;110(17):174102 . 

[21] Golubitsky M , Stewart I , Schaeffer DG . Singularities and groups in bifurcation
theory, vol. 2. Springer Science & Business Media; 2012 . 

22] Fu C , Deng Z , Huang L , Wang X . Topological control of synchronous patterns in
systems of networked chaotic oscillators. Phys Rev E 2013;87(3):032909 . 

23] Williams CR , Murphy TE , Roy R , Sorrentino F , Dahms T , Schöll E . Experimental

observations of group synchrony in a system of chaotic optoelectronic oscilla-
tors. Phys Rev Lett 2013;110(6):064104 . 

[24] Hens C , Harush U , Haber S , Cohen R , Barzel B . Spatiotemporal signal propaga-
tion in complex networks. Nat Phys 2019;15(4):403–12 . 

25] Bala K Poolla SB , Der F . Optimal placement of virtual inertia in power grids.
Autom Control IEEE Trans 2017;62(12):6209–20 . 

26] Gao J , Barzel B , Barabsi A-L . Universal resilience patterns in complex networks.

Nature 2016;530(7590):307–12 . 

http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30462-8/sbref0026

	Impact of intra and inter-cluster coupling balance on the performance of nonlinear networked systems
	1 Introduction
	2 Methodology
	3 Application to two paradigmatic dynamics
	3.1 Kuramoto model
	3.2 Dynamics of mutualism networks

	4 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Details of mathematical derivations and further results.
	S1. A, T and B of the example
	S2. Detailed proof of the explicit solution of H and its derivative
	S3. Further explanation of the choice of v.
	S4. More curves corresponding to different mutualism networks


	References


