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Abstract
One of the targets of the UN Sustainable Development Goals is to substantially
reduce the number of global deaths and injuries from road traffic collisions. To this
aim, European cities adopted various urban mobility policies, which has led to a
heterogeneous number of injuries across Europe. Monitoring the discrepancies in
injuries and understanding the most efficient policies are keys to achieve the
objectives of Vision Zero, a multi-national road traffic safety project that aims at zero
fatalities or serious injuries linked to road traffic. Here, we identify urban features that
are determinants of vulnerable road user safety through the analysis of inter-mode
collision data across European cities. We first build up a data set of urban road crashes
and their participants from 24 cities in 5 European countries, using the widely
recommended KSI indicator (killed or seriously injured individuals) as a safety
performance metric. Modelling the casualty matrices including road infrastructure
characteristics and modal share distribution of the different cities, we observe that
cities with the highest rates of walking and cycling modal shares are the safest for the
most vulnerable users. Instead, a higher presence of low-speed limited roads seems
to only significantly reduce the number of injuries of car occupants. Our results
suggest that policies aimed at increasing the modal share of walking and cycling are
key to improve road safety for all road users.
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1 Introduction
Road traffic crashes result in yearly 1.3 million deaths and 50 million injuries, and are the
world’s leading cause of death for children and young adults 5–29 years of age [1]. The
World Health Organization quantifies the economic costs of road traffic crashes to 3% of
the global GDP, or 2.3 trillion USD. Because of this pressing societal issue, the UN has
declared in 2015 the global sustainability goal to halve the number of global deaths and
injuries from road traffic crashes by 2020 [2]. However, traffic deaths and injuries have
kept rising worldwide instead of decreasing, and the UN goal has been missed [1].

On a global level, the WHO’s explanation for this failure is the heterogeneity of progress:
while casualties from road traffic have overall stagnated or decreased in high income coun-
tries, they have increased in low and middle income countries. For example, on the one
hand, road fatalities have decreased in the EU (although EU-wide targets to significantly
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lower traffic crashes have been missed [3]). On the other hand, in most African and South-
East Asian countries, road fatalities have stagnated or grown exceptionally high [1].

The WHO report also shows that vulnerable road users – pedestrians, cyclists, and mo-
torcyclists – are disproportionally affected. Increased urbanization has therefore made
clear that implementing effective urban planning policies at scale is necessary to overcome
such failures [4]. In particular, the UN’s current sustainability goal 11 to “Make cities in-
clusive, safe, resilient and sustainable” [2] is a key to decrease road casualties worldwide
[5].

In this study, we seek to identify urban features that are determinants of vulnerable road
user safety through the analysis of inter-mode collision data across European cities. We
first build up a high-quality data set of urban road collisions and collision participants from
24 cities in 5 European countries, using the widely recommended KSI indicator (killed or
seriously injured individuals) as a safety performance metric [6]. We then apply machine
learning tools on this established data set to identify (1) the biggest danger to vulnerable
traffic participants per city, and (2) the most relevant urban features – extracted from
OpenStreetMap [7] – that are associated with higher safety for road users. This approach
follows a human-centric urban data science [8] that aims to generate value for citizens by
applying data science methods on large-scale urban data sets.

Our work follows in the footsteps of a wide literature of data-driven studies on road
safety. Previous studies investigating the determinants of road safety have typically consid-
ered a subset of dimensions, including vehicle type, road infrastructure, traffic and control,
environmental factors, through the regression analysis of individual crash data [9–12].
Most of them have a limited geographical coverage, usually focusing on one particular
city or region, with some notable exceptions typically on policy questions [13–17]. Also,
many of these studies took into account a single transport mode [18, 19] (e.g. cyclists, or
pedestrian), yet increasingly on vulnerable road users [20–23], but usually only limited to
the victim participant in the crash [24, 25]. In particular, among vulnerable road users,
cyclists have received considerable attention by recent studies. Cycling is one of the most
sustainable mobility solutions for short and medium distance trips, but faces considerable
risks imposed by motorized vehicles. The risk for injury has been quantified recently in
London using a multilevel regression model accounting for exposure, finding that lower
speed limits and more cycling routes can be a crucial factor [26]. A more recent study
of data from Spain followed a Bayesian network approach to identify the most relevant
features for cyclist injury severity, finding higher risk posed by heavy goods vehicles and
lower risk from certain route conditions [27]. Other approaches use GIS methods to link
objective and subjective risks [28], bicycle trip data of a public bicycle rental system to
proxy the bicycle crash exposure [29], crowd-sourced bicycle incident reports to charac-
terize patterns of injury [30], spatio-temporal trends [31], and analysis of intersections or
bicycle infrastructure [32–36].

To summarize, the majority of studies on urban road safety focus on crash victims, often
from a single mode, and only in specific cities or regions. However, there is a clear lack of
research that considers both sides of a crash from all traffic modes to identify inter-mode
hazards, together with multiple cities to control for regional peculiarities.

Here we fill this gap by following the three main recommendations of the OECD for
developing evidence-based approaches to road safety [37, 38]: (1) to collect and analyze
crash data “from a larger set of cities”, (2) to investigate “the relationships between urban
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shape, density, speeds, modal share and road user risk”, and (3) to place “an immediate
focus [. . . ] on the analysis of casualty matrices to reveal the number of people in each
user group who are killed or seriously injured in crashes involving another user group”. By
doing so, we adopt an ecological study approach that takes into account all traffic modes
and casualty matrices across multiple European cities, and that considers the exposure to
different population-level urban features as determinants of road safety.

2 Results
2.1 Establishing a road casualty data set with inter-mode impacts
We collected road casualty data from 24 European cities in 5 countries (Spain, Italy, France,
UK, and Norway) as shown in Fig. 1 from the year 2018, which was the most recent data
available at the time of the study. Of the 24 cities 10 are in France and 10 are in the UK. For
more details about the data collection and processing see the Methods section. The data

Figure 1 Map of the cities included in the study. We collected, processed, and aligned fine-grained road
crash data and urban features data from OpenStreetMap for the 24 European cities shown in the map, in
France, Italy, Norway, Spain and the United Kingdom, in the year 2018
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Figure 2 Casualty matrices for Barcelona, Inner London and Rome demonstrate heterogeneity of road traffic
risks. The casualty matrix shows the number of killed or seriously injured people in 2018 after a traffic
participant on the left collided with one on the bottom. The leftmost column (above the symbol �) denotes
a crash with only one participant, indicating self-risk. The heterogeneity of posed risks is apparent: Cars are
responsible for the majority of road deaths/injuries, while columns for pedestrians and cyclists do not appear
because they pose practically no risk to others. Further, these examples also reveal the heterogeneity of risks
to specific vulnerable participants through different cities, for example a much higher relative risk to
pedestrians in London than in Barcelona. See Fig. S1 for a full picture including more traffic participants and all
studied cities

contain records of road crashes in each city, in a line list format, with details about the indi-
viduals injured, the severity of the injuries, and the types of vehicles involved. A complete
description of the records is reported in the Methods section.

Based on the crash records, we created casualty matrices reporting the number of in-
dividuals killed or seriously injured (KSI) caused by the collision of any two pairs of road
user types, in each city. Among all road users, we focused in particular on the vulnerable
ones, that is pedestrians, cyclists, and powered two-wheelers, apart from cars. As an il-
lustrative example, in Fig. 2, we show the casualty matrices for 3 cities: Barcelona, Inner
London and Rome. Casualty matrices for all other cities are shown in the Additional file 1
(Fig. S1). While the highest risk for vulnerable users is expectedly represented by cars in all
the cities, the number of KSI varies significantly by user group. For instance, the casualty
matrix of Barcelona shows a high level of road safety not only for vulnerable users but for
car drivers too, with only 4 KSI reported in car-car collisions in 2018.

To better compare road safety levels of all cities in our dataset, we normalized the num-
ber of KSI, for each type of collision, by population size. Figure 3 shows the number of KSI
individuals per 1 Million inhabitants, as a stacked bar chart, where each bar corresponds
to a specific type of collision. The chart reveals the high heterogeneity in road safety across
the cities under study. On the one hand, we have an extreme case like Sheffield with al-
most 500 KSI/M, and, at the top of the safety rank, Oslo that is the safest city in our dataset
with less than 50 KSI/M in 2018. The highest KSI rates among the most vulnerable road
users, pedestrians and cyclists, were recorded in Inner London (308 KSI/M), Liverpool
(198 KSI/M), and Birmingham (181 KSI/M), followed by the rest of the British cities. In-
stead, the highest KSI rates for powered two-wheelers were reported in Marseille, Rome
and Nice. British cities were also the least safe for car drivers, with Sheffield leading the
rank by KSI rates in car-car crashes, immediately followed by Birmingham. French cities
show medium to low rates of KSI individuals across all types of collisions, with the ex-
ception of Marseille that ranks as the second least safe city in our dataset (387 KSI/M).
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Figure 3 Killed or seriously injured (KSI) individuals per 1 million inhabitants are heterogeneous between
different cities and road participant pairs. The figure reports very different levels of road safety in terms of
killed or seriously injured (KSI) individuals per 1 million inhabitants in 2018. Sheffield (GB) leads with almost
500 KSI, whereas Oslo (NO) has close to zero KSI. French cities mostly have lower KSI rates, in contrast to most
of the British cities which show high KSI rates often double the amounts of French cities. The most vulnerable
traffic participants, pedestrians and cyclists, are highlighted in maroon and red, respectively. Their KSI rates are
highest in Inner London (GB), Liverpool (GB), and Birmingham (GB)

National capitals also show very different levels of road safety, as Rome and Inner London
display almost 400 KSI/M. while Paris ranked as the 5th safest city of our dataset, with 132
KSI/M.

2.2 Urban features as determinants of road safety
To explain the observed heterogeneities in road safety across European cities, and in par-
ticular for vulnerable users, we examined the relationship between a number of features
and the inter-mode KSI rates shown in Fig. 3. We collected data regarding 7 different urban
features in the 24 cities using OpenStreetMap (OSM) and from the European Platform on
Mobility Management (EPOMM). We also considered climate and economic data, from
Eurostat, to take into account possible confounding factors that are not directly related
to the urban infrastructure of a city [39–41]. A complete description of the data collec-
tion process is reported in the Methods section. The features considered in our study are:
population density, the ratio of total cycling area to total driving area, the ratio of total low-
speed limited area to total driving area, modal shares for walking, cycling, public transport,
and motor vehicles, the yearly average temperature, the yearly average precipitations, and
the average GDP per capita. Fig. S2 provides a summary of the frequency distributions of
all the features under study. Fig. S3 and Fig. S4 provide an overview of the urban features
and the modal shares, respectively, in the 24 cities. All cities displayed a high variability
in the urban features and modal shares, also within the same country. Population density
ranges from 1417 pop/km2 in Oslo to 20,000 pop/km2 in Paris. The cycling area share of
the total streets is only 3% in Rome but is more than 30% in Strasbourg and Nantes. The
speed limited area share varies over more than an order of magnitude across cities, from
2% in Bradford to 87% in Inner London. Modal shares are also very different across the 24
cities. Paris ranks first by walking share (47%) and last by motor vehicle usage (17%). Cy-
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Figure 4 Walking modal share is a significant predictor for inter-mode KSI casualties. The figure reports
regression coefficients for inter-mode casualties per capita and urban features. Each column represents a
participant type killed or seriously injured by car. Each row represents a feature included in the regression
model, from top to bottom: the area share of protected cycling paths, the share of areas with speed limits of
at most 30 km/h or 20 mi/h, walking modal share, cycling modal share, and average yearly temperature).
Empty cells mark the features that were discarded by choosing the best model according to the AIC. Black
solid boxes denote the statistically significant variables at p < 0.05

cling modal share is generally low, below 4% in all cities, with exception of Bristol (14%),
Strasbourg (8%) and Nantes (5%). Public transport leads the modal share of Barcelona
(39%) while it is less common in French cities, like Montpellier (8%) and Bordeaux (9%).

For all cities, we examined the relationship between the above features and the inter-
mode KSI rates by a multiple linear regression from the sets of all combinations of 2 or 3
variables, as described in the Methods. For each inter-mode KSI rate, we selected the best
regression model according to the Akaike Information Criterion (AIC). Each regression
coefficient β and its associated 95% confidence interval (CI) quantify the relations of each
variable with the inter-mode KSI casualty rates. The main results of the models based on
2 independent variables are summarized by Fig. 4 which shows the association between
each urban feature (rows) and the inter-mode KSI rate (columns) of collisions that involved
at least one car and pedestrians, cyclists, or other cars. Each entry of the matrix reports
the regression coefficient associated with a given feature when predicting the KSI rates of
a given collision type. Negative values indicate a reduction of KSI rates and statistically
significant values at p < 0.05 are highlighted by a solid box. Table S1 in the Additional file
1 reports the full description of the model’s coefficients for all KSI rates.

First, let us focus on modal share, i.e. the middle two rows in Fig. 4. In general, larger
shares of walking and cycling were most frequently associated with the smallest AIC to
predict a reduction in all type of KSI rates, while use of public transport was never selected
as a significant regressor. In particular, the share of walking was significantly associated
with the inter-mode KSI casualty rates of all collision types. Cities with a higher walking
share showed to have lower KSI rates for pedestrians (β = –0.49, 95% CI [–0.80, –0.17]),
cyclists (β = –0.38, 95% CI [–0.74, –0.01]) and car/taxi occupants (β = –0.58, 95% CI
[–0.93, –0.23]) when injured in a collision with a car or taxi. Walking share was also nega-
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tively associated with single-vehicle car crashes, with a statistically significant coefficient
β = –0.37, 95% CI [–0.71, –0.02]. A larger cycling share was associated, although not sig-
nificantly, with lower KSI rates of car occupants, (β = –0.23, 95% CI [–0.58, 0.12]). Next,
let us examine the features related to infrastructure, i.e. the top two rows in Fig. 4. The
model showed that cities with a higher proportion of low speed limited streets with re-
spect to the total driving area (second row in Fig. 4), are characterized by lower KSI rates
for single-vehicle car crashes (β = –0.49, 95% CI [–0.83, –0.14], significant). With pedes-
trian KSI rates, the proportion of low-speed limited streets had no detectable relation.
When it comes to the proportion of protected cycling paths (first row in Fig. 4), we found
a significant effect: a larger proportion was associated to lower inter-mode KSI casualty
rates for pedestrians (β = –0.44, 95% CI [–0.75, –0.12]). Finally, among the climate and
economic variables, the only one that leads to the smallest AIC value for one model is the
average temperature, which was associated with lower KSI rates for cyclists (β = –0.42,
95% CI [–0.78, –0.12]).

Extending the regression to include 3 different covariates, results were consistent with
those observed when using 2 covariates (see Tabs. S2 and S3 in the Additional file 1).
Walking modal share was always included as a regressor for lower KSI rates in all collision
types. The proportion of speed limited areas appeared more frequently as a regressor, now
including car-car collisions and cyclist-car collisions, but not statistically significantly.

2.3 Evaluating model performance on inter-mode KSI rates
We examined to which extent each set of 2 selected covariates explain the variations in
KSI rates for each collision type that involved at least one car. Figure 5 shows the results
of the regression as predicted vs. reported KSI rates, for collisions between cars and the
vulnerable road users of pedestrians and cyclists. In both cases, as shown in the maps,
road safety is lowest in British cities, especially for cyclists, when compared to the rest of
our sample. Overall, the model reached a good performance in explaining the KSI rates of
pedestrians hit by a car or taxi (adjusted R2 = 0.55). The model’s performance was lower
(adjusted R2 = 0.36) for the KSI of cyclists, as indicated by some outliers in the scatterplot.
In particular, the KSI rate of cyclists in Inner London was more than double than what
the model could explain, based on the selected features. On the other hand, the model
predicted relatively higher KSI rates for cyclists than those reported in Rome, Barcelona
and Oslo. Model results for KSI rates of car occupants are shown in Fig. 6. The model’s
performance was better for collisions involving one car and no other vehicles (adjusted
R2 = 0.45) as KSI rates did not differ much between predicted and reported (Fig. 6(D)). The
performance of the model was lower in the case of car-car collisions (adjusted R2 = 0.36),
mostly due to a single large outlier – Sheffield – where the reported KSI rate was 192
KSI/M but the model predicted a value below 100 KSI/M. On the other hand, the model
was better able to explain KSI rates of car occupants in countries characterized by mid to
low KSI rates (<50), like France and Spain.

We also investigated the determinants of KSI rates of powered two wheelers (PTW)
in collisions involving one car or one single vehicle. In this case, our results consistently
showed a higher average temperature to be the most significant predictor of higher KSI
rates (see Tabs. S2 and S3, and Fig. S5). This clearly hints at the average temperature to
be a proxy for PTW modal share, an information that is missing in our dataset. A higher
proportion of speed limited areas and of cycling paths were also associated with lower
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Figure 5 Collisions involving vulnerable road users: maps of the collisions and performance of the models.
Maps are showing the reported numbers of vulnerable road users killed or seriously injured by a car or taxi,
normalized by population. Scatter plots show the corresponding fit of the model with 2 independent
covariates (see Tab. S1). Panel A refers to pedestrians, while panel B refers to cyclists. Colours correspond to
those used in the legend of Fig. 3. Of the 24 cities under study, the 10 cities with the lowest vulnerable road
users’ safety are British cities. Regression results showed adjusted R2 = 0.55 in panel A and adjusted R2 = 0.36
in panel B

PTW KSI rates, leading to an overall good performance of the regression model (adjusted
R2 = 0.56).

3 Discussion
In this study, we have shown that cities whose residents are more inclined to walk or cycle
in their everyday life are safer for vulnerable road users. Interestingly, the effect of pedes-
trian modal share extends beyond vulnerable users and such cities also see less deaths or
serious injuries among car occupants. Our observation that a high rate of walking and cy-
cling is associated with a smaller number of deaths and serious injuries was already noted
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Figure 6 Collisions involving cars: maps of the collisions and performance of the models.. Maps are showing
the reported numbers of car/taxi occupants killed or seriously injured in a crash among cars or in a
single-vehicle crash, normalized by population. fit of the model with 2 independent covariates (see Tab. S1).
Panel C (left) refers to car occupants from a car-car crash, while panel D (right) refers to those from a
single-vehicle crash. Colours correspond to those seen in Fig. 3. Sheffield has the highest KSI rates among car
occupants, doubling the KSI rates of Birmingham. Regression results showed adjusted R2 = 0.36 for panel C
and adjusted R2 = 0.45 for panel D

by a seminal study of Jacobsen [42]. Our results confirm that early finding, and extend it
by showing that more walkers and cyclists imply more safety for drivers too. Even though
there have been significant efforts in recent years to integrate road safety into urban mobil-
ity plans of many cities, the incentives to walk or cycle remain among the most promising
routes to make cities safer for pedestrians, cyclists and drivers. A notable example is the
city of Oslo, which has successfully reached the Vision Zero milestone of zero vulnerable
road deaths in 2019, through a concerted effort to turn roadway decision-making from
car-centric to people-centric [43]. Another conclusion of our study is the relative impact
of low-speed limited roads on vulnerable users. According to our analysis, a larger pro-
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portion of speed limited roads is associated with a smaller number of injuries involving
car drivers, but there is no clear association with the number of casualties among cyclists
and pedestrians.

In the interpretation of the results, it is important to note that our study comes with
limitations. We extracted urban features such as city area, protected cycle paths, and
low-speed limited zones, from the volunteered geographic information platform Open-
StreetMap using OSMnx [7]. Collecting data in this way, we were only able to access the
most up-to-date information in each city but we are missing historical records of the urban
features under study, thus limiting the investigation of causal effects between the temporal
evolution of infrastructures and road injuries.

Nevertheless, these crowdsourced data, which have been shown to be reliable and rela-
tively complete in the Western world [44, 45], allowed us to provide an insightful overview
of the relationship between rate of collisions and urban infrastructure. They also have been
successfully used in similar urban data science contexts, as in cycling injury analysis [26],
in bicycle network analysis [46–48], or in estimating traffic disruption patterns [49]. Apart
from novel data sources, also state-of-the-art machine learning methods are currently in-
novating in road safety research, e.g. with decision trees or neural networks [50–53].

Another limitation of our study lies in the heterogeneity of the data collection process
across countries. We focused on the KSI statistics as their definition is rather uniform in
Europe, however, the collection of crash data may not be consistent in all countries and
in particular deaths or serious injuries of vulnerable road users may go underreported
[12, 54]. Several efforts are currently in place to harmonize the collection of KSI numbers
in Europe, for instance the maintenance of the CARE database, a community database on
road crashes resulting in death or injury for Europe [55].

Further, by definition our findings of statistical associations cannot distinguish cause
and effect nor identify possible confounding factors that are not part of the data sets, and
we were forced to work with a sample size of 24 cities in no more than 5 countries, due to
limitations in publicly available road crash data detailed enough for our ecological analysis
approach. In particular, our focus on multiple cities and modes implied restriction of the
data to a common denominator, thus excluding possible additional exposure data such as
driven kilometers as such data are not publicly available for multiple cities and modes.

Finally, we focused on the potential impact of urban features on the injuries of the most
vulnerable road users, however the introduction of additional socioeconomic factors into
the model, such as per capita expenditure on alcohol, or age cohorts [56, 57], if available
cross-country, could increase its predictive power and better explain the reported KSI
rates by user groups in European cities.

Despite these limitations, our results are in line with concrete policy implications. For
example, in recent years, several European countries have developed national walking and
cycling strategies aimed at improving pedestrian and cyclist safety. However, only six Eu-
ropean countries have drafted a national walking strategy and among them, only Finland
and Luxembourg have defined a target for increasing the walking modal share [54]. Our
results suggest that setting concrete targets for increasing modal shares of walking and cy-
cling represents an effective strategy toward more sustainable and safer cities. Increasing
these modal shares could happen through a human-centric mobility space re-allocation,
such as pedestrianization or the substantial extension of protected urban cycling infras-
tructure [58] towards more livable cities, for example following a “Superblock” approach as
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pioneered in Barcelona [59]. Our results are fully compatible with policy strategies devel-
oped both on the EU and OECD level towards redistributing road space [60] and towards
systemic decrease of car-dependence and increase of attractiveness of sustainable modes
of transport [61].

4 Methods
4.1 Data collection
We used data from various sources, as shown in Table S1. Data on road crashes were down-
loaded from national open data portals, with the exception of the data for Oslo, which was
provided by the Norwegian Public Roads Administration upon request. Road crash statis-
tics relate to personal injury crashes on public roads that were reported to the police in
2018. Population estimates for the same year were collected from the corresponding Na-
tional Statistics Office of each country.

Data on urban features were downloaded from OpenStreetMap (OSM), a free, editable
map of the world, built by volunteers. We used OSMnx, a Python package for modelling,
projecting, visualization, and analysis of real-world street networks from OSM’s APIs [7],
to collect the following urban features:

• City area in km2. We selected the administrative surface of a city.
• Driving area in km. We selected all the drivable streets by choosing drive as

network type.
• Cycling area in km. We selected all the protected cycling paths by choosing bike as

network type and by specifying related custom filters.
• Speed limited area in km. We selected all the streets with speed limit of ≤ 30 km/h or

≤ 20 mi/h by choosing drive as network type and by specifying related custom
filters.

Modal share percentages in walking, cycling, public transport and motor vehicles were
gathered from the European Platform on Mobility Management (EPOMM), a network of
governments in European countries, represented by the Ministries responsible for Mobil-
ity Management. They developed The EPOMM Modal Split Tool (TEMS) with compara-
ble modal split data from European cities with more than 100.000 inhabitants.

Climate data (average yearly temperature and average yearly precipitations) were col-
lected from Wikipedia, reporting official measurements from national meteorological in-
stitutes. The average GDP per capita of each city, at the NUTS 3 level, is available from
the European Statistical Office (Eurostat).

Finally, the full list of features that we use in our analysis is the following:
1. Population density. Population per km2.
2. Cycling area share. The ratio of cycling area and driving area.
3. Speed limit area share. The ratio of speed limited area and driving area.
4. Walking mode share in percent.
5. Cycling mode share in percent.
6. Public transport mode share in percent.
7. Motor vehicles mode share in percent.
8. Average yearly temperature (°C).
9. Average yearly precipitation (mm).

10. Average GDP per capita (Euros) in the year 2018.



Klanjčić et al. EPJ Data Science           (2022) 11:27 Page 12 of 15

4.2 Casualty matrix
Raw data on road crashes was cleaned and transformed to show only relevant information
used for the casualty matrix calculation. Each row of the cleaned data set corresponds to
a unique casualty, while columns contain the following details:

• Crash Index. Unique index for each crash, used to connect vehicles and casualties to
the corresponding crash.

• Date.
• Number of Vehicles. Total count of vehicles in a crash.
• Number of Casualties. Total count of casualties in a crash.
• Vehicle Reference. Reference to each vehicle in a crash, used to connect vehicles with

the corresponding casualty.
• Vehicle Type. Options: Bicycle, Powered Two-Wheeler (PTW), Car/Taxi, Bus/Coach,

Goods Vehicle or Other Vehicles.
• Casualty Reference. Reference to each casualty in a crash, used to connect casualties

with the corresponding vehicle.
• Casualty Class. Options: Driver, Passenger, Pedestrian.
• Casualty Type. Options: Pedestrian, Cyclist, PTW occupant, Car/Taxi occupant,

Bus/Coach occupant, Goods Vehicle occupant or Other Vehicles occupant.
• Casualty Severity. Options: killed (on spot or died within 30 days of the crash),

seriously injured (hospitalized for >24 hours) or slightly injured (hospitalized for ≤24
hours).

Casualty Type information was available only in the UK data set which made the casualty
matrix calculation easier, so we also formed this column in the rest of the data sets based on
the Casualty Class and Vehicle Type columns. This enabled us to base our analysis on the
number of inter-mode casualties, instead of the common approach focusing on the total
number of casualties per each type [37]. For example, a pedestrian casualty from a crash
between two cars and a pedestrian was counted as a pedestrian injured in a pedestrian-car
crash. Similarly, an injured car occupant from a crash with four cars was counted as a car
occupant injured in an car-car crash. Regarding the casualty severity levels, casualties with
slight injuries were removed from the data set and only killed or seriously injured (KSI)
people were observed. We eliminated casualties from crashes with >2 different parties
involved (including pedestrians), as they represented ≤2% of total KSI casualties in each
city, which aligns with previous research [50]. Also, all the crashes with missing relevant
data (mentioned above) were not taken into account.

From the newly created data set, we formed two pivot tables, one with Vehicle Type
counts as columns, and another one with Casualty Type counts as columns. This time,
each row of both tables corresponded to a unique crash. These two tables were joined into
a single table based on Crash Index and we queried them twice for all possible casualty-
vehicle pairs – at first for only fatal casualties and then for the seriously injured ones.
These counts were used to create the KSI casualty matrix for each city. Rows of the matrix
represent casualty types, while columns represent vehicle types. Finally, each matrix cell
represents the number of casualties from one casualty-vehicle pair. For the next steps, we
observed only the following six casualty-vehicle pairs from the casualty matrix (we chose
the pairs with median value > 5):

• pedestrian – car (pedestrians killed or seriously injured in a crash between
pedestrians and cars/taxis).
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• cyclist – car (cyclists killed or seriously injured in a crash between bicycles and
cars/taxis).

• PTW – itself (PTW occupants killed or seriously injured in a single-vehicle crash).
• PTW – car (PTW occupants killed or seriously injured in a crash between PTWs and

cars/taxis).
• car – itself (car/taxi occupants killed or seriously injured in a single-vehicle crash).
• car – car (car/taxi occupants killed or seriously injured in a crash between two or

more cars/taxis).

4.3 Linear regression models
To explain the potential relations between the independent features (10 input variables)
and the number of inter-mode casualties (6 target variables), we used a multilinear regres-
sion model. More specifically, we fit through Ordinary Least Squares a regression of the
form:

y = βX, (1)

where the response vector y represents one of the inter-mode casualty rates and X repre-
sents the matrix of predictors, and β is a vector of regression coefficients. The input vari-
ables were standardized by scaling variance to one and centering mean to zero. The target
variables were firstly normalized by population (per 1 million inhabitants) and then stan-
dardized the same way as the input variables. Given the limited number of observations,
24 in total, for each inter-mode KSI rate, we compared linear models with all combina-
tions of 2 and 3 different response variables, to have an adequate number of observations
per covariate estimated. We selected the best model using the Akaike Information Crite-
rion (AIC). Smaller values of AIC indicate better quality of the model, and we identified
the best model as the one with the smallest AIC value by examining all possible linear
combinations of 2 and 3 regressors.
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