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During the last few years, much research has been devoted to strategic interactions on complex networks. In
this context, the Prisoner’s Dilemma has become a paradigmatic model, and it has been established that
imitative evolutionary dynamics lead to very different outcomes depending on the details of the network.
We here report that when one takes into account the real behavior of people observed in the experiments,
both at the mean-field level and on utterly different networks, the observed level of cooperation is the same.
We thus show that when human subjects interact in a heterogeneous mix including cooperators, defectors
and moody conditional cooperators, the structure of the population does not promote or inhibit
cooperation with respect to a well mixed population.

I
n recent years, the physics of complex systems has widened its scope by considering interacting many-particle
models where the interaction goes beyond the usual concept of force. One such line of research that has proven
particularly interesting is evolutionary game theory on graphs1,2, in which interaction between agents is given

by a game while their own state is described by a strategy subject to an evolutionary process3,4. A game that has
attracted a lot of attention in this respect is the Prisoner’s Dilemma (PD)5,6, a model of a situation in which
cooperative actions lead to the best outcome in social terms, but where free riders or non-cooperative individuals
can benefit the most individually. In mathematical terms, this is described by a payoff matrix (entries correspond
to the row player’s payoffs and C and D are respectively the cooperative and non-cooperative actions)
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with T . 1 (temptation to free-ride) and S , 0 (detriment in cooperating when the other does not).
In a pioneering work, Nowak and May7 showed that the behavior observed in a repeated Prisoner’s Dilemma

was dramatically different on a lattice than in a mean-field approach: Indeed, on a lattice the cooperative strategy
was able to prevail by forming clusters of alike agents who outcompeted defection. Subsequently, the problem was
considered in literally hundreds of papers1,8–11, and very many differences between structured and well-mixed
(mean-field) populations were identified, although by no means they were always in favor of cooperation12,13. In
fact, it has been recently realized that this problem is very sensitive to the details of the system2,14, in particular to
the type of evolutionary dynamics15 considered. For this reason experimental input is needed in order to reach a
sound conclusion about what has been referred to as ‘network reciprocity’.

Here, we show that using the outcome from the experimental evidence to inform theoretical models, the
behavior of agents playing a PD is the same at the mean field level and in very different networks. To this end,
instead of considering some ad hoc imitative dynamics7,16,17, our players will play according to the strategy recently
uncovered by Grujić et al.18 in the largest experiment reported to date about the repeated spatial PD, carried out on
a lattice as in Nowak and May’s paper7 with parameters T 5 1.43 and S 5 0.

The results of the experiment were novel in several respects. First, the population of players exhibited a rather
low level of cooperation (fraction of cooperative actions in every round of the game in the steady state), hereafter
denoted by Æcæ. Most important, however, was the unraveling of the structure of the strategies. The analysis of the
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actions taken by the players showed a heterogeneous population
consisting of ‘‘mostly defectors’’ (defected with probability larger
than 0.8), a few ‘‘mostly cooperators’’ (cooperated with probability
larger than 0.8), and a majority of so-called moody conditional
cooperators. This last group consisted of players that switched
from cooperation to defection with probability PDC

i ~1{d{cci

~1{PCC
i and from defection to cooperation with probability

PCD
i ~azbci~1{PDD

i , ci being the fraction of cooperative actions
in player i’s neighborhood in the previous iteration. Conditional
cooperation, i.e., the dependence of the chosen strategy on the
amount of cooperation received, had been reported earlier in related
experiments19 and observed also for the spatial repeated PD at a
smaller scale20. The new ingredient revealed in Grujić et al.’s experi-
ment18 was the dependence of the behavior on the own player’s
previous action, hence the reason to call them ‘‘moody’’.

Results
To study how the newly unveiled rules influence the emergence of
cooperation in an structured population of individuals, we first
report results from numerical simulations of a system made up of
N 5 104 individuals who play a repeated PD game according to the
experimental observations. To this end, we explored the average level
of cooperation in four different network configurations: a well-mixed
population in which the probability that a player interacts with any
other one is the same for all players, a square lattice, an Erdös-Renyi
(ER) graph and a Barabási-Albert (BA) scale-free (SF) network. It is
worth mentioning that the dependence on the payoff matrix only
enters through the parameters describing the players’ behavior (d, c,
a, b and the fractions of the three types of players). Once these
parameters are fixed the payoffs do not enter anywhere in the evolu-
tion, as this is only determined by the variables ci, the local fractions
of cooperative actions within each player’s neighborhood. Thus there
is no possibility to explore the dependence on the payoffs because we
lack a connection between them and the behavioral parameters.

In Figure 1 we present our most striking result. The figure repre-
sents, in a color-coded scale, the average level of cooperation as a
function of the fraction of mostly cooperators, rC, and mostly defec-
tors, rD, for a BA network of contacts. The same plots but for the rest
of topologies explored (lattice and ER graphs) produce indistinguish-
able results with respect to those shown in the figure. We therefore
conclude that the average level of cooperation in the system does not
depend on the underlying structure. This means that, under the
assumption that the players follow the behavior of Grujić et al’s
experiment18, there is no network reciprocity, i.e., no matter what
the network of contacts looks like, the observed level of cooperation
is the same. This latter finding is in stark contrast to most previous
results coming out from numerical simulations of models in which
many different updating rules —all of them based upon the relative
payoffs obtained by the players— have been explored.

Mean-field Approach. The previous numerical findings can be
recovered using a simple mean-field approach to the problem. Let
the fractions of the three types of players be rC, rD and rX, for mostly
cooperators, mostly defectors, and moody conditional cooperators,
respectively, with the obvious constraint rX 5 1 2 rD 2 rC.
Denoting by Pt(A) the cooperation probability at time t for
strategy A(5 C, D, X) of the repeated PD we have

ch it~rCP Cð ÞzrDP Dð ÞzrX Pt Xð Þ, ð2Þ

where Pt(C) 5 P(C) and Pt(D) 5 P(D) are known constants [in our
case P(C) 5 0.8, P(D) 5 0.2]. The probability of cooperation for
conditional players in the next time step can be obtained as

Ptz1 Xð Þ~ dzc ch it
� �

Pt Xð Þz azb ch it
� �

1{Pt Xð Þ½ �, ð3Þ

where the first term in the right hand side considers the probability
that a conditional cooperator keeps playing as a cooperator, whereas

the second terms stands for the situation in which a moody
conditional cooperator switched from defection to cooperation.
Asymptotically

lim
t??

Pt Xð Þ~P Xð Þ, lim
t??

ch it~ ch i:

From Eq. (3),

P Xð Þ~ azb ch i
1za{dz b{cð Þ ch i , ð4Þ

thus (2) implies (with the replacement rX 5 1 2 rC 2 rD)

ArCzBrD~1, ð5Þ

where

A:
P Cð Þ{P Xð Þ

ch i{P Xð Þ , B:
P Dð Þ{P Xð Þ

ch i{P Xð Þ , ð6Þ

are functions of Æcæ. From Eq. (5) it follows that the curves of constant
Æcæ are straight lines in the simplex. Figure 1 clearly demonstrates this
fact: The straight lines are plots of Eq. (5) for different values of Æcæ. It
can be seen that they are parallel to the color stripes, and that the
values of Æcæ they correspond to accurately fit those of the simula-
tions. Figure 2 depicts the curve Æcæ vs. rC for two different values of
rD, as obtained from Eq. (5) and compared to simulations. This
figure illustrates the excellent quantitative agreement between the
mean-field result and the simulation results. The match between
the analytical and numerical results is remarkable, as it is the fact
that this agreement does not depend on the underlying topology.
This is the ultimate consequence of the lack of network reciprocity:
the cooperation level on any network can be accurately modeled as if
individuals were playing in a well-mixed population.

Figure 1 | Dependence of the average level of cooperation on the density
of strategists. Density plot of Æcæ, as a function of the fractions of the three

strategies (mostly cooperators, C, mostly defectors, D, and moody

conditional cooperators, X). The plot corresponds to a Barabási-Albert

network of contacts (Ækæ 5 6), but the corresponding plot for an Erdös-

Renyi graph or a regular lattice is indistinguishable from this one. The

system is made up of N 5 104 players and the rest of parameters, taken from

Ref. 18, are: d 5 0.38, a 5 0.15, c 5 0.62, b 5 20.1. The thin lines represent

the mean-field estimations [c.f. Eq. (5)] for Æcæ 5 0.32, 0.44, 0.56, 0.68.

They very accurately match the contour lines of the density plot

corresponding to those values of Æcæ, thus proving that the same outcome is

obtained in a complete graph (mean-field). Simulation results have been

averaged over 200 realizations.
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The steady state is reached after a rather short transient, as illu-
strated in Figure 3. This figure compares the approach of the coop-
eration level to its stationary state as obtained iterating Eq. (3) and
from numerical simulations on different networks with different
sizes. The initial cooperation level has been set to Æcæ0 5 0.592, close
to the value observed in Grujić et al’s experiment18. The transient
does exhibit a weak dependence on the underlying topology and
specially on the network size, but for the largest simulated size (N
5 104) the curves are all very close to the mean-field prediction.

Distribution of Payoffs. The only observable on which the topology
does have a strong effect is the payoff distribution among players.
Figure 4 shows these distributions for the three studied topologies,
and at two different times —short and long. Smooth at short times,

this distribution peaks around certain values at long times. This
reflects the fact that payoffs depend on the number of neighbors of
different types around a given player, which yields a finite set of
values for the payoffs (the centers of the peaks). These numbers
occur with different probabilities (determining the height of the
peaks), according to the distribution

Q kð Þ~
X
k§1

k

kC kD

� �
rkC

C rkD
D rkX

X p kð Þ, ð7Þ

where p(k) is the degree distribution of the network and k 5 (kC, kD,
kX), but it is understood that kX 5 k 2 kC 2 kD. The stan-
dard convention is assumed that the multinomial coefficient

k
kC kD

� �
~0 whenever kC , 0, kD , 0 or kX , 0.

The approach to a stationary distribution of payoffs exhibits a
much longer transient. This is due to the fluctuations in the payoffs
arising from the specific actions (cooperate or defect) taken by the
players. These fluctuations damp out as the accumulated payoffs
approach their asymptotic values. Thus, the peak widths shrink pro-
portionally to t21/2. In fact, one can show that the probability density
for the distribution of payoffs P for strategy Z can be approximated
as

WZ Pð Þ~
X

k

G P{ak Zð Þm kð Þ,
ffiffi
t
p

ak Zð Þs kð Þ
� �

Q kð Þ, ð8Þ

where G x,cð Þ: 2pc2ð Þ{1=2e{x2=2c2
, the mean payoff per neighbor

received by a Z strategist against a cooperator is

ak Zð Þ: 1
k

P Zð ÞzT 1{P Zð Þ½ �f g,

with k 5 kC 1 kD 1 kX, and the average cooperation level in the
neighborhood of the focal player and its variance are

Figure 2 | Absence of Network Reciprocity. Average cooperation level in

the stationary state, Æcæ, as a function of the density rC of mostly

cooperators and two different values of the density rD of mostly defectors,

for two different kinds of networks: regular lattice (k 5 8), and Barabási-

Albert network (Ækæ 5 8). The network size is N 5 104 and the rest of

parameters are as in Figure 1. Lines represent the mean-field estimations.

Results are averages over 200 realizations. The inset is a zoom that

highlights how the different curves compare.

Figure 3 | Asymptotic level of Cooperation. Time evolution of the

cooperation level until the stationary state is reached. The results have been

obtained from numerical simulations on different networks with different

sizes. The Mean-Field curve is the solution of Eq. (3). P(C) 5 2/3, P(D) 5

1/3, P(X; t 5 0) 5 1, Ækæ 5 8, rD 5 0.586, rC 5 0.053, d 5 0.345, a 5 0.224,

c 5 0.64, b 5 20.072. Averages have been taken over 103 realizations.

Figure 4 | Payoff Distributions. Distribution of the pay-off per neighbor

in the stationary state for different network topologies: regular lattice (k 5

8), Erdös Rényi (Ækæ 5 8) and Barabási-Albert network (Ækæ 5 8). Black and

blue lines represent the results of numerical simulations for two values of

time: t 5 10 (black shallow curves) and t 5 104 (blue, thick line curves)

while red lines represent the theoretical estimations at t 5 104, as obtained

from Eq. (8). N 5 104, rD 5 0.586, rC 5 0.053, and other parameters are as

in Figure 1. The simulation results are averages over 103 realizations.
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m kð Þ:kCP Cð ÞzkDP Dð ÞzkX P Xð Þ,

s kð Þ2:kCP Cð Þ 1{P Cð Þ½ �zkDP Dð Þ 1{P Dð Þ½ �

zkXP Xð Þ 1{P Xð Þ½ �:

The approximate total payoff distribution, W(P) 5 rCWC(P) 1
rDWD(P) 1 rXWX(P), is compared in Figure 4 with the results of
the simulations for the longest time.

Discussion
In this work we have shown both analytically and through numerical
simulations that if we take into account the way in which humans are
experimentally found to behave when facing social dilemmas on
lattices, no evidence of network reciprocity is obtained. In particular,
we have argued that if the players of a Prisoners’ Dilemma adopt an
update rule that only depends on what they see from their neighbor-
hood, then cooperation drops to a low level —albeit nonzero— irre-
spective of the underlying network. Moreover, we have shown that
the average level of cooperation obtained from simulations is very
well predicted by a mean-field model, and it is found to depend only
on the fractions of different strategists. Additionally, we have also
shown that the underlying network of contacts does manifest itself in
the distribution of payoffs obtained by the players, and has a slight
influence on the transient behavior.

To conclude, it is worth mentioning that our results only make
sense when applied to evolutionary game models aimed at mimick-
ing human behavior in social dilemmas. The independence on the
topology seems to reflect the fact that humans update their ac-
tions according to a rule that ignores relative payoffs. Interestingly,
absence of network reciprocity has also been observed in numerical
simulations using best response dynamics21, an update rule widely
used in economics that does not take into account the neighbors’s
payoffs. This suggests that the result that networks do not play any
role in the repeated PD may be general for any dynamics that does
not take neighbors’ payoffs into account. We want to stress that the
same kind of models thought of in a strict biological context are ruled
by completely different mechanisms which do take into account
payoff (fitness) differences. Therefore, in such contexts lattice reci-
procity does play its role. In any case, our results call for further
experiments that uncover what rules are actually governing the beha-
vior of players engaged in this and other social dilemmas.
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13. Sysi-Aho, M., Saramäki, J., Kertész, J. & Kaski, K. Spatial snowdrift game with
myopic agents. Eur. Phys. J. B 44, 129–135 (2005).

14. Roca, C. P., Cuesta, J. A. & Sánchez, A. The effect of spatial structure on the
emergence of cooperation. Phys. Rev. E 80, 046106 (2009).

15. Hofbauer, J. & Sigmund, K. Evolutionary game dynamics. Bull. Amer. Math. Soc.
40, 479–519 (2003).

16. Helbing, D. Interrelations between stochastic equations for systems with pair
interactions. Physica A 181, 29–52 (1992).
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