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Abstract

Contact patterns strongly influence the dynamics of disease transmission in both human

and non-human animal populations. Domestic dogs Canis familiaris are a social species

and are a reservoir for several zoonotic infections, yet few studies have empirically deter-

mined contact patterns within dog populations. Using high-resolution proximity logging tech-

nology, we characterised the contact networks of free-ranging domestic dogs from two

settlements (n = 108 dogs, covering >80% of the population in each settlement) in rural

Chad. We used these data to simulate the transmission of an infection comparable to rabies

and investigated the effects of including observed contact heterogeneities on epidemic out-

comes. We found that dog contact networks displayed considerable heterogeneity, particu-

larly in the duration of contacts and that the network had communities that were highly

correlated with household membership. Simulations using observed contact networks had

smaller epidemic sizes than those that assumed random mixing, demonstrating the unsuit-

ability of homogenous mixing models in predicting epidemic outcomes. When contact het-

erogeneities were included in simulations, the network position of the individual initially

infected had an important effect on epidemic outcomes. The risk of an epidemic occurring

was best predicted by the initially infected individual’s ranked degree, while epidemic size

was best predicted by the individual’s ranked eigenvector centrality. For dogs in one settle-

ment, we found that ranked eigenvector centrality was correlated with range size. Our

results demonstrate that observed heterogeneities in contacts are important for the predic-

tion of epidemiological outcomes in free-ranging domestic dogs. We show that individuals

presenting a higher risk for disease transmission can be identified by their network position

and provide evidence that observable traits hold potential for informing targeted disease

management strategies.
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Author summary

For communicable infections, variations in contact rates determine the flow of disease

through populations. Therefore, describing contact patterns within populations could

help to better predict and prevent disease outbreaks. Free-ranging domestic dogs are sus-

ceptible to a number of zoonotic infections yet few studies have investigated their contact

patterns. We describe high-resolution contact data for free-ranging dogs in rural Chad

and simulate the transmission of an infection comparable to rabies. We show that epi-

demic outcomes are determined by the seeded individual’s network position, which was

also correlated with ranging behaviour. This demonstrates that between-individual varia-

tion in the risks of spreading infection may be linked with observable traits that can help

inform targeted management strategies.

Introduction

Heterogeneity in contact rates is influential in the epidemiology of both human and non-

human animal diseases. In principle, variation in the contact rates among individuals affects

their risk of acquiring and/or transmitting infections [1,2]. Relationships between host social

behaviour and the distribution of infections have been demonstrated in several wild animal

host-pathogen systems, from tuberculosis in badgers Meles meles [3] and meerkats Suricata
suricatta [4] to nematodes in Japanese Macaques Macaca fuscata [5]. One driver of these rela-

tionships is the variation in contacts between individuals, which can influence the flow of

infection through populations [6,7]. Therefore, in order to successfully manage some diseases,

it is important to understand the dynamics of host contacts that facilitate the transmission of

infection [8].

The number of infectious disease emergence events in humans has been increasing over

time, and the majority of these are zoonotic in origin [9]. This may, in part, be associated with

the domestication of animals, as evidence suggests that the number of shared pathogens

(between humans and non-human animals) increases with the time since a species was domes-

ticated [10]. This is because domestication increases the exposure of people and animals to a

greater range of pathogens, and increases the risk of humans acquiring zoonotic infections

[11]. If domestic animals are free-ranging, they are also more likely to interact with wild ani-

mals, further facilitating the transmission of disease between people and wildlife [12].

Dogs Canis familiaris are among the earliest domesticated animals and they share 16% of

their known pathogens with humans [10] and 47% with wild mammals [13]. Amongst these

pathogens is rabies, a viral zoonosis that poses a significant public health risk, responsible for

approximately 59,000 human deaths annually [14] and primarily transmitted to humans

through the saliva of an infected dog when they are bitten [15,16]. Mathematical models can

be applied to inform management efforts by predicting epidemics and, for rabies, these models

are relatively well developed [17]. However, one of the challenges identified in controlling

rabies is a lack of information on dog ecology [18] and variation in contact rates has been iden-

tified as being especially influential for epidemic outcomes in a number of modelling studies

[19,20]. This is unsurprising given that dogs are social animals that exhibit pronounced

between-individual variation in their behaviour [21].

Collecting high resolution data on the contact rates between individuals is a major chal-

lenge, particularly for free-ranging animals. This lack of empirical data has meant that stochas-

tic models have relied on assumptions that contact rates are density dependent or have

included a frequency dependent function in the form of spatial and/or social scaling
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parameters to generate variation in the probability of contacts [20,22]. Although these assump-

tions are biologically sound, they fail to capture social phenomena that could influence disease

transmission, such as assortative mixing [23] and clustering [24]. Including observed contact

data in stochastic models of communicable diseases could help better predict epidemics at a

local scale and help identify novel management techniques [25].

To date, there has been only one study published that integrated observed contact rates of

free-ranging dogs into a model for the transmission of rabies [26], in which the contact net-

work of dogs was characterised over 3.5 days in an urban environment. They found that urban

dogs formed communities that were defined by roads, which acted as a barrier to movement.

When simulating outbreaks of rabies, the authors observed that major epidemics were avoided

when 70% of the population were vaccinated and targeted management based on network

measures increased the effectiveness of vaccination. However, it is unclear if this would also

apply to rural dog populations, where the landscape and dog-human relationships are likely to

be different to that in an urban environment [27], where unowned dogs are rare, roads are few

and where hunting, subsistence farming and fishing are more prevalent.

In this study, we used automated proximity loggers to generate high-resolution contact net-

works of free-ranging dogs in an area of rural sub-Saharan Africa, where dogs are susceptible

to a number of zoonotic infections. We use these data to model the transmission of an infec-

tion that is epidemiologically similar to rabies. We test the effect of including observed hetero-

geneities in contacts between free-ranging dogs on predictions for epidemic size. Using a

network model we simulate epidemics through random networks, the observed network char-

acterised as binomial (present/absent) interactions and the observed network when weighted

by the duration of interactions. The observed binomial network introduces non-random struc-

tures while maintaining uniformity and the observed weighted network adds non-random

and non-uniform mixing. In addition, we investigate the effect of seeding different individuals

with the infection. If contact heterogeneity influences epidemics it may be possible to predict

epidemic outcomes using the network position and/or associated traits of the seeded

individual.

Methods

Ethics statement

This study was approved by the University of Exeter College of Life and Environmental Sci-

ences (Penryn Campus) Ethics Committee (Reference 2016/1488).

Data collection

Dogs were studied between June 24th and July 12th 2016 in two settlements, each comprising

two neighbouring villages, located along the Chari River in the Guelendeng district of the

Mayo-Kebbi East region of Chad. The settlement Kakale is located to the south-east of Guelen-

deng town and includes the villages Kakale-Mberi (10˚53’0.79"N, 15˚38’8.45"E) and Awine

(10˚48’6.34"N, 15˚37’56.61"E). Kakale-Mberi is a linear settlement along a main (dirt) road

that runs parallel to the Chari River. Awine is a dispersed settlement that is seasonally occupied

by the people of Kakale-Mberi, who move there to cultivate crops. The settlement Magrao is

comprised of the villages Magrao and Sawata (centred on 10˚59’44.31"N, 15˚29’29.27"E),

located to the north of Guelendeng. Magrao is a dispersed village lying between the Chari

River and the main road from Guelendeng to the capital, N’Djamena. Sawata is a smaller vil-

lage that is surrounded by Magrao but is distinguished by different ethnicity and a higher prev-

alence of pastoralism.
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All dogs had clear ownership and were associated with a specific household. They were all

sexually intact. With the consent of owners, dogs were collared with standard nylon dog collars

(Ancol Heritage). Puppies (less than 6 months of age) were not collared. Collars were fitted

with two devices; (1) an i-GotU GT-600 GPS unit (Mobile Action Technology Inc., Taiwan)

and (2) a wearable proximity sensor based on a design developed by OpenBeacon project

(http://www.openbeacon.org/ and the SocioPatterns collaboration consortium (http://www.

sociopatterns.org/. The GPS units were configured with a fix interval of 10 minutes and a sleep

mode to extend battery life. The proximity sensors exchange one ultra-low power radio packet

per second in a peer-to-peer fashion and, have been successfully deployed in several studies on

humans [28,29]. The exchange of radio-packets is used as a proxy for the spatial proximity of

individuals wearing the sensors [30,31]. Close proximity is measured by the attenuation,

defined as the difference between the received and transmitted power. The attenuation thresh-

old used in this deployment was selected to detect close-contact events (within 1–1.5 m), dur-

ing which a communicable disease infection might be directly transmitted, either by airborne

transmission or by direct physical contact. Additional data collected on the individual dogs

included sex and body condition score (BCS; [32]). Due to low frequencies of some scores, we

categorised them into poor (BCS� 2) and moderate (BCS� 3). Interviews using a standard-

ised questionnaire were carried out at households to record the number of dogs owned and

the dogs’ ages, as recalled by the owner. A single observer estimated BCS and another con-

ducted all household interviews. Dogs aged 12 months or less were classified as juveniles, dogs

aged between 13 and 24 months were classed as sub adults and dogs older than 24 months

were regarded as adults [33]. Since all households known to have dogs in the settlement were

visited, the dog population size (excluding puppies) was calculated for each settlement by sum-

ming the reported number of owned dogs from each household.

Data processing

The proximity data were extracted from devices and cleaned by identifying corrupted sensors

(where no data were available) or anomalous signals (such as continuous bursts of data). The

GPS data were cleaned by removing erroneous fixes with speeds greater than 20 km/hr

between locations. For both GPS and proximity data we discarded records collected on the

first and last day of collar deployment in each village; providing time for the dogs to habituate

to collars at the start and to account for the collection of the collars at the end of the field

study.

Data analysis was conducted in R v3.3.3 [34] and Python v2.7. The R packages ‘sp’ v1.2–3

and ‘rgdal’ v1.2–5 were used to project the GPS data into the relevant coordinate reference sys-

tem for Chad (EPSG:32634). The package ‘adehabitatHR’ v0.4.14 was used to calculate the

dog’s total range (99% minimum convex polygons) and core range (60% kernel density

estimate).

Networks were treated as undirected symmetric networks. Since dogs were not collared for

the same number of days, the weights for the weighted networks were converted to the average

number of seconds the dogs were in contact per day monitored. This was done by dividing the

total duration in seconds over which a pair was in contact, by the shorter of the two periods in

days for which the two dogs were collared. These weights were then log10 transformed. The

global and local network metrics were calculated using the R package ‘igraph’ [35]. The net-

work position of individuals was described using metrics most relevant to disease transmission

[36], including: degree (the number of unique connections of an individual), strength (the

summed strength of all connections for an individual), betweenness (the number of shortest

paths between other individuals upon which the focal individual lies), and eigenvector
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centrality (a measure of second order contacts whereby a higher score is assigned to individu-

als if they associate with highly connected individuals or many moderately connected individ-

uals). To compute the probability density distribution of contact durations and the

complementary cumulative distribution function (CCDF) of edge weights, we used the Python

package ‘Powerlaw’ v1.4.1. Community membership describes individuals that are closely

associated/clustered together and these groups were identified using the edge betweenness and

Greedy algorithms in the Python package ‘igraph’ v0.7.1.

Epidemic simulations

The package ‘Epimodel’ v1.3.0 [37] was used to build a Susceptible, Exposed, Infected and

Removed (SEIR) network model of infection spread. Simulations were run on the observed

binomial network, the observed weighted network and the null model (random networks).

Random networks are traditionally used in network analysis to overcome the non-

independence nature of contacts, and are typically constrained to biologically plausible scenar-

ios. The null model for this study was that individuals mix randomly and so random networks

were generated using the Erdős-Rényi model, conserving the observed number of nodes (indi-

vidual dogs) and edges (connections). Every individual in the binomial and weighted networks

was seeded with the infection and, for each seeded individual, 100 simulations of the model

were run. For the null model, the same procedure was conducted, however, each simulation

involved a different random network and all seeded individuals experienced the same set of

100 random networks. Simulations were run over 300 time steps (days). The network model

assumed that (a) there was no recruitment or loss of individuals to the population (except the

eventual removal of those infected), (b) the edges and weights of the network did not rewire

over time or in response to infected or removed individuals and (c) individuals do not change

their behaviour when infected.

For each simulation an initial seed (infectious individual) was selected at time step 1. At

time steps 2–300, an edge list of infectious and susceptible individuals was made and transmis-

sion events were determined through a random binomial draw using the calculated per link

transmission probability (β):

b ¼ 1 � ð1 � lÞ
a

ð1Þ

The probability of infection after being bitten (λ) was taken to be 0.49 [38]. To our knowl-

edge, no data are available on the act rate (α; number of bites per partnership per day) of rabid

dogs and it was therefore taken to be:

a ¼
logð1 � bÞ
logð1 � lÞ

ð2Þ

Where β was calculated by assuming a constant value of the basic reproductive number (R0)

and by rearranging its definition in the heterogeneous mean-field approximation [39]:

b ¼
R0mhki
hk2i � hki

ð3Þ

The mean degree hki and mean square degree hk2i were extracted from the observed net-

works (see Table 1). The infectious period (μ) was randomly drawn from a gamma distribution

(shape = 3.0; scale = 0.9; see [38 & 40]). Simulations were run for a range of basic reproductive

numbers found in the literature for rabies in dogs. The lower R0 was set to 1.2, the mid value

was 1.8 [38] and the upper R0 was 2.4 [41]. The transmission probability for different edge
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weights (βij) was calculated using Eq 4:

bij ¼ 1 � ð1 � lÞ
aij ð4Þ

aij ¼ a
wij

1þ wij
� 2 ð5Þ

The weighted act rate (αij) was calculated through Eq 5 which is modified from Reynolds

et al [7]. Here we assumed that αij was positively associated with the daily average of the total

duration that individuals were in contact (wij), and in so doing, we applied a sigmoidal scaling

function. This value was then multiplied by two to shift the mean of βij to β. The use of this

scaling function is justified where biting is the main method of rabies transmission and only a

short contact time is required. Once a transmission event occurred, a random draw from a

gamma distribution was used to allocate an incubation period (shape = 1.1; scale = 20.1; see

[38 & 40]) and infectious period (see above for parameters). During the incubation period

individuals were considered to be in the exposed category. Once the incubation period was

Table 1. Summary of individual attributes and the global and local network metrics for free-ranging dogs from

two settlements, Kakale and Magrao, in rural Chad.

Kakale Magrao

Attributes
Sex (male: female) 25: 23 39: 21

Age (adult: sub adult: juvenile)� 25: 13: 9 26: 18: 15

BCS (poor: moderate)�� 24: 24 15: 40

Core range (km2)��� 2.28 ± 0.72 0.17 ± 0.05

Total range (km2)��� 20.77 ± 3.27 4.56 ± 0.66

Global network metrics
Nodes 48 60

Edges 160 191

Edge Density 0.14 0.11

Diameter 7 8

Average path length 3.01 3.57

Clustering coefficient 0.51 0.50

Local network metrics
Degree 6.7 ± 0.5 6.4 ± 0.4

Square degree 55.4 ± 7.2 49.9 ± 6.3

Strength 10.2 ± 0.7 9.1 ± 0.7

Eigenvector 0.32 ± 0.05 0.19 ± 0.03

Betweenness 47.1 ± 9.9 75.9 ± 16.8

The mean ± standard error is reported for spatial attributes and the local network metrics. Total range is the 99%

Minimum Convex Polygon and core range is the 60% Kernel Density Estimate. Global network metrics include the

number of nodes (individuals), number of edges (connections between individuals), diameter (longest path length),

average path length and cluster coefficient (transitivity). Local network metrics include the degree (number of

connections), square degree, strength (summed strength of connections), Eigenvector centrality (second order

contacts) and betweenness (contribution to number of shortest paths).

�The age of one individual in both settlements was unknown.

�� In Magrao, data for BCS was missing for 5 individuals.

��� The spatial ranges of 9 individuals in Magrao and 3 individuals in Kakale were unknown.

https://doi.org/10.1371/journal.pntd.0007565.t001
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over, the individual was classed as infected and could transmit the disease until such time as

the assigned infectious period was over and the individual, along with its associated edges, was

removed from the network. For this study, an epidemic was defined as disease transmission to

at least one other individual.

Statistical analysis

Differences in ranked network position (degree, strength, eigenvector centrality and between-

ness) between nodal attributes (sex, age, BCS and home ranges) were identified by calculating

t-statistics, using either t-tests or linear models. Observed statistics were compared to the dis-

tribution of test statistics from null models to identify if they were significantly different to

those expected had individuals mixed randomly [42]. Null models consisted of 10,000 random

networks generated by randomly shuffling the node attributes while keeping the structure of

the observed network the same. Homophily within the attributes age, sex and household was

investigated by calculating the assortativity (r) coefficient using the ‘assortnet’ package in R.

Again the observed coefficients were compared to the distribution of coefficients from null

models. To see if community membership was determined by the dogs’ sex, age or household,

we used the Normalized Mutual Information (NMI) score to scale the results between 0 (no

mutual information) and 1 (perfect correlation). To investigate if there was a correlation

between edge existence/weight and the distance between households, the ‘sna’ package v.2.4 in

R was used to perform a quadratic assignment procedure (QAP) with 1000 permutations.

Generalised additive models (GAMs) were used to identify non-linear relationships

between the averaged epidemic outcomes of simulations for seeded individuals and their

ranked network position (degree, eigenvector centrality, and betweenness). Models were fit

with family set to Gaussian and included a smoothing term (k = 3). Strength was not investi-

gated in these models since no difference in epidemic size between weighted and binomial

simulations was observed. Since measures of network position are often correlated, separate

models were fitted for each measure of centrality and type of network. Akaike’s Information

Criterion (AIC) and adjusted r2 values were extracted and used to identify which centrality

measure best explained epidemic outcomes.

Results

Network structure

In Kakale, collars were successfully deployed for a mean of 8 days (range 2–9 days) on 48 dogs

(86% of the population excluding puppies) from 28 different households (Fig 1). The distance

between dog owning households ranged from 23–10,002 m. 8561 contact events were recorded

between dogs in Kakale and the median contact duration was 20 seconds with a percentile

(2.5% - 97.5%) range of 20–200 seconds. In Magrao, contact data were collected for a mean of

8 days (7–10 days) for 60 dogs (82% of the population) from 36 households. The distance

between households ranged from 35–4758 m. 7361 contact events were recorded between

dogs in Magrao and the median contact duration was 20 seconds, with a percentile range of

20–160 seconds.

The global structure of both networks revealed high levels of clustering and short average

path lengths (Table 1). Furthermore, community analysis using the edge betweenness (EB)

and Greedy (G) algorithms showed the dog populations in both settlements exhibited high

modularity in the binomial network (Kakale: EB = 0.48, G = 0.51; Magrao: EB = 0.56,

G = 0.57) and the weighted network (Kakale: EB = 0.57, G = 0.603; Magrao: EB = 0.60,

G = 0.617). Magrao was the larger of the two networks and had a wider degree distribution

(kmin = 1, kmax = 17) than that of Kakale (kmin = 2, kmax = 14). In both networks the degree
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distribution was homogenous (Kakale: coefficient of variation (CV) = 0.49, Magrao:

CV = 0.48) while the distributions for the duration of contacts were highly heterogeneous

(Kakale: CV = 1.88, Magrao: CV = 1.85), and the probability density distribution declined as

contact durations increased (Fig 2).

Individual attributes and network position

Dogs in Magrao had substantially smaller ranges than dogs from Kakale, and the distribution

of ranges was right skewed for both settlements (S1 Fig). Dogs in Kakale that had larger ranges

had higher ranked eigenvector centralities and this was significantly different to null models

(Table 2). Similarly, the home ranges of dogs in Kakale were positively correlated with their

ranked degree, and this correlation was significantly greater than that of null models. In both

networks, comparisons to null models revealed no significant association of any ranked net-

work measures (degree, strength, eigenvector centrality or betweenness) with sex, age or body

condition.

All measures of community membership were strongly correlated with household member-

ship in both the binomial networks (Kakale: NMIEB = 0.622, NMIG = 0.625; Magrao: NMIEB =

0.739, NMIG = 0.649) and weighted networks (Kakale: NMIEB = 0.674, NMIG = 0.70; Magrao:

Fig 1. Locations of two settlements in rural Chad at which contact patterns of free-ranging domestic dogs were quantified. Pentagons represent a

household where at least one dog was collared. Villages include Magrao (purple), Sawata (pink), Kakale-Mberi (green) and Awine (orange). The satellite

image was generated using the Esri world imagery basemap (sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

https://doi.org/10.1371/journal.pntd.0007565.g001
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Fig 2. The contact networks, degree distribution, edge weight distribution and probability density distribution of contacts between free-ranging

dogs for two settlements in Chad. In the networks, the circles represent individuals and the colours indicate the village that the dogs belong to: Kakale-

Mberi in green, Awine in orange, Magrao in purple and Sawata in pink. The lines connecting individuals indicate that they have been in contact and the

thickness of the lines are proportional to the logged daily average contact time between individuals. The red line of the degree distributions (probability

that a randomly chosen node has degree� k) indicates the mean degree (number of connections).

https://doi.org/10.1371/journal.pntd.0007565.g002

Table 2. Relationships between the ranked network position of free-ranging domestic dogs from two rural settlements in Chad and their individual attributes.

Ranked

Degree

Ranked

Strength

Ranked

Eigenvector Centrality

Ranked

Betweenness

Settlement t p t p t p t p

Male vs Female
Kakale -0.755 0.222 -0.237 0.404 -0.113 0.446 1.796 0.043

Magrao 1.735 0.045 1.530 0.069 1.060 0.147 -0.118 0.456

Adult vs Juvenile
Kakale 2.073 0.031 1.580 0.072 1.148 0.131 2.039 0.033

Magrao 0.754 0.233 -0.578 0.276 1.270 0.109 1.632 0.054

Adult vs Sub Adult
Kakale 0.501 0.306 1.258 0.106 0.048 0.484 0.012 0.488

Magrao -0.905 0.490 -0.620 0.303 -0.013 0.494 1.002 0.161

Sub Adult vs Juvenile
Kakale 1.238 0.115 0.350 0.367 0.934 0.425 1.590 0.065

Magrao 0.480 0.237 0.905 0.452 1.363 0.124 0.456 0.316

BCS (Moderate vs Poor)
Kakale 1.266 0.103 1.570 0.057 0.061 0.472 0.041 0.481

Magrao 0.660 0.259 -0.205 0.414 1.921 0.033 0.760 0.224

Core Range
Kakale 3.603 <0.001 2.044 0.024 3.895 <0.001 -1.372 0.007

Magrao 0.822 0.217 0.232 0.420 0.508 0.317 1.897 0.029

Total Range
Kakale 2.936 0.003 1.708 0.048 3.915 < 0.001 2.310 0.012

Magrao 1.035 0.164 0.116 0.459 0.703 0.243 2.403 0.008

Observed statistics for differences in ranked degree (number of connections), strength (summed strength of connections), Eigenvector centrality (second order

contacts) and betweenness (contribution to number of shortest paths) are reported. Total ranges are based on 99% Minimum Convex Polygons and core ranges are 60%

Kernel Density Estimates. P-values are for comparisons between the t-statistics of the observed and random graphs. P-values in bold are significant. The alpha level was

corrected for multiple comparisons using the Bonferroni correction (α = 0.007).

https://doi.org/10.1371/journal.pntd.0007565.t002
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NMIEB = 0.725, NMIG = 0.713). Community membership had no significant relationship with

either the dog’s sex or age (S1 Table). When compared to null models, dogs in both settlements

had a strong preference to associate with individuals from the same household and no assorta-

tive mixing patterns were found between dogs of a different/similar age or sex (Table 3). QAP

tests found a significant negative correlation for the distance between households and the exis-

tence of an edge (Kakale: r = -0.23, p< 0.001; Magrao: r = -0.4, p< 0.001). A negative correla-

tion was also found for the relationship between household distance and edge weight (S2 Fig

Kakale: r = -0.22, p< 0.001; Magrao: r = -0.37, p< 0.001).

Epidemic simulations

For both settlements, larger R0 values resulted in an increased risk of epidemics occurring and

larger epidemic sizes (Fig 3, see S3 Fig for the frequency distributions of secondary cases). In

simulations when R0 was 1.8 or 2.4, mean epidemic size was higher for random networks than

that of simulations with observed contacts. Epidemic sizes for simulations using these random

networks had a bimodal distribution, whereby epidemics either involved a large number of

individuals or very few. In contrast, the distribution of epidemic sizes for observed networks

had multiple peaks at intermediate sizes. The distributions of epidemic sizes differed for the

two settlements, whereby Kakale had more intermediate peaks. Simulations with the lowest R0

value (1.2) showed no discernible difference in mean epidemic sizes between the random and

observed networks.

For the observed networks for both settlements, the seeded individual’s ranked centrality

measures (degree, eigenvector centrality and betweenness) were all positively correlated with

the proportion of simulations that resulted in an epidemic (S4 Fig). The seeded individual’s

ranked degree was the best predictor for the proportion of simulations to result in an epidemic

(Table 4), and at larger R0 values the relationship between ranked degree and an epidemic out-

come began to plateau for higher ranked individuals (Fig 4). As expected, the seeded individu-

al’s observed centrality measures did not correlate with the proportion of simulations to result

in an epidemic in any of the random networks.

The seeded individual’s ranked eigenvector centrality and ranked degree were positively

correlated with the mean epidemic size in simulations on the binomial and weighted networks

for both settlements (S5 Fig). Ranked eigenvector centrality was the best predictor of mean epi-

demic size (Table 4), and for simulations of Magrao at larger R0 values, mean epidemic size

plateaued for individuals with a higher ranked eigenvector centrality (Fig 4). The distributions

of eigenvector centralities for dogs in each settlement (S6 Fig), were similar to the distribution

Table 3. The binomial and weighted assortativity for the contact networks of free-ranging dogs from two settlements, Kakale and Magrao, in rural Chad.

Attribute Settlement Binomial Weighted

r p r p

Sex Kakale -0.051 0.381 -0.091 0.237

Magrao -0.075 0.206 -0.160 0.027

Age Kakale 0.060 0.112 0.047 0.205

Magrao -0.015 0.405 -0.013 0.447

Household Kakale 0.130 < 0.001 0.283 < 0.001

Magrao 0.162 < 0.001 0.329 < 0.001

The assortativity between individuals of a similar sex, age and household in Kakale and Magrao. The r coefficient is for the observed network and the p-values are for the

comparison between the observed coefficient and the distribution of those from null models. Significant p-values are in bold.

https://doi.org/10.1371/journal.pntd.0007565.t003
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Fig 3. Simulated epidemic sizes of disease transmission through empirically determined contact networks for

free-ranging dogs in two rural settlements in Chad. Bean plots show the distribution of epidemic sizes of simulations

using the observed binomial and weighted networks and random networks: Kakale (n = 4800) and Magrao (n = 6000).

All plots consider simulations where an epidemic occurred (the disease spread to at least one individual). The

percentage of simulations that resulted in an epidemic is displayed above each bean plot. The horizontal red lines

indicate mean epidemic size.

https://doi.org/10.1371/journal.pntd.0007565.g003
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of epidemic sizes in respective settlements. No correlation between the seeded individual’s net-

work position and mean epidemic size was found in any of the random networks.

Discussion

We have gathered high-resolution data on the contacts among free-ranging domestic dogs liv-

ing in two rural settlements in Chad, an area where rabies infection is endemic and regularly

causes human fatalities. Using these data we have demonstrated the importance of including

observed contact patterns when simulating the transmission of an infection comparable to

rabies. We show that the observed contact rates between dogs are heterogeneous and that

interactions were dominated by contacts that were short in duration and between dogs from

the same household. In our model, for the transmission of infection, the inclusion of observed

contact rates resulted in fewer epidemics occurring compared to when random mixing was

assumed and, for all but the lowest R0 values, epidemics were smaller in simulations using the

observed networks. We also show that the seeded individual’s first and second order contacts

were strong indicators of epidemic outcomes, verifying that individuals differ in the risk they

present for the transmission of infections. Furthermore, for dogs in one settlement, second

Table 4. Measures of model fit for the relationship between epidemic outcomes simulated on contact networks of

free-ranging dogs and the seeded individual’s network position. Networks were described in two settlements, Kakale

and Magrao, in rural Chad.

R0 Network Proportion of simulations that resulted

in an epidemic

Mean epidemic size

Eigenvector

centrality

Degree Betweenness Eigenvector

centrality

Degree Betweenness

r2 AIC r2 AIC r2 AIC r2 AIC r2 AIC r2 AIC

Kakale 1.2 Random 0 -130 0.03 -131 0.07 -133 0.13 99 0.02 105 0 106

Binomial 0.45 -72 0.93 -169 0.33 -64 0.49 120 0.18 144 0.04 151

Weighted 0.32 -53 0.86 -130 0.42 -61 0.56 132 0.31 153 0.03 170

1.8 Random 0 -166 0 -166 0 -166 0.01 206 0 207 0 207

Binomial 0.36 -35 0.92 -138 0.36 -36 0.68 234 0.09 284 0 288

Weighted 0.26 -31 0.91 -132 0.34 -37 0.71 231 0.24 277 0 291

2.4 Random 0.03 -151 0 -149 0.09 -153 0.01 178 0.05 176 0 178

Binomial 0.40 -40 0.94 -148 0.29 -32 0.79 219 0.18 285 0.01 294

Weighted 0.24 -27 0.91 -132 0.28 -30 0.69 253 0.25 295 0 308

Magrao 1.2 Random 0 -197 0.06 -201 0 -197 0 233 0 232 0.15 223

Binomial 0.33 -59 0.87 -158 0.14 -45 0.73 188 0.34 243 0 268

Weighted 0.37 -58 0.88 -159 0.16 -40 0.68 223 0.36 264 0 292

1.8 Random 0 -199 0 -199 0 -199 0 259 0.03 257 0 259

Binomial 0.35 -53 0.91 -173 0.18 -39 0.66 262 0.30 304 0 325

Weighted 0.29 -47 0.85 -138 0.10 -33 0.54 292 0.33 314 0 338

2.4 Random 0.02 -222 0.05 -225 0 -221 0 255 0 255 0 255

Binomial 0.34 -68 0.87 -164 0.19 -55 0.49 299 0.17 327 0 339

Weighted 0.30 -53 0.87 -151 0.13 -40 0.30 333 0.24 338 0 355

The adjusted r2 and AIC of fitted GAMs are reported for the seeded individuals centrality measures (Eigenvector

centrality (second order contacts), degree (total number of connections) and betweenness (contribution to the

number of shortest paths)). Results are reported for when R0 was set to 1.2, 1.8 and 2.4, and for the random, binomial

and weighted networks of both Kakale and Magrao. The best r2 and AIC are highlighted in bold for each R0 of the

binomial and weighted networks.

https://doi.org/10.1371/journal.pntd.0007565.t004
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order contacts were correlated with ranging behaviour, suggesting that observable traits exist

which could inform targeted management strategies.

The transmission probabilities associated with the lowest R0 value rarely resulted in an epi-

demic and, when one occurred, no more than a few individuals were infected. This meant that

there was little difference in the overall mean epidemic size between simulations of random

and observed networks. However, heterogeneity in contacts was still important in determining

epidemic outcomes whereby the seeded individual’s ranked degree was positively correlated

with the proportion of simulations that resulted in an epidemic, and this was echoed in simula-

tions with higher R0 values. This finding demonstrates that, regardless of the transmission

probability, dogs that are in contact with more individuals relative to the rest of the population

are at higher risk of causing an epidemic should they become infected.

In simulations with all but the lowest R0 value, the risk of a large epidemic was higher when

infection started in dogs with a higher ranked eigenvector centrality, and this was further

emphasised where the distribution of eigenvector centralities paralleled that of epidemic sizes

for each settlement. The importance of an individual’s eigenvector centrality in disease

Fig 4. The relationship between epidemic outcomes simulated on contact networks of free-ranging dogs from two rural settlements in Chad and

the seeded individual’s ranked network position. Scatter plots for each settlement (Kakale and Magrao) show the seeded individual’s ranked centrality

measures (Eigenvector centrality (second order contacts), degree (total number of contacts) and betweenness (contribution to number of shortest

paths)) plotted against the proportion of simulations that resulted in an epidemic (the disease was transmitted to at least one individual) and mean

epidemic size. The mean epidemic sizes exclude simulations where the infection did not spread beyond the seeded individual. The data include the

results for the random, binomial and weighted networks, and are for simulations when R0 was set to 2.4. GAMs are fitted to the data to identify non-

linear trends.

https://doi.org/10.1371/journal.pntd.0007565.g004
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dynamics has also been shown in models for the transmission of Mycobacterium bovis in bad-

gers [43] and observed parasite infection in Japanese macaques [5], where this measure was

positively correlated with infection status. It appears that eigenvector centrality is a robust pre-

dictor of epidemic size and infection status because it describes how an individual is rooted

into the network beyond their immediate connections.

We show that ranging behaviour was correlated with eigenvector centrality, but this was

only true for dogs in Kakale. Both range sizes and eigenvector centralities were higher for dogs

in Kakale than those in Magrao. This is likely due to anthropogenic variation in dog behaviour

whereby during the study some people in Kakale moved with their dogs back and forth

between a permanent residence and a seasonally-occupied homestead, while people in Magrao

tended to stay at one. The dogs that accompany their owners in travelling between permanent

and seasonal homesteads will have larger ranges and this would influence the dog’s network

position by creating new contact opportunities. Nevertheless, the relationships between dog

network position and epidemic outcomes were the same in both settlements. We also show

that the distribution of dog owning households is important in determining contacts between

dogs, with dogs more likely to have been in contact with and having stronger connections with

dogs from closer households. However, it is important to note that this distance effect cannot

fully explain the structure of the contact networks as many dogs from households in close

proximity did not come into contact (S2 Fig). Although the dogs in this study were free-rang-

ing, they were owned and anthropogenic influences on dog contact rates and ranging behav-

iour should not be overlooked, and understanding these would provide insight into disease

management approaches.

For both settlements, there was no notable difference in epidemic size between simulations

using the observed binomial and weighted networks. This result would suggest that including

non-random mixing (whom individuals contact) in disease models is more important than

including non-uniform mixing (contact duration/frequency). However, heterogeneities in

edge weights are likely to be important and have been shown to further limit epidemic sizes

when they are allowed to be dynamic in time [44]. To further understand the effect of non-uni-

form mixing, future research should try to describe the temporal dynamics of free-ranging dog

contacts over a timeframe relevant to the disease in question. Specifically, investigations should

look for daily and seasonal differences in network structure and identify whether or not indi-

viduals occupy stable network positions.

The model of rabies transmission used in this study makes several assumptions that should

be considered. First, individuals do not change their behaviour once infected. It is well known

that rabies can manifest as either encephalitic (furious) or paralytic (dumb) and evidence sug-

gests that, unless vaccinated, the furious form is more likely to develop in dogs [45]. However,

it is not clear what determines the type of rabies an individual develops or if the different

forms result in considerable deviations from the individuals’ typical behaviour. Such devia-

tions could result in changes to the contact network with either new connections being

formed, the loss of connections or changes in the strength of connections. A second assump-

tion is that when individuals were removed due to death, the network structure did not

change. Removing these assumptions would require a rewiring of the network and this process

should be biologically informed. Reynolds et al [7] attempted to account for dumb and furious

behaviours by assuming different frequencies of each and either changing the transmission

probability (higher for furious and lower for dumb) or by altering the individual’s contact

behaviour (removing half their connections for dumb or doubling them for furious). They

found that both methods produced similar results and the speed of transmission increased

when there was a higher frequency of furious individuals and decreased with a higher fre-

quency of dumb individuals. Although this effort to model behavioural change can be
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insightful, the methods of rewiring are not biologically informed and so should be interpreted

carefully as they cover a limited number of possible scenarios in which the network could

change. Solutions to such network dynamics are challenging as there is a lack of experimental

data on the processes of network rewiring and, without this guidance, the number of potential

modes of change is too computationally demanding to include in models. For diseases such as

rabies it is unlikely that such data will ever exist given the ethical implications of such experi-

mentation. However, understanding how a network rewires as individual states or community

membership change could better allow network models to include such dynamics that are

thought to be a major obstacle for controlling rabies [38].

The inflation of predictions for epidemic size in models that do not account for observed

contact heterogeneities are of particular concern when public health resources are limited

[46]. This is the case for dog-mediated rabies in developing countries, where epidemics are

preventable through vaccination but a major challenge is the high incidence of dog infections

and human cases, combined with limited public health resources [18]. Currently it is advised

that successful vaccination campaigns require 70% coverage of the dog population [47]. How-

ever, through targeted management this might be reduced, helping alleviate costs. Further to

work on urban dogs [26], our results show that even in a rural context, epidemic risk is not

equal among individuals and suggest that, by identifying the network position of individuals

and correlates thereof, targeted management could be feasible. We find evidence to suggest

that the spatial ranging behaviour of dogs was associated with their network position, though

anthropogenic influences clearly have a role in determining free-ranging dog movements and

this deserves further investigation. Our research illustrates how a greater understanding of the

social contact network of free-ranging dogs can help better inform the management of diseases

such as dog-mediated rabies.
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S1 Table. Normalized Mutual Information (NMI) score for the relationship between the

community membership of free-ranging dogs in two rural settlements in Chad and their
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betweenness (EB) and Greedy (G) algorithms.
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S2 Table. Duration of epidemics simulated on the contact networks of free-ranging dogs

from two rural settlements in Chad. Results are reported for R0 set to 1.2, 1.8 and 2.4, and for

the random, binomial and weighted networks of the settlements Kakale and Magrao. Sum-

mary statistics are for simulations where at least one individual was infected by the seeded

individual. The mean ± standard error is reported for the duration of epidemics that ended
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S1 Fig. Frequency distribution of total ranges recorded for free-ranging dogs from two

rural settlements in Chad. Total ranges are 99% Minimum Convex Polygons.
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S2 Fig. Relationships between the strength of contacts among free-ranging dogs in two
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Kakale and Magrao against the distance (m) between their households. The histograms show

the distribution of r coefficients calculated from permutations where edges were randomly

shuffled. The red lines on the histograms indicate the observed r coefficient. For all plots,

edges for individuals in the same household were excluded.
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S3 Fig. Number of secondary cases produced from epidemics simulated on the contact net-

works of free-ranging dogs from two rural settlements in Chad. Density plots for the num-

ber of secondary cases in simulations of the different networks (columns) of the settlements

Kakale and Magrao and for the different R0 values (rows).

(PNG)

S4 Fig. Relationship between the proportion of simulations to have an epidemic and the

seeded individual’s ranked centrality measures (eigenvector, degree and betweenness)

when disease transmission is simulated through the contact networks of free-ranging dogs

from two rural settlements in Chad. The scatter plots include the results for the random,

binomial and weighted networks of each settlement (Kakale and Magrao), and are for each R0

value modelled (1.2, 1.8 and 2.4). GAMs are fitted to the data to identify non-linear trends.

(PNG)

S5 Fig. The relationship between the mean epidemic size of simulations and the seeded

individuals ranked centrality measures (eigenvector, degree and betweenness) when dis-

ease transmission is simulated through the contact networks of free-ranging dogs from

two rural settlements in Chad. The scatter plots include the results for the random, binomial

and weighted networks of each settlement (Kakale and Magrao), and are for each R0 value

modelled (1.2, 1.8 and 2.4). The means exclude simulations where the infection did not spread

beyond the seeded individual. GAMs are fitted to the data to identify non-linear trends.
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S6 Fig. The distribution of eigenvector centrality scores for free-ranging dogs from two

rural settlements in Chad. Bean plots are plotted for dogs from the settlements Kakale and

Magrao.
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