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We present a unified theory of fracture in disordered brittle media that reconciles apparently conflicting

results reported in the literature. Our renormalization group based approach yields a phase diagram in

which the percolation fixed point, expected for infinite disorder, is unstable for finite disorder and flows

to a zero-disorder nucleation-type fixed point, thus showing that fracture has a mixed first order and

continuous character. In a region of intermediate disorder and finite system sizes, we predict a crossover

with mean-field avalanche scaling. We discuss intriguing connections to other phenomena where critical

scaling is only observed in finite size systems and disappears in the thermodynamic limit.
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Brittle fracture in disordered media intertwines two
phenomena that seldom coexist, namely, nucleation and
critical fluctuations. The usual dichotomy of thought
between nucleated and continuous transitions makes the
study of fracture interesting. Even more intriguing is
the fact that crack nucleation happens at zero stress in
the thermodynamic limit: smaller is stronger and larger is
weaker. This makes the existence of critical fluctuations in
the form of clusters and avalanches of all sizes even more
mysterious. What kind of critical point governs a phase
transition that happens at zero applied field (stress) in the
thermodynamic limit, and what is the universality class of
such a transition? How do self-similar clusters, extremely
rough crack surfaces, and scale invariant avalanches ulti-
mately give rise to sharp cracks and localized growth?
These questions have been addressed previously via a
host of different theories, such as those based on percola-
tion and multifractals [1–4], spinodal modes and mean-
field criticality [5], and classical nucleation [6–9]. In this
Letter, we present a theoretical framework based on the
renormalization group and crossover scaling that unifies
the seemingly disparate descriptions of fracture into one
consistent framework.

Fracture in disordered media is the result of a complex
interplay between quenched heterogeneities and long-range
stress fields leading to diffuse damage throughout the
sample, and local stress concentration favoring the forma-
tion of sharp localized cracks. The self-affine morphology
of cracks [10], the power-law statistics of avalanche
precursors [11–14], and the scale dependence of the failure
strength distribution [15–17] all result from this competi-
tion. Disordered fracture can be understood in the limit
of infinitesimal as well as infinite disorder. Infinitesimal
disorder means a perfect crystalline material with just a
few isolated defects (say a missing atom or a microcrack).
In this limit, fracture statistics can be understood as a
nucleation-type first order phase transition [6–9]. In the

limit of infinite disorder, stress concentration becomes ir-
relevant and fracture progresses via uncorrelated percola-
tionlike damage [1,2]. This mapping to percolation theory
becomes rigorously valid when the disorder distribution is
not normalizable (or very broad, in the language of multi-
fractals) [1]. The situation is more interesting at intermedi-
ate disorder, where unlike typical first order transitions,
crack nucleation is preceded by avalanches with power-
law distributions and mean-field exponents [5,18–20],
sometimes interpreted as a signature of a spinodal point
[5]. Our renormalization group based theory unifies the
above descriptions into a single phase diagram.
We use a two-dimensional fuse network to model dis-

ordered brittle materials. A description of the disordered
fuse network model that we study can be found in any
number of references [2–5,15,21,22]. Briefly, we consider
a periodic network of fuses arranged in a square lattice of
size L tilted by 45� (the so-called ‘diamond lattice’)
[see Fig. 1(a)]. Each fuse is assigned a quenched current
threshold from a common distribution with a cumulative
distribution function Fð�Þ. If the current through a fuse
exceeds its threshold, then the fuse is burned and is
removed from the network; i.e., its conductance is set to
zero. The current through the network is ramped quasistati-
cally, and fuses are burned one at a time until the network
becomes nonconducting, at which point the network is said
to be fractured. We assign thresholds between 0 and 1,
specifically we take FðxÞ ¼ x�, �> 0. This form of dis-
tribution of thresholds serves as a model for a generic
distribution with a power-law tail at the origin, and has
been studied widely [2–5]. In this model the limit � ! 0
corresponds to infinite disorder, while the limit � ! 1
corresponds to infinitesimal disorder. Figure 1 shows a
schematic of an undamaged fuse network [see Fig. 1(a)],
and realizations of fractured networks for various values of
the parameter�. Notice how the damage looks percolation-
like for small � while a single crack appears for large �.
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We begin by arguing that crack-tip stress concentration
is a relevant perturbation to the infinite disorder percolation
critical point. Our assertion implies that percolationlike
behavior is a finite-size crossover effect. This is consistent
with recent results showing that even an arbitrarily small
cutoff in the threshold distribution (at � ¼ 0) leads to a
crossover away from percolation at large system sizes [23].
We calculate self-consistent upper and lower bounds for
the stress and damage fraction at failure, and show that all
of these quantities vanish in the limit of large L. This will
establish that percolation cannot be the dominant behavior
for large L, since percolation demands that the damage
fraction be finite. Let �f, �f be the stress and the damage

fraction at failure, respectively. The lower bound on both
quantities is trivially equal to 0. The upper bound is
obtained self-consistently. Let us assume that�f < �þ

f �
1, where �þ

f is an upper bound on �f, and similarly �f <

�þ
f � 1. Let, if possible, the damage be percolationlike,

so that�þ
f ¼ Fð�þ

f Þ [24]. The stress at the tip of a crack of
length l (lattice units) is given by �tipðlÞ � �þ

f ð1þ �
ffiffi
l

p Þ,
where � is a lattice dependent constant. Thus, the length of
a critical crack at a given stress and damage fraction is
lcrð�þ

f Þ � 1=ð�þ
f Þ2�2 þ h:o:t. The probability that a criti-

cal crack forms at a given lattice site is at least Fð�þ
f Þlcr .

Since there are L2 sites in the lattice, the probability of
one such crack appearing on the entire lattice is at least

L2Fð�þ
f Þlcr [6]. At the failure stress this probability is 1;

thus, �þ
f can be obtained by solving L2Fð�þ

f Þlcrð�
þ
f
Þ ¼ 1. It

can be proved that the solution �þ
f ðLÞ ! 0 as L ! 1;

thus, �þ
f ¼ Fð�þ

f Þ ! 0.

We have established that percolation is unstable to nu-
cleation; however, the crossover length is expected to be
rather large. The reason for this effect is that �þ

f ðLÞ decays
very slowly with L. This slow decay is expected to also
manifest itself in the form of large finite size effects. The
rate of decay obviously depends on Fð�Þ; for FðxÞ ¼ x� one

can show that �þ
f ðLÞ � ð�=2 logLÞ�=2. More sophisticated

estimates that account for stress concentration during the
growth of the critical crack, as opposed to percolationlike
growth assumed here, yield similar results. The conver-
gence becomes extremely slow as� approaches 0, meaning
that the percolation threshold will be reached before nu-
cleation of the critical crack for increasing larger system
sizes. This is consistent with the previous studies that found
that the fuse network can be mapped onto a percolation
problem in the limit of � ! 0 [2]. However, one should
note the subtle point that order of limits matters since
percolation is ultimately unstable to nucleation at any �.
The avalanche behavior associated with fracture can be

understood via a simple argument. The argument is valid in
the vicinity of the critical point and breaks down for very
large L. Consider an avalanche that starts with a bond
breaking at a stress �ð� 1Þ and damage fraction �ð� 1Þ.
Linear elasticity predicts that the change in the stress field
due to the breaking of the bond cðr; �Þ decays as cðr; �Þ �
�=r2 (ignoring the dipolar directional dependence), where
r is the distance from the broken bond. The probability
that a bond at distance r breaks in response to this change
in stress is approximately given by F0ð�Þcðr; �Þ. Thus,
the expected number of bonds that break in response to
stress change due to one bond breaking is given by ��R
L
1 rdrF

0ð�Þcðr; �Þ � F0ð�Þ� logL. Substituting the form

FðxÞ ¼ x� gives �ð�;�; LÞ � ��� logL ¼ �� logL. This
shows that lim�!0�ð�;�;LÞ ¼ 0 (for fixed L); thus, there

are no avalanches for small �, and the damage is percola-
tionlike. For suitable � the avalanche progresses as a
branching process, where the breaking of one bond triggers
a few more and so on (� is also known as the branching
ratio). It is well known that the integrated avalanche size
distribution for such processes is a power law with expo-
nent �a ¼ 3=2þ 1 ¼ 5=2; for suitably large L we expect
the avalanche size distribution to be a power law with
exponents consistent with the mean-field value of 5=2
[5]. Finally, for very large L (or �), the system flows
away from the critical point and the avalanches get cut
off due to nucleation effects.
All the ideas discussed so far can be encapsulated neatly

in the form of crossover scaling functions. The scaling
form for the cluster size distribution can be derived
by using ideas of scale invariance. Let Gðz1; . . . ; znÞ be a

FIG. 1 (color online). Fuse network model. (a) Schematic of a
fuse network. Periodic boundary conditions are used in the
horizontal direction. (b)–(d) Fractured sample for various values
of the parameter �; the spanning cluster (or crack) is colored red.
There is a smooth crossover from percolationlike behavior for
small � to nucleated cracks at large �.
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scale invariant function, then by definition Gð�Þ should
remain invariant under a rescaling by a factor b, i.e.,
Gðz1; . . . ; znÞ ¼ b�0Gðz1b�1 ; . . . ; znb

�nÞ for some con-
stants �i. Taking b ¼ 1þ � and solving up to first order
in � gives the general form of a scale invariant func-

tion as Gðz1; . . . ;znÞ¼ z��0=�1

1 Gðz2z��2=�1

1 ; . . . ;znz
��n=�1

1 Þ,
where the universal scaling function Gð�Þ and the critical
exponents �i=�1 are characteristic of the critical point
[25,26]. The variables zi represent directions in parameter
space near the critical point. The directions with �i > 0
belong to the relevant parameters and those with �i < 0
to irrelevant parameters. We treat �, 1=L to be relevant
parameters, and let u be the leading irrelevant parameter
(the largest of the negative�i). Thus, ignoring all irrelevant
variables but the leading one, the scale invariant distribu-
tion of cluster sizes can be written as

Pcðsj�; LÞ ¼ s��cF cð�L1=�f ; sL�1=�c�f ; uL��f=�f Þ:
where the subscript c denotes variables associated with the
clusters. We use the subscript f (for fracture) to distinguish
the critical exponents from their counterparts in percola-
tion theory. We know that in the limit of � ! 0 (at fixed L)
the cluster size distribution should reduce to the distri
bution of percolation clusters at the critical point; thus,
we can deduce three critical exponent combinations,
namely �c ¼ 187=91 ¼ 2:0549, �c�f¼48=91¼0:5275,

and �f=�f ¼ 72=48 ¼ 1:5 [27]. Even though the clusters

created in fracture are loopless [23], the static properties
of loopless percolation are identical to usual percolation;
thus, the use of percolation critical exponents is valid [28].
The moments of the cluster size distribution should scale as

(taking a Taylor expansion in uL��f=�f for large L)

hsnci ¼ Lðnþ1��cÞ=�c�f ðJ c
nð�L1=�f Þ

þ L��f=�fKc
nð�L1=�f ÞÞ;

where J c
nð�Þ, Kc

nð�Þ, n ¼ 2; 3; . . . are universal scaling
functions [29]. From a data fitting perspective, it is easier
to deal with the moments (as opposed to the distribution
function) because J c

nð�Þ, Kc
nð�Þ are functions of just one

scaling variable. The functions for the avalanche size
distribution are completely analogous,

Paðsj�;LÞ ¼ s��aF að�L1=�f ; sL�1=�a�f ; uL��f=�f Þ;
hsnai ¼ Lðnþ1��aÞ=�a�f ðJ a

nð�L1=�f Þ
þ L��f=�fKa

nð�L1=�f ÞÞ;
where �a is expected to be close to its mean-field value of
5=2.

We have done numerical simulations to verify our
theoretical predictions. We did extensive statistical sam-
pling of systems of size up to L ¼ 128 and � between 0.03
and 8. In order to fit the data to the scaling predictions
we use the following functional forms for the scaling
functions for the moments of the cluster size distribution
[with ycðxÞ � ðlogx�	cÞ=�c]

J c
nðxÞ ¼ a0;nerfðycðxÞÞþ e�ðycðxÞÞ2

Xi¼m

i¼0

Ac
i;nHiðycðxÞÞ;

Kc
nðxÞ ¼ a1;nerfðycðxÞÞþ e�ðycðxÞÞ2

Xi¼m

i¼0

Bc
i;nHiðycðxÞÞ;

where 	c, �c, a0;n, a1;n, A
c
i;n, B

c
i;n are fitting parameters,

erfð�Þ is the error function, and Hið�Þ is the ith Hermite
polynomial. We use the first three Hermite polynomials in
the expansion, i.e., m ¼ 3. The corresponding forms for
the avalanches are [with yaðxÞ � ðlogx�	aÞ=�a]

J a
nðxÞ ¼ e�ðyaðxÞÞ2

Xi¼m

i¼0

Aa
i;nHiðyaðxÞÞ;

Ka
nðxÞ ¼ e�ðyaðxÞÞ2

Xi¼m

i¼0

Ba
i;nHiðyaðxÞÞ:

The forms of the scaling functions are chosen so that
they have the correct asymptotic behavior. As discussed

previously, we know that lim
�L1=�f!0;1J

a
nð�L1=�f Þ ¼ 0

since there are no avalanches for very small �
(at fixed L) and at very large L (at fixed �). On the

other hand we know lim
�L1=�f!0

J c
nð�L1=�f Þ ¼ C for

some constant C (according to percolation theory) and

lim
�L1=�f!1J

c
nð�L1=�f Þ ¼ 0 since there are no clusters in

2

FIG. 2 (color online). Scaling theory of fracture. (a) The ava-
lanche size distribution shows a power law consistent with the
mean-field exponent of 5=2 for moderate �ð¼ 0:5 at L¼ 128Þ.
As expected, the power law is distorted for much smaller or
larger �. (b). The cluster size distribution shows a power law that
is consistent with the exponent predicted by percolation theory
(¼ 187=91). The power-law cutoff becomes smaller as one
moves away from the critical point. (c), (d). The scaling forms
fit the data well, confirming the predictions of the scaling theory.
Higher moments of the distributions fit the scaling forms as well
(not shown here). Notice the significant finite-size effects as the
data get closer to the L ¼ 1 curve with increasing system sizes.
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the nucleation dominated regime away from the critical
point. The forms used here satisfy all these requirements.

Figure 2 shows the size distributions as well as fits to the
scaling forms. It is evident that the data are consistent with
the scaling theory. Based on joint fits for n ¼ 2, 3 (n ¼ 3
is not shown in Fig. 2), we estimate the following values
of the critical exponents: �f ¼ 1:56� 0:30, �a ¼ 0:47�
0:15, �f ¼ 2:35� 1:50, �c ¼ 0:34� 0:08. For the fits

shown in Fig. 2 the exponent �a is held at its mean-field
value of 5=2, while unbiased fits yield �a ¼ 2:45� 0:25.
The scaling exponent �c and the exponent combinations
�c�f, �f=�f are held at their theoretical values of 187=91

and 48=91, 72=48, respectively. The statistical error bars
are much smaller than the error bars reported here. We
have estimated the error bars due to systematic errors by
using a variety of techniques such as varying the number of
terms in the scaling functions, trying different fitting forms,
varying the critical range for the fits, varying the error bars
on the data over a reasonable range, etc. Figure 3 shows the
phase diagram that emerges from our analysis [30]. In the
�� 1=L space, curves along which the scaling variable

�L1=�f attains a critical value demarcate the boundary
between qualitatively different behavior. Note that the
exact position of the boundaries is somewhat arbitrary,
since this is a not an abrupt (first order) transition; however,
the diagram is qualitatively accurate.

The critical phenomena associated with fracture
has several intriguing characteristics. First, the scaling

function associated with the avalanches has a singularity

at 0 [lim
�L1=�f!0

J a
nð�L1=�f Þ ¼ 0] that subdues the avala-

nche behavior as the critical point is approached. Second,
there is no point in the phase diagram (except for the� ¼ 0
limit) that shows any critical phenomena in the limit of
L ! 1. Thus, scale invariance itself becomes a finite-size
effect; perhaps this phenomena should be named finite-
sized criticality. Finally, it is rather remarkable that the
critical phenomena (typically associated with continuous
phase transitions) gives way to nucleation (a first order
transition) in the limit of long length scales. Thus, fracture
has mixed first order and continuous transition character.
Transitions of mixed first order and continuous character
have become something of a theme in the past decade or so.
Recently we noted that the Mott transition and dielectric
breakdown have a mixed character [31]; similar findings
have been reported in a variety of fields such as jamming
transitions, rigidity percolation [32], and phase-separated
manganites [33].
In conclusion, we have presented a scaling theory of

fracture that builds on renormalization group ideas and
unifies several disparate results in the field. Our theory
shows that percolationlike behavior as well as the scale
invariant precursor avalanches leading to fracture are finite-
size effects. We show that on long length scales brittle
fracture is always nucleated. We hope that our analysis
will pave the way for a deeper understanding of the many
mysteries associated with the phenomenon of fracture.
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