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Abstract—With a radical energy transition fostered by the
increased deployment of renewable non-programmable energy
sources over conventional ones, the forecasting of distributed
energy production and consumption is becoming a cornerstone
to ensure grid security and efficient operational planning. Due to
the distributed and fragmented design of such systems, real-time
observability of Distributed Generation operations beyond the
Transmission System Operator domain is not always granted.
In this context, we propose a Machine Learning pipeline for
forecasting distributed energy production and consumption in an
electrical grid at the HV distribution substation level, where data
from distributed generation is partially observable. The proposed
methodology is validated on real data for a large Italian region.
Results show that the proposed model is able to predict up to
7 days ahead the amount of load and distributed generation
(and the net power flux by difference) at each HV distribution
substation with a 24%-44% mean gain in out-of-sample accuracy
against a non-naive baseline model, paving the way to advanced
and more efficient power system management.

Index Terms—Distributed Power Generation, Load modeling,
Machine Learning, Time series analysis.

I. INTRODUCTION

Power Systems worldwide are undergoing a radical en-

ergy transition: on one hand, the number of renewable non-

programmable energy sources and small power plants con-

nected to the distribution grids – known as Distributed Gen-

eration (DG) - has increased significantly. On the other hand,

the number of conventional power plants, capable of providing

grid regulating services for the System security, has been grad-

ually decreasing in many countries. This evolution is already

causing severe security issues to Power Systems. National

Transmission System Operators (TSOs) are responsible for the

management of issues like: (i) the increasing periods of over-
generation from renewable power plants during the central

hours of the day, which may result in their curtailment; and (ii)
the increasing frequency of power flow inversions at the HV

distribution substations, which connect the transmission grid

to the distribution grids. This occurs when the DG becomes

greater than the local load absorbed by passive users. These

phenomena implies new approaches to the Power System

management since the Power System has been designed in

the past considering distribution systems as passive grids.

In order to guarantee the Power System security in the most

cost-effective way, TSOs need to observe in real-time the DG

for operational purposes (static and dynamic security analyses,

inertia assessments, etc.) and forecast the production of DG

for planning purposes (maintenance scheduling on the sub-

transmission grid, market efficiency, etc.).

This paper presents an analytic pipeline to forecast the DG

and the users’ load at the HV distribution substations in Italy,

from the TSO point-of-view. Several observability constraints

need to be considered to perform load/DG forecasts:

• The TSO monitors the net power exchange at each HV
distribution substation, but has no real-time DG visibility;

• Distribution System Operators (DSOs) send energy mea-
surements for a subset of the generation portfolio con-

nected to the distribution grid, with a 1-month delay;

• Typically, these historical series assume continuous val-
ues for production units with an installed capacity greater

or equal to 55 kW. Smaller production units are usually

aggregated by DSO area, with some exceptions;

• The connection of MV/LV production units to their

substation is generally not known by the TSO;

• Only a few statistical data are known for load consump-
tion in the distribution grid and are generally aggregated

at a much higher level (regional, zonal, national).

Therefore, the TSO has observability of the net power flux at

the transformers of each HV distribution substation but does

not have all the information needed to split the load from DG1.

1All the above considerations were true at the time of experimentation. In
this regard, the Italian Regulator ARERA started to address some of these
issues with Deliberation 36/2020/R/EEL.978-1-6654-3597-0/21/$31.00 ©2021 IEEE
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Contribution:
The contribution of this paper is threefold: 1 a system

to estimate the load/DG on past data (older than 1 month),

referred to periods for which power generation time series

are available to the TSO at the time of the analysis; 2 a

heuristic algorithm to approximate the association between DG

units and HV distribution substations to obtain the aggregated

production/consumption time series at the HV substation level;

3 a Machine Learning model (named “ARMBTEX”) that

forecasts in real-time the production and consumption time

series at HV distribution substation level in a very short (1

hour ahead) and medium (1 week ahead) time ranges.

Novelty: The combination of 1 and 2 allows the Italian TSO

to estimate the unknown load/DG from the measured net flux

on historical data. The reconstructed ground truth is then used

and evaluated by 3 to forecast the real-time load/DG in a

partially-observable large-scale grid, where only flux/weather

information is available. This new system allows a TSO to

obtain valuable forecasts for operational planning, within the

regulatory framework and the technological limitations of the

current system.

II. BACKGROUND

In recent years the number of papers that addressed the

problem of predicting energy production and consumption has

drastically increased. It is widely acknowledged that machine

learning (ML) can be used to model, design, and predict

the behavior of these systems. The development of new ML

techniques has considerably raised the accuracy, robustness,

precision, and generalization ability of such models [1].
Renewable energy forecasting at a local scale is a complex

and challenging task. Recently, the use of ML to forecast wind

energy production [2]–[6], solar energy [7]–[15], and marine

currents [16] has been extensively tested, showing significant

improvements over non-ML methods. The relevant aspect of

these approaches is that renewable energy generation can be

successfully predicted, as long as the corresponding environ-

mental variables (wind speed, solar radiance, cloud cover, etc.)

are properly forecast. The forecast of energy consumption

at a specific site is also considered by many papers [17]–

[21]. These approaches can only be carried out by having

many technical details of the considered plants/sites, which

could not always be the case for the TSO. A more general

approach is therefore needed to make forecasts on a large

regional scale. In this regard, a ML model can be designed

to provide the global energy output of many sources from

several environmental variables, learning the energy/variables

relation from multi-year data, as in [22]. Similar approaches

have also been used to predict transmission line congestion

with a high share of renewables [23]. Cyclical patterns also

play a significant role in accurate forecasts of both energy

generation and consumption [18], [24], at various time scales

(hourly, daily, weekly, yearly, etc.) and considering holidays.
Several ML approaches have been investigated and com-

pared in [5], [6], [25], ranging from SVR models, PSO, fuzzy

Neural Networks, Gradient Boosting, and Random Forest.

F Time series of the net flux. X[t] Input features at time t.
L Time series of the net load. Y Forecast targets.

G [s] Time series of the DG of type s. W Weather time series.
G Sum of all DG time series. φ A ML estimator function.
G Vector of all DG time series. Φ Forecast model.

C [s] Capacities of all units of type s. F A set of forecast models.

C Vector of installed capacities. Dtrain
m Monthly training dataset.

Γ [u] Time series of a prod. unit u. D+J Prediction at day J (1≤J≤7).

Γ[s] Vector of all Γ [u] of type s. • Forecast value of •
a[s] Substation association vector for units of type s.

â[s] Approximated a[s]. U [s] Selected units of type s.
LJ Set of lags of predictors at day J .

Table I. Notation reference.

From the point-of-view of the TSO, the local renewable

energy generation acts as a variable component that hides a

part of the actual customer net load, making it harder for the

TSO to estimate the real load and meet its demand if the

renewable generation drops suddenly [26], [27].

III. ALGORITHMIC PIPELINE

This section goes through the problem definition (III-A),

the description of the available dataset (III-B), and the two

consequential tasks, involving respectively: the inference of the

target data (III-C), and the definition of the predictive model

and its validation (III-D, III-E).

A. Problem Statement

Let us consider the time series F up to time t: F0,F1, ...,Ft

summarizing the active power flux (in MW) flowing from the

TSO to the DSO measured at each individual HV distribu-

tion substation transformers. A value Ft can be seen as the

difference between the local load Lt and the local generation

Gt at the substation: Ft = Lt − Gt, where the series L and
G are unknown. The primary goal is to forecast the future

values Lt′ , Gt′ and F t′ for a set of time points t′ > t. A
time series F at 15-min granularity is used and 1 to 7 days

ahead predictions are considered for the experiments. Since

both L and G are necessary to build and validate a forecasting

model, a preliminary problem consists in estimating the past

time series of L and G . In the following, we refer to the
primary goal as the forecast problem, and to the estimation of
past L and G data as the target estimation problem.
The information available for solving the target estimation

problem sets the context of a partially observable electrical

grid. Information about the production units that could be used

to reconstruct G is partial. Only a subset of all DG units’ time

series is known, and there is no direct information about the

connections between DG units and substations.

The DG contributions from different energy sources are

collected in separate time series G [s] (s.t. G=
∑

s G
[s]), with

s ∈ {solar, thermal, hydro,wind}. The series G = [G [s]] are
estimated using additional data sources with the methodology

described in Section III-C. Finally, we associate to each sub-

station a weather time series W, and the aggregated installed

capacity at the substation C = [C [s]], with one value C [s] (in

MW) for each energy source s.

2
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Fig. 1. (A) Spatial distribution of production units of Sardinia.
The map shows all sources except solar. The zoom shows the vast
diffusion of solar installations. (B) Sketch of the sampling procedure
to infer energy generation at HV distribution substations.

B. Dataset

The considered dataset comes from a set of heterogeneous

sources related to the TSO, plus weather data. Data were

collected for the 2017–2019 period for Sardinia’s territory,

Italy. Sardinia is an (electric) island, connected to the mainland

only through HVDC submarine cables. Therefore, all DG

production units connected to Sardinian substations are located

on the island. In the considered area there are ∼70 HV
distribution substations [28]. For each of these substations,

the collected dataset consists of (1) the net power flux time

series F with 15-min granularity and corresponding quality

codes; (2) the estimation of the installed capacities C [s],

updated weekly by the TSO; (3) weather data W containing

temperature, rain probability, wind speed and direction, and

cloud cover from an observation point close to the substation.

A national database stores all the production unit details

(nominal power, type, address). In the considered area, there

are about 37,000 DG units [29], and less than 3% of them

are required to send energy production data continuously. For

some of these units, the TSO has access to energy time series

that are provided by the DSO, but only at the beginning of

every month and with a one-month delay. Moreover, the TSO

does not know the HV distribution substation to which each

production unit u is (indirectly) connected (see Figure 1).

C. Targets estimation of each HV distribution substation

In a substation, the aggregated generation G [s] for the

energy source s is approximated as follows. Let Γ [u] be the

time series of a production unit u, and let Γ[s] = [Γ [u]] be
the matrix of all the generation time series of units of type s.
The generated energy of type s is given by G [s] = a[s] · Γ[s],

where a[s] is the real substation association vector defined
s.t. the value of a

[s]
u is 1 if unit u of type s is assigned

to that substation, and 0 otherwise. However, the partially

observable system considered in this paper requires a[s] to
be approximated because only a subset of Γ[s] is available,

and the exact unit-substation association is unknown.

The adopted solution computes an approximated substation
association vector â[s] ≈ a[s] by following these steps: (I)
defining a set U [s] of units, selected among the 3% that actually

send data (see Sec. III-B), using a sampling strategy with

replacement; and (II) assigning to each selected unit u a

weight proportional to its nominal power Pu.

The goal is to extract a set of probe units U [s] which

is representative of all the units connected to a specified

HV distrib. substation (see Figure 1/B). Since the association

between each unit u and its substation is guessed, rule (I)
does not impose u to be associated with a single substation.
The set U [s] of selected units of type s is chosen as the

smallest set that satisfies the following criteria: (i) Only units
that send data to the DSO can be picked; (ii) Units are taken
in distance order; (iii) The total capacity of the selected units
must be at least a fraction (chosen to be 50%) of the installed

capacity C [s]; (iv) A minimum number of units (chosen

based on the average unit availability) is always associated,

to average the approximation error.

The approximated substation assoc. vector â[s] is then

â[s]u = C [s] ·
(
Pu/

∑
j∈U [s] Pj

)
if u ∈ U [s], 0 otherwise

The data acquisition defines the algorithm’s pipeline de-

scribed in the next sections. The one-month delay deriving

from the Γ [u] time series availability to the TSO implies that

G can be fully constructed as G [s] ≈ â[s] · Γ[s], up to the

previous month. Similarly, L can be derived wherever G is

estimated as F +G .

D. Forecast Problem Formulation

This section introduces the definition of the training and

the test sets in the load/DG forecasting problem for a given

HV distribution substation. This formulation deeply depends

on the temporal flow of the data, which defines the constraints

for the real-time forecasting pipeline.

The input features X are
[
C,W,F

]
, where C = [C [s]] is

the vector of installed capacity (of all source types),W is the

observed weather vector at the nearest observation point to the

substation, and F is the net power flux time series measured

at the transformers of the substation. The target output Y is

a multivariate series defined as [G,L], where G = [G [s]].
Each time point represents a 15-minute slot. The beginning

of the current day is indicated with t0, the current quarter-
of-hour with tnow. The point t0 − k denotes the last instance
where the Γ [u] series are given. Notation D+J indicates the
forecast target is J-days ahead.
The data flow follows these dynamic constraints:

1) The training target Y can be established up to t0 − k,
where all data are known or estimated;

2) Starting from t0 − k + 1, the target Y cannot be

reconstructed since the series Γ [u] are not yet available;

3) The net flux is not available after the current time tnow.

The goal is to compute a set of forecasts for all time points

t′ of the day D+J . To compute a single forecast at time t′ it is
possible to define the set X

[tnow]
t′ of all the data available at the

3
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current time tnow, and the input forecast values for the time
points up to t′ (i.e.C andW). LetWt′ be the weather forecast

at time t′, and let Ct′ be the vector of estimated installed

capacity at time t′. The forecast model ΦJ : X
[tnow]
t′ → Yt′ is

a machine learning predictor that, given the input vectorX
[tnow]
t′

at time t′, produces the prediction pair Yt′ = [Gt′ ,Lt′ ] for
the same 15-minute interval, J days ahead from t0.
The model ΦJ is a predictor for a single time point t

′. All
the 96 different forecasts (one for each 15 minutes interval

in a day) for a day D+J can be generated by evaluating

ΦJ(X
[tnow]
t′ ) for the 96 time points t′.

A weekly model set F is a set of models ΦJ that produce

forecasts with jump J ranging from +1 to +7 days. Each HV
distribution substation will have its specific model set F .
A training dataset can be defined for the month m. Let tm

be the last time point of m, with tm ≤ t0 − k. The monthly
training dataset Dtrain

m is defined as

Dtrain
m =

{
(X

[tm]
t′ , Yt′)

∣∣ ∀t′ ≤ tm
}

E. Forecasting approach

Figure 2 shows the temporal structure of the involved

variables, which are: (a) the installed DG power at the HV

distribution substation; (b) the estimated distributed generation
time series (available with a one-month delay); (c) the weather
time series (exogenous features), where data points > tnow
represent weather forecasts; (d) the inferred DG (green), the
reconstructed consumers’ load (blue), and the real-time net

flux (red). The solid series in (d) are the values for G , L and
F , while the dotted ones are forecasts of a ML model.
This section describes the ML models used to make the

forecasts. The presented models are derived from a compar-

ative selection between several techniques, including gradient

boosting, neural networks, SARIMA models, and univari-

ate/multivariate approaches. In the following, the benchmark is

built upon a univariate baseline model, which exploits seasonal

patterns, and two supervised ML models based on gradient

boosting, which differ for an input feature (the net flux F ).

PMA model: While standard benchmarks for time-series fore-
casting tasks are usually dummy models based on persistence

Fig. 2. Schematic timeline representation of the input X
[tnow]

t′ and
output Yt′ variables, given a current time tnow.

Fig. 3. High-level schema of the PMA and the ARMBTEx models.

(i.e. predicting the next value as the last observed one),

the proposed pipeline is compared against a more realistic

baseline, representing the best-effort forecast of a domain

expert. The Periodic Moving Average (PMA) model exploits
the fact that generation and load are recurrent processes [30],

[31] with a strong daily and weekly seasonality. A graphical

representation of the model logic is provided in Figure 3(top).

The predicted values for generation and load are defined as the

moving average of the latest 4 available samples at the same
time the same day of the week in the past. However, because
of a one-month delay in the communication of the Γ [u] to the

TSO, these last values could be several weeks old.

ARMBTEX model: The proposed ML model ΦML is an Auto-
Regressive Multivariate model based on Boosted Trees with
Exogenous variables (ARMBTEX) built on eXtreme Gradient
Boosting algorithm (XG-BOOST). A graphical representation

is given in Figure 3(bottom). The model input consists of

multiple time points, arranged according to a set of lags. A
lag z is a time shift from the target time point t′. Let LJ be

a set of lags defined for the D+J forecast model.
The XG-BOOST package2 is a scalable implementation of

the gradient boosting algorithm [32], [33] for categorical

(continuous) supervised learning. These models φ : X → R

are used as multivariate regressor functions. Following the
tree ensemble paradigm, the generic prediction entry of the

model φ is the sum of independent trees, learned iteratively

by minimizing a regularised additive objective function.

ARMBTEX is built on one ML estimator φL to forecast

the load Lt′ , and one estimator φG[s] (for each source s) to

estimate the value
G

[s]

t′
C

[s]

t′
, with C

[s]
t′ being the installed capacity

at time t′. Estimators take in input a masked vector

μ
(
X

[tnow]
t′

)
=

(
xt′−z

∣∣ ∀z∈LJ

)
, xt =

{
(Wt,Ft) if t < tnow

Wt otherwise
(1)

i.e. μ selects the features relative to the lags in LJ .

The forecast Yt′ = [Gt′ , Lt′ ] is then computed as

Gt′ =
[
C

[s]
t′ · φG[s]

(
μ
(
X

[tnow]
t′

))∣∣∣∀s] , Lt′ = φL

(
μ
(
X

[tnow]
t′

))
2https://xgboost.readthedocs.io
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Fig. 4. Model comparison for the D+1 (left) and D+7 (right) estima-
tors, for the three targets (columns), in terms of MAE/IQR (top) and
MAE (bottom). Lower scores are better.

ML estimators φ are trained on all tuples
{
(μ(X),Y) |

∀(X,Y) ∈ Dtrain
m−1

}
of the monthly training dataset Dtrain

m−1 of

the previous month m − 1. Let ΦPMA
m and ΦML

J,m denote the

PMA and ARMBTEX models trained on the Dtrain
m dataset.

Parameter selection: The XG-BOOST φ estimators use several
hyper-parameters to control the amount of over-/under-fitting

of the decision trees ensemble. The hyper-parameter selection

has been carried out following a grid search approach, i.e. eval-

uating the training and test performances of several possible

parameter combinations. The grid search resulted in estimators

with 100 decision trees of 10 maximum levels depth each.

The lags hyper-parameters control the amount of periodicity
each estimation model φ may learn from. The selected com-
bination of lags is the following: Lag z0 is always the data
of the forecast day. The other lags are chosen to capture the

correlation with the daily and weekly seasonality of the data.

z1 is the most recent data available (today), z2 is the same
hour but in the previous day, and z3 is the same hour of z0,
7– or 14–days back, to capture the weekly seasonality.

IV. COMPUTATIONAL RESULTS

Model validation is performed on each substation, compar-

ing the performance of PMA against ARMBTEX. The errors

evaluation considers the two reconstructed targets (G − G ,
L − L) and the error on their difference F − F (the net

flux), producing 3 different residuals to estimate the errors

and validate the models.

The validation can be summarized as follows:

1) Every month m a new training dataset Dtrain
m−1 is built

using all data available up to a month m− 1;
2) The weekly model sets Fbaseline

m and FML
m are trained on

the Dtrain
m−1 dataset;

3) The forecast models generate all the short-time (D+1)

to the medium-time (D+7) out-of-sample estimates for

month m (walk-forward validation);
4) Estimates Y can be compared against the reconstructed

data Y in the 2017–2019 period, to verify the achieved

target accuracy of each D+J model.

The training window used by ARMBTEX is 800 days in the
past (if available), with a warm-up period of three months.

D+1 and D+7 are the two extreme cases of prediction in

terms of error, respectively minimum and maximum. The eval-

uation is performed using the mean absolute error (MAE), as
well as a dimensionless error obtained as the MAE divided by
a substation-specific robust scale factor (interquartile range).

Figure 4 shows the average out-of-sample performances

of the D+1 and D+7 estimators (left and right, respectively)

for the three targets G , L and F . Each boxplot sample is a
substation. The models in the figure are, in order: the PMA

model; ARMBTEX without the current net flux in the input

variables, i.e. Eq. (1) never includes Ft in the input; ARMBTEX

with the most recently available information about net flux.

Lower scores are better, meaning lower average errors. Train-

ing a monthly FML
m model for a target substation requires

about 60 seconds on a single CPU on the test hardware.

Each monthly training dataset has about 80,000 samples. All

monthly predictions of FML
m are then computed in less than 1

second, once the model is trained. All tests were performed

on modern commodity hardware.

ARMBTEX provides significant improvements over the base-

line model (PMA) for all three targets, in particular for the

load estimate. In this case, the availability of the net flux of

the current day among the input variables further increases the

average estimator accuracy. The results are consistent among

different metrics, as expressed in Figure 4.

The availability of critical information with a 1-month

delay makes it difficult for a univariate estimator to provide

accurate results. Therefore it is not surprising that well-trained

multivariate models outperform univariate ones in this context.

Figure 5 shows the average error distribution of the target

estimates over the course of the months. The PMA estimator

shows the largest fluctuations since it takes at least one month

to adapt. ARMBTEX models provide more stable estimates over

the course of the years.

Finally, Table II contains the estimation of the accuracy gain

of ARMBTEX with respect to the baseline model (PMA). The

percentage error gain is calculated for each HV distribution

substation and each target, and the mean values for the

Fig. 5. Error distribution over the prediction months.
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- DG Load Net flux

MAE reduction 24.065% 44.335% 48.350%
RMSE reduction 21.949% 40.512% 44.595%

Table II. Mean percentage error reduction going from the baseline
(PMA) to the ARMBTEx model, for the three targets at D+1.

correspondent distributions are displayed. The results for both

the net flux and the load are remarkable (48%–44% of gain,

respectively) while the DG shows an improvement greater than

24%. It is worth noting that the out-of-sample performances
are evaluated on the estimated load and DG, as they are the
targets used to train the models, even if the load/DG do not

constitute a validated ground truth (only the net flux is). As

an additional validation, the accuracy for the reconstructed net

flux has been further evaluated via the predicted targets. Such

external validation confirms the fairly good performances of

the whole algorithmic pipeline. The validation with real-time

measures of the net flux produced low mean errors and almost

50% of accuracy gain.

V. CONCLUSIONS AND FUTURE WORK

This work presents a data-driven pipeline from the TSO

perspective to infer and forecast useful information to enhance

grid security and management. Starting from aggregated and

partially available measures, the system develops substation-

specific predictive models up to 7 days ahead that are able

to separate the contribution of DG and load from the net

flux. ARMBTEX consistently outperformed the benchmark on

several metrics, increasing the accuracy of the DG forecast by

24%, and increasing the accuracy of the load forecast by 44%.
We acknowledge some limitations in the present research.

Unfortunately, an external ground truth to validate the entire

pipeline was only available for the net flux. Future work could

be devoted to performing extensive sensitivity analysis on the

association vector â[s], to investigate how different rules might
affect the ground truth and validation accuracies. Moreover,

future research may quantify the impact of weather fore-

casts on DG forecasts, as current computational experiments

were limited to assess the model accuracy considering actual

weather conditions.
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