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Populations of mobile agents—animal groups, robot swarms, or crowds of people—self-organize into a large
diversity of states as a result of information exchanges with their surroundings. While in many situations of
interest the motion of the agents is driven by the transmission of information from neighboring peers, previous
modeling efforts have overlooked the feedback between motion and information spreading. Here we show that
such a feedback results in contagion enhanced by flocking. We introduce a reference model in which agents carry
an internal state whose dynamics is governed by the susceptible-infected-susceptible (SIS) epidemic process,
characterizing the spread of information in the population and affecting the way they move in space. This
feedback triggers flocking, which is able to foster social contagion by reducing the epidemic threshold with
respect to the limit in which agents interact globally. The velocity of the agents controls both the epidemic
threshold and the emergence of complex spatial structures, or swarms. By bridging together soft active matter
physics and modeling of social dynamics, we shed light upon a positive feedback mechanism driving the
self-organization of mobile agents in complex systems.
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Mobile agents—animals, people, or robots—interact
through the exchange of information, which directly influ-
ences the way they move in space. These interactions trigger
the emergence of a plethora of collective states, such as flocks
of birds [1], robot swarms [2], or the coherent motion of fish
schools avoiding a predator’s attack [3]. All living entities
use signaling inputs to get information about the environment.
From their perception (visual, acoustic, quorum-sensing, etc.),
individuals in a group might change the way they move ac-
cording to the behavior of their surrounding peers, to capture
the presence of potential threats or opportunities [4]. For
animals, information could be related to the location of a
food source or an approaching predator. In shoaling fish, for
instance, social cues transmitted through the shoal have been
suggested to enhance early predator detection [5]. In humans,
the behavior of crowds in life-threatening situations can be
determined by the spread of panic, transmitted locally among
neighboring individuals [6,7]. At a smaller scale, for instance,
cells regulate gene expression processing the input chemical
signals received from their surroundings [8,9].

The exchange of information in populations of mobile
agents can be represented by the introduction of extra internal
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degrees of freedom in models of active matter [10]. Active
matter stands for systems composed of interacting units (ac-
tive particles), that pump energy from their environment to
self-propel, providing a simple modeling of living matter
from a physics viewpoint [11,12]. Despite the relevance of
the problems it raises, the study of active matter made of
constituents exchanging information is still at its infancy.
Artificial motile units featuring a feedback between their
motion and some local information about the population have
been engineered only in the last two years. These units might
operate both at the microscale—colloids powered by external
fields controlled by a feedback loop involving their positions
[13–15]—and the macroscale—robot swarms mimicking pat-
tern formation in biological systems [16]. Recently, very few
works started considering simple models with a feedback
between an agent’s internal variable and the way they move
in space. For instance, coupling the tendency to synchronize
of globally coupled mobile phase oscillators with their spa-
tial attraction produces novel self-sustained structures [17],
while identifying the internal phase with the self-propulsion
velocity of locally interacting active oscillators induces new
synchronization phenomena, such as mutual flocking and
chiral sorting [18,19]. Alternatively, the internal variable of
the agents may represent opinions, whose dynamics depends
on the spatial location of the agents which, in turn, is affected
by their local social interactions [20], or a binary variable
describing their state of motion (motile or not) [21].

In a completely different field, the dynamics of information
spreading across a population has been modeled by paradig-
matic epidemic processes [22], in which agents aware of the
information (infected) transmit it to unaware (susceptible)
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neighboring individuals with certain probability. The informa-
tion transmission is mediated by social interactions, naturally
present in humans, but also observed in mammals [23,24] and
fish [25,26]. Information cascades in social animals may trig-
ger the emergence of coordination and collective behavioral
change [27], also indicated as behavioral or social contagion
[28–30]. The collective motion of animal groups has been
showed to be affected by the spreading of information within
the group, encoding a preferred direction of motion of its
leaders [31]. Within this framework, epidemic processes have
been modeled also in systems of mobile agents, taking into
account the fact that social interactions are not static but
evolve in time. It has been shown that motion of the agents has
a crucial impact on the spreading process [32–37]. However,
in these setups, the coupling between the motility and the
epidemic process has no feedback mechanism: the motion of
the agents is not influenced by the epidemic spreading in any
way.

However, while there is ample empirical evidence that
information exchanges affect the way in which agents move
in space [27,31,38–40], a feedback mechanism has not been
considered so far within the context of epidemic processes.
Here, we propose a reference model that introduces a feed-
back between the agents’ mobility and an internal degree
of freedom, characterizing the information spreading across
the population. Such feedback has a dramatic impact on the
collective behavior of the population, both for its coordination
in real space (e.g., collective motion, pattern formation) and in
the abstract space of the internal states (e.g., consensus, epi-
demic outbreak). We consider pointlike self-propelled agents
which carry an internal phase which evolves according to
a susceptible-infected-susceptible (SIS) process [41]. Such
phase represents the agent’s tendency to move along a given
direction, and thus directly influences its motion. We show
that motility can enhance information spreading across a
population and, conversely, information spreading induces a
variety of cooperative states in real space, such as flocking
and structure formation. Such rich and novel phenomenology
crucially hinges on the feedback between the agents’ mobility
and the dynamics of their internal state.

We consider N self-propelled agents moving in a 2d vol-
ume L × L with periodic boundary conditions. At time t ,
agents (or active particles) are located at ri(t ) = [xi(t ), yi(t )].
They are self-propelled along their orientation pi(t ) =
[cos θi(t ), sin θi(t )] with a constant velocity v:

ri(t + 1) = ri(t ) + v[cos θi(t ), sin θi(t )], (1)

where θi is coupled to its internal phase, φi, as

θi(t + 1) = θi(t ) + H sin [φi(t ) − θi(t )]. (2)

The larger H , the faster θi adjust to φi, for which evolution is
driven by an underlying SIS process that we describe below.
In the absence of coupling between the SIS process and the
motion of the agents (H = 0), the agents move ballistically.

Each agent is endowed with an internal binary variable
si(t ) = {0, 1}, representing its epidemic state, susceptible
(si = 0) or infected (si = 1). At each time step, infected agents
decay spontaneously to the susceptible state with probabil-
ity μ, while susceptible agents may become infected upon
contact with infected neighbors with probability λ [42]. Two

FIG. 1. Illustration of the interaction mechanism. Susceptible
(infected) agents are represented in white (black). For each agent
i, the internal phase φi (orientation θi) is indicated by a red (blue)
arrow. An initially susceptible agent i gets infected with probability
λ by a neighboring agent j and adopts its phase. Each agent aligns
its orientation with its phase with a rate H .

agents i and j are neighbors if |ri − r j | < R. To couple such
SIS process to the dynamics of φ, let us now specify how
the latter changes as a result of getting into a new epidemic
state (or remaining in the same one). At a given time t , if an
infected agent i becomes susceptible, it picks a random phase
ν ∈ [0; 2π [. This can be written as the following update of the
internal variables of the system: si(t ) = 1 → si(t + 1) = 0
and φi(t ) → φi(t + 1) = ν, which occurs with probability μ.
An infected agent that remains infected does not change its
internal state at all, meaning si(t + 1) = si(t ) = 1 and φi(t +
1) = φi(t ), with probability 1 − μ. Then if an agent i gets
infected by a neighbor j ∈ ∂i, it adopts the internal phase of
j: si(t ) = 0 → si(t + 1) = 1 and φ(t ) → φi(t + 1) = φ j (t ),
with probability λ. Finally, the phase of susceptible agents
performs Brownian motion with diffusivity D0 as long as they
do not get infected. All in all, the evolution of the internal
variables {φi, si} can be formally recast in the following
compact form:

{φi, si}(t + 1) =

⎧⎪⎨
⎪⎩

{ν, 0}, μsi(t )
{φi(t ), 1}, (1 − μ)si(t )
{φ j∈∂i (t ), 1}, λ[1 − si(t )]
{φi(t ) + δφ, 0}, (1 − λ)[1 − si(t )],

(3)

where δφ = √
2D0N (0, 1) is a Gaussian white noise term and

the rightmost column indicates the transition probabilities.
The crucial new feature of the present model is the cou-

pling between an internal state, governed by the SIS process,
and motility. To illustrate the interaction mechanism, depicted
in Fig. 1, let us consider agents as mimicking fish. At time
t , an agent i, located in ri, is infected (e.g., aware of the
presence of food) and has its orientation θi directed along its
internal phase φi, pointing toward its goal (the food source).
At time t + 1, with probability λ, agent i transmits this in-
formation to a neighbor j, φ j (t + 1) = φi(t ), which in turn
adjusts its orientation θ j . At the same time, agent i may forget
the information with small probability μ, its internal phase
decaying to a random state. This change can be triggered
by environmental factors, and encodes the fact that, after
some time, the information might not be relevant anymore.
Depending on the effective infection rate λ/μ, the information
may spread further, or die out. The feedback mechanism is
crucial here: the more agents share the same phase φ, the
more move along the same direction and the more effective
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FIG. 2. (a) Polar order parameter 〈Z〉 as a function of the effective infection ratio λ/μ for several values of v, as obtained from a high-λ
(continuous line) and a low-λ quench (dashed line). The homogeneous mixing (HM) curve has been obtained by changing randomly the
position of all agents at each time step. (b) Epidemic thresholds λ−

c (red) and λ+
c (black) corresponding to the onset of flocking obtained from

a high-λ and a low-λ quench, respectively. One can distinguish the endemic flocking (EF), metastable (M), and disordered (D) regions. The
four symbols correspond to the four snapshots shown in Fig. 3.

the information spreads. Our model thus mimics the behavior
of groups of animals [27], or crowds of people [43], and is
responsible for the propagation of information concerning an
external stimuli, for instance the presence of a threat [3] or the
location of an exit in panic situations [7]. Agents receiving the
stimuli first, for example the animals close to the food source,
adjust their direction of motion towards it. Neighboring agents
then adjust their direction of motion accordingly and the
information about the food location spreads like an epidemic
process.

A configuration of the system is given by 	(t ) =
{r(t ), θ (t ), φ(t ), s(t )}i, while its control parameters are the
self-propulsion velocity v; the average density ρ0 = N/L2;
the rates λ, μ, and H ; the diffusivity D0; and the interaction
range R. We fix μ = 0.1, ρ0 = 10, D0 = 5 × 10−4, and R =
1, while systematically exploring the behavior of the model
by varying λ, H , and v for systems of N = 103 up to 3 × 104

agents (see [44] for details).
We explore the steady states of the model as a function

of the polarization Z (t ) ≡ N−1| ∑i eiθi (t )| and the prevalence
n(t ) ≡ N−1 ∑

i si(t ) . As λ increases, the system undergoes a
phase transition from a disordered state, where most agents
are susceptible and move randomly (see [44] for the dynamics
of the system in the diluite limit), to an endemic flocking
ordered state, characterized by a macroscopic number of
agents moving coherently along a preferred direction and a
finite fraction of infected agents, i.e., Z > 0 and n > 0.

Therefore, the feedback between the epidemic process
and the motility of the agents drives flocking, as extensively
studied in Vicsek-like models [45,46]. The latter (and other
models of flocking [47,48]), consider agents which align their
velocity with their neighbors. Here, it is the feedback between
the SIS process and motility which eventually leads to col-
lective motion, once a fraction of the system is “infected,”
rather than an explicit velocity alignment, which is absent in
our model.

Figure 2(a) shows the polarization 〈Z〉 as a function of
λ/μ, for different values of v at fixed H = 0.01 (where 〈∗〉
denotes an average over steady states). Such data was obtained

from two different protocols: (i) starting from a disordered
configuration and letting the system relax towards its steady
state, i.e., a high-λ quench, and (ii) starting from an ordered
state, i.e., a low-λ quench. Starting from a disordered state and
doing a high-λ quench, the order parameter jumps from 〈Z〉 ≈
0 to 〈Z〉 ≈ 1 at a given value of λ = λ+

c , which sets the limit
of stability of the disordered state. Conversely, when letting
the system relax after a low-λ quench, the order parameter
jumps from 〈Z〉 � 0.7 to 〈Z〉 ≈ 0 at λ = λ−

c , indicating the
limit of stability of the ordered state. Typically, λ−

c < λ+
c ,

a behavior is consistent with a discontinuous, or first-order,
phase transition: hysteresis and abrupt changes of the order
parameter around the transition. Following the first-order
transition picture, the two instability lines λ±

c , or spinodals,
define a metastable region in the λ-v plane, shown in Fig. 2(b).

Moreover, as shown in Fig. 2(b), the metastability region
between λ−

c and λ+
c shrinks as v increases, and vanishes for

v � 0.1, consistently with a continuous transition. (Analog
behavior is found for the prevalence 〈n〉; see [44]). Indeed,
at large v the system approaches the limit of homogeneous
mixing [36], in which the positions of the agents are randomly
updated independently of the SIS dynamics, thus breaking the
feedback between motility and the SIS process. The epidemic
threshold in this limit is λHM

c /μ = (πR2ρ)−1 (≈0.0318 in our
case). Our model at finite v shows a much lower threshold
over a broad range of parameters, demonstrating that the
feedback between motility and contagion triggers flocking,
which is able to enhance social contagion. For large veloc-
ities, instead, the epidemic threshold approaches λHM

c (the
threshold reported is slightly larger than λHM

c because of the
numerical accuracy of its identification).

Note that previous models in which the agents mobility is
decoupled from the epidemic dynamics have reported larger
epidemic thresholds with respect to the homogeneous mix-
ing case [36], or nonmonotonous behavior of the threshold
with respect to the agents’ velocity [37]. In the absence of
feedback, the agents have to move fast enough to allow for
an endemic state to emerge. Thus, the epidemic threshold
increases if the velocity of the agents is reduced [34]. In
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FIG. 3. Density distribution P(ρ ) for a system with different v but fixed (λ − λ+
c )/λ+

c = 0.10 and H = 0.01 (a), together with
representative snapshots at v = 0.01 (b), 0.0562 (c), 0.1 (d), and 0.2 (e). These snapshots correspond to the four points marked by symbols in
the λ − v phase space, in Fig. 2(b). Each agent is represented by a color corresponding to its orientation θi. The location of the snapshots in
the (λ, v) plane is indicated in Fig. 2(b).

contrast, in the presence of feedback as in our case, decreas-
ing the velocity reduces the epidemic threshold. Complex,
nonmonotonic behavior of the synchronization threshold as
a function of the velocity has also been found in systems of
mobile robots [49,50]. It is worth noticing that the static limit
of our model is singular and our results cannot be extrapolated
to v → 0 (see [51] for a precise study of this limit for the
Vicsek model).

In the low velocity regime (v � 0.1), neighboring agents
interact with each other for long periods of time, favoring
contagion at short distances and leading to coordinated mo-
tion: we thus call it the flocking-enhanced contagion regime.
Flocking increases the interaction time as compared to agents
moving independently of their epidemic state, thus fostering
contagion. This positive feedback loop is at the origin of the
reduction of the epidemic threshold and the enhancement of
flocking, due to the presence of dense swarms (clusters of
aligned particles) in a gaseous (incoherent) background. In
Fig. 3, we show typical snapshots obtained for different veloc-
ities at a fixed distance to the transition (λ − λ+

c )/λ+
c = 0.10,

together with the corresponding local density distributions
P(ρ). As shown in Fig. 3, the slower the particles are, the
denser the swarms, the more dilute is the surrounding medium
and the more efficient is the local contagion. This is evidenced
by the long tails of P(ρ), which are pushed to higher densities
as v decreases, while the peak of P(ρ) at small ρ approaches
zero and becomes sharper. In the limit of large velocities, the
spatial structure of the system is lost, the motion of the agents
and the SIS process decouple, and thus local structures are no
longer possible. As illustrated in Fig. 3(e), for v = 0.2, P(ρ)
is Gaussian and the system does not feature any swarm but it
is in a homogeneous flocking state. Interestingly, P(ρ) shows
a crossover from Gaussian behavior, to a power-law-like
one, which develops as soon as swarms appear. These struc-
tures exhibit large density fluctuations (they are constantly

reshaping) and are responsible for the algebraiclike tails of
P(ρ) in the flocking-enhanced contagion regime.

The observation of swarms, hysteresis, and order parameter
jumps in our model is reminiscent of the Vicsek model phe-
nomenology [48], although in a different parameter space and
driven by an SIS process. For systems with periodic boundary
conditions, the discontinuous character of the flocking tran-
sition in the Vicsek model is understood as arising from the
microphase separation of the system into band-shaped swarms
[52–54]. Structure formation in our model is in contrast with
this scenario. The absence of hysteresis and the smoothing
of the polarization curves for large velocities suggests the
transition changes from discontinuous to continuous for v �
0.1. Indeed, at low velocities, the system displays swarms,
with a shape that differs from bands (typical in Vicsek-
like models), while at larger velocities the ordered phase is
homogeneous. Such change in morphology shows that the
ordering mechanism in the fast and slow velocity regimes is
qualitatively different. It is worth noting that, in the context
of Vicsek-like models, the amplitude of the self-propulsion
velocity v is not expected to shift the onset of flocking, or
the nature of the transition (as long as v > 0), but only the
growth rate of the associated long-wavelength instability [55].
However, in our model, the value of v affects the location of
the transition and, moreover, its nature (and thus the structure
of the ordered state, as shown in Fig. 3).

Due to the absence of excluded volume effects in our
model, the local density of the swarms is not bounded. Obvi-
ously, steric interactions are likely to play an important role in
dense situations such as robot swarms like in [2,16], or crowds
of people [6,7]. The pointlike description taken here is suitable
for describing dilute systems, such as the Vicsek model and its
numerous extensions [56]. It is worth stressing that, here, our
aim is to introduce a feedback between the agents mobility
and information spreading in the simplest possible way, in

032056-4



FLOCKING-ENHANCED SOCIAL CONTAGION PHYSICAL REVIEW RESEARCH 2, 032056(R) (2020)

FIG. 4. (a) Contour lines associated to the limit of stability of the disordered state λ+
c in the (v-H ) plane (in log-log scale). The

homogeneous mixing limit λHM
c is plotted as a continuous line. (b) Rescaled epidemic threshold λc/λHM as a function of the scaling parameter

v/RH , according to Eq. (4). A logarithmic scaling function is plotted as a dashed line.

order to be able to disentangle the role of such feedback
from more complex mechanisms rooted on many-particle
collisions. Indeed, collisions introduce a complex coupling
between density and orientation fluctuations at short length
scales which considerably affects the structure of the system,
as the literature on systems of aligning self-propelled particles
with excluded volume interactions teaches us [57–59].

The epidemic threshold also depends on the strength of the
phase-orientation coupling: the larger H , the faster the agents
adjust θi with their phase φi, promoting the contagion. The
impact of both, the phase-orientation coupling H and v, on
the emergence of flocking, is summarized in Fig. 4(a).

The curve corresponding to the homogeneous mixing
threshold λHM

c is highlighted as a solid black line. The critical
threshold λ+

c decreases as v decreases and H increases, with
a minimum reached at large H and low v. Interestingly, H
and v play an opposite role as for the onset of flocking. This
can be understood with the following simple argument. The
typical time during which an infected agent (which moves
ballistically, its self-propulsion direction being aligned with
its internal phase) interacts with its neighborhood is tI ∝ R/v.
For the onset of flocking to emerge, the interaction time has
to be longer than the relaxation time H−1 of the orientations.
Once the orientation of newly infected agents has been locked,
they move together and are able to collect more susceptible
agents into the growing flock. As agents move faster, their
interaction time is reduced, but this can be counterbalanced by
an increase of H . The comparison between these timescales
suggests that, in the flocking-enhanced contagion regime, the
epidemic threshold exhibits the following scaling:

λc = f
[ v

RH

]
. (4)

To put this hypothesis to the test, in Fig. 4(b) we plot λc/λHM

as a function of v/RH , showing that Eq. (4) holds at least
for two orders of magnitude. Note that for large values of
v/RH � 10 we reach the homogeneous mixing limit (with
λc slightly larger than λHM), while for v/RH � 10−1 we
approach the static limit, which is singular. Interestingly, the
scaling function f (v/RH ) seems to be compatible with a
logarithm [dashed line in Fig. 4(b)], indicating a weak growth

of the epidemic threshold with v. Note, however, that in the
flocking-enhanced regime the epidemic threshold is reduced
up to 25% with respect to the homogeneous mixing limit.

To sum up, we showed how a feedback mechanism be-
tween motility and information spreading, expected to be at
play in many empirical populations of mobile agents, can
trigger flocking and enhance social contagion. To illustrate
this framework, we proposed a reference model built on the
basis of paradigmatic models of active matter and epidemic
spreading, providing a thorough characterization of its large-
scale behavior. The agent’s velocity v crucially controls the
epidemic threshold and the nature of the (endemic flocking)
phase transition: as v increases, the critical point increases
and its nature changes from discontinuous to continuous.
The ordering mechanism for fast and slow agents (as com-
pared with the intrinsic contagion timescale) is qualitatively
different and allows one to control the formation of rich
spatiotemporal patterns, or swarms. Our results provide a con-
sistent picture about the role played by the main parameters
of the model, the velocity v and the strength of the phase-
orientation coupling H , which can be rescaled in a single
parameter.

The present work unveils the effects of a positive feedback
between self-propulsion and information spreading in pop-
ulations of mobile agents. Such feedback is responsible for
the enhancement of information spreading and the emergence
of rich spatiotemporal patterns. As such, this study bridges
together soft active matter physics and the modeling of social
dynamics, pushing forward the knowledge boundaries of both
fields. The proposed framework shed light upon a feedback
mechanism driving the self-organization of mobile agents in
complex systems, such as animal groups, crowds of people,
or robot swarms. In future work, we aim at comparing the
model’s behavior with empirical data collected in real systems
of mobile agents subjected to an external perturbation, such as
animal groups facing a predator attack [40,60]. Overall, our
results shed light upon the effects of the interplay between
information spreading and motility, and may thus constitute
a guideline to design strategies for populations of artificial
mobile agents (such as centimeter-sized robots [2,16]) with
targeted functionalities.
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