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Abstract—Mobile devices and wearable sensors are making
available records of human mobility and proximity with un-
precedented levels of detail. Here we focus on close-range human
proximity networks measured by means of wireless wearable
sensors in a variety of real-world environments. We show that
simple dynamical processes computed over the time-varying
proximity networks can uncover important features of the in-
teraction patterns that go beyond standard statistical indicators
of heterogeneity and burstiness, and can tell apart datasets
that would otherwise look statistically similar. We show that,
due to the intrinsic temporal heterogeneity of human dynamics,
the characterization of spreading processes over time-varying
networks of human contact may benefit from abandoning the
notion of wall-clock time in favor of a node-specific notion of
time based on the contact activity of individual nodes.

I. INTRODUCTION

The ever increasing adoption of mobile technologies and
ubiquitous services allows to sense human behavior at un-
precedented levels of details and scale. Digital traces from
socio-technical systems have been used to study many specific
aspects of human behavior, such as geographic mobility [1]–
[7], phone communications [8], email exchange or instant
messaging [9]–[14], and even human mobility and proximity
in indoor environments [15]–[19]. Recently, inexpensive wear-
able sensors and short-range radio communication between
personal devices [20]–[23] are providing new insights on the
dynamics of close-range human proximity and face-to-face
interaction patterns in indoor environments. This knowledge
is important for a variety of pervasive applications [24], and
brings forth novel challenges for the design and modeling
of efficient protocols for ad-hoc communications and delay-
tolerant networks [25]–[28]. A statistical characterization of
high-resolution mobility traces is of great importance to un-
derstand the limits of such approaches [29], and a rich set
of discriminative statistical features is critical for modeling
realistic scenarios, as simulation is widely used to discover
how mobile applications respond to heterogeneity in user
activity [30].

Despite the several different types of temporal heterogeneity
exhibited by human activity and contact patterns, to date most
of the literature has focused on simple statistical features such
as the distribution of inter-contact times between nodes, which
is regarded as one of the key metrics in analyzing forwarding

algorithms. Here we make a step beyond the characterization
of empirical data by means of inter-contact times, and focus
on designing statistical indicators that characterize the overall
temporal structure of a time-varying contact network. We show
that these statistical indicators, contrary to the inter-contact
time distributions, allow us to tell apart datasets that would
otherwise look statistically similar.

The paper is organized as follows. Section II provides
some details on the measurement technique and describes the
datasets we used for the present study. Section III characterizes
the temporal properties of the proximity networks collected
in different environments. In Section IV we discuss a simple
flooding process that can be used as a probe to expose
more subtle properties of the empirical temporal networks.
In Section V we discuss a node-specific notion of time based
on activity metrics, that we call “activity clocks”. It allows
us to expose temporal signatures that are robust with respect
to the temporal heterogeneity of individual datasets and to
the burstiness of human interactions. Finally, in Section VI
we compare the delivery delay distributions of an epidemic
process taking place of the empirical contact networks.

II. DATASETS

Here we use time-resolved data on face-to-face human
proximity collected by the SocioPatterns collaboration1 in
three real-world settings, two conference gatherings and a
school. The collected data describe the room-level positions
and face-to-face interactions of an entire community of a few
hundred individuals during several days.

Participating individuals were asked to wear badges that
contain active Radio Frequency Identification (RFID) devices
(Fig. 1) that engage in bi-directional radio communication.
We use the exchange of radio packets as a proxy for the face-
to-face proximity of participants, as illustrated in Fig. 2 and
reported in Refs. [15], [31]. The spatial range for proximity
detection can be tuned by varying the power of the proximity-
sensing packets, from several meters down to face-to-face
proximity. At the highest spatial resolution, the exchange of
radio packets is only possible when two persons are at close
range (∼ 1-1.5m) and facing each other, since the human

1http://www.sociopatterns.org
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deployment # participants # days Ref.
HT09 conference 112 3 [32], [33]
SFHH congress 415 2 [34]
school 251 2 [35], [36]

TABLE I
DATASETS USED IN THE PRESENT STUDY. FOR EACH DATASET, WE

PROVIDE A REFERENCE TO A PAPER DISCUSSING IT AS WELL AS POINTERS
TO DOWNLOAD IT (WHEN PUBLICLY AVAILABLE).

body acts as a RF shield at the carrier frequency used for
communication. The operating parameters of the devices were
chosen so that face-to-face proximity relations can be assessed
with a probability in excess of 99 % over an interval of 20
seconds, which is a fine enough temporal scale to resolve
human mobility and proximity at social gatherings.

The sensed proximity relations (or contacts, as we will
refer to in the following) between individuals are relayed by
radio receivers (RFID readers) to a centralized data collection
system for post-processing, storage and subsequent analysis.
Once a contact has been detected, it is considered ongoing
as long as the involved devices continue to exchange at least
one radio packet for every successive interval of 20 seconds.
Conversely, a contact is considered terminated if an interval
of 20 seconds elapses with no packet exchange.

Fig. 1. Wearable proximity sensor used by the SocioPatterns collaboration
to mine close-range encounters and face-to-face proximity in a variety of
real-world settings.

The proximity-sensing platform described above was de-
ployed in several different settings, yielding data on time-
resolved human proximity in conferences, hospitals, schools
and museums. The specific datasets we use for the present
study are described in Table I. The first dataset we consider
was collected at the 20th ACM Hypertext 2009 conference
(HT09) in Turin, Italy, from June 29th to July 1st 2009 [32],
and is available to the public (see Ref. [33]). The second
dataset was gathered at the XXe Congrès de la Société
Française d’Hygiène Hospitalière (SFHH) in Nice, France, on
June 4th and 5th, 2009 [34]. The third dataset was obtained in a
French primary school and describes the face-to-face contacts
of children and teachers over two days of October 2010 [35].

1

2

1

2

Fig. 2. Proximity sensing strategy. The wearable sensors engage in bidi-
rectional ultra-low power radio communication (1). Packet exchange is only
possible when two sensors are sufficiently close in space. At the lowest power
used to sense proximity, packet exchange is only possible when the individuals
wearing them are at close range (1-1.5m) and face each other (bottom panels).
The sensed proximity relations are periodically relayed at higher power (2)
to a centralized data collection system.

III. TEMPORAL PROPERTIES OF HUMAN PROXIMITY

The data we use provide for each pair of participants the
detailed sequence of their contacts, with beginning and ending
times. It is therefore possible to represent these data as time-
varying proximity networks: nodes represent individuals and
links represent face-to-face contacts between the individuals
they connect.

To better understand the properties of dynamical processes
that take place over human proximity networks, it is important
to characterize the temporal properties of contact behavior. To
this end, the customary metrics used in the literature are the
distribution of contact durations and the distribution of inter-
contact times, i.e., of the time intervals between two successive
contacts involving the same pair of nodes. These metrics
are used to evaluate protocols using both empirical [26] and
synthetic data [37]. It is known that inter-contact time distri-
butions are broad [25], [29], with long-time tails controlled
by circadian rhythms. Chaintreau et al. [26] report evidence
suggesting that the (complementary) cumulative distribution of
inter-contact times obeys a power-law. They investigate the vi-
ability and performance of ad-hoc communication algorithms,
and show that, for any forwarding scheme, the mean packet
delay is infinite when the power-law exponent of the inter-
contact time cumulative distribution is smaller than or equal
to 1. This is in sharp contrast with previous results obtained
under the hypothesis of exponentially decaying inter-contact
time distributions [19]. Furthermore, as exponential decay is
implied by most mobility models, the authors point to the need
for new models that yield power-law distributions.

262



101 102 103 104 105 106

Inter-contact time (seconds)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

HT09

SFHH

School

Fig. 3. Log-binned probability distribution of inter-contact times for the
datasets under study.

Figure 3 reports the distributions of inter-contact times
for the three datasets we consider. As expected, the three
distributions have a broad shape which is compatible with a
power-law-like behavior. Strikingly, the distributions look very
similar: the distributions of inter-contact times do not represent
a discriminating feature that can distinguish between the
datasets under study. The robustness observed for inter-contact
time distributions is consistent with a similar robustness across
contexts observed for the distribution of contact durations [15].
Therefore, regardless of the social, spatial and demographic
differences of the contexts in which the datasets were gathered,
face-to-face contact patterns appear to obey the same bursty
behavior.

IV. EPIDEMIC PROCESSES AS DYNAMICAL PROBES

As shown in the previous section, standard statistical ob-
servables used to describe human contacts fail to expose
differences between the datasets under study. In order to
achieve a better discriminatory capability, it is thus necessary
to consider additional, more complex properties. To this aim,
we propose to use a dynamical process, more precisely an
epidemic process, as a probe for the temporal structure of
the time-varying contact network. The dynamics of such a
process, when simulated over the empirical contact sequence,
may provide a way to uncover differences between the datasets
that are not accessible by the direct analysis of the distributions
of contact and inter-contact times.

Epidemic routing protocols have been commonly used in the
literature to model the propagation of messages over ad-hoc
networks and to study the spread of software viruses to mobile
devices [38]. The discrete Susceptible/Infected (SI) process,
as a simple model for the propagation of disease or infor-
mation, has been investigated over time-varying interaction
networks [39], and it was also used in Ref. [28] to investigate
the topological and temporal properties of human proximity
networks from wearable sensors. When simulating an SI
process, nodes can be in either of two states, susceptible (S) or

infected (I). Susceptible nodes have not caught the “disease”
(or have not received the information), while infected ones
carry the disease (or have received the information) and can
propagate it to other nodes. The epidemic process is simulated
by assuming that any entity that could be subject to spreading
over the proximity network can be modeled as a message. In
order to obtain generic results, we use a theoretical scenario
where nodes have an infinite amount of resources and message
exchanging delays are not considered.

We focus on the simplest, deterministic case in which each
contact between a susceptible node and an infected one results
in a transmission event (S + I → 2I). In order to take into
account the strong temporal and topological heterogeneity of
empirical networks, we compute many different stochastic
realizations of the SI process. The initial conditions correspond
to a population of susceptible nodes with a single “seed”
node which is infected at a given initial time. Each stochastic
realization of the process involves the choice of a different
initial time (over the entire empirical timeline) and of the
initial “seed” node, chosen in turn among all nodes that are
present at the initial time. The SI process is then simulated
and the infection spreads deterministically over the network
through the contacts between I and S nodes.

Here we consider two cases for the simulation of the SI
process. In the first case, we choose two different starting
times of the spreading t0 = 35 hours and t0 = 45 hours (for
the HT09 dataset), respectively when the contact density is low
and when the contact density is high. This allows to understand
how the global temporal patterns of the contacts between
nodes impacts the arrival times. In the second case, we
choose 100 initial times randomly distributed in the experiment
timeline and we average the measures characterizing the SI
process (described below) on all these runs. In both cases, for
each starting time, we perform as many realizations of the SI
process as the number of nodes, choosing a different “seed”
node for each realization. We run each simulation until no
node can become infected anymore.

Due to the deterministic nature of the process, the main
relevant quantity to characterize the spreading dynamics is
not the fraction of infected nodes over time (which quickly ap-
proaches 1, in general) but rather the time differences between
the message injection and message arrival at all reachable
nodes, i.e., the delivery delay of the message (infection).
Therefore, we consider the average delivery delay of the
message (or infection) at the various nodes, together with its
standard deviation. Table II shows that, notwithstanding the
high similarity of the inter-contact time distributions reported
above, markedly different average delivery delays are observed
across the datasets. Moreover, we remark that the standard
deviations are of the same magnitude as the average values
(or larger), pointing to strong heterogeneities in the epidemic
dynamics that cannot be properly accounted for by simply
computing the average arrival delays.
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deployment avg. delivery delay standard deviation
HT09 6.6h 8.5h
SFHH 5.4h 7.3h
school 3.5h 5.7h

TABLE II
DELIVERY DELAYS: AVERAGE AND STANDARD DEVIATION.

V. ACTIVITY CLOCKS

The most straightforward definition of the delivery delay,
introduced above, is the elapsed time between the message
(infection) injection and the delivery time at each node.
Figure 4(a) shows the distribution of delivery delays for the
conference HT09 dataset, for two different starting times of
the SI process. The first starting time is chosen during a period
of low contact density, while the second falls in a period
of high contact density. The figure illustrates that different
starting times can lead to dramatically different delivery delay
distributions.

In fact, we observe that the distributions of the delivery
delays, defined in terms of wall-clock time, do not exhibit any
clear pattern and are extremely sensitive to details such as the
initial time of the process. Such strong heterogeneities make
it impossible to model the empirical arrival delay distributions
by means of simple statistical models, and also impair any
comparison across different datasets.

The fact that the distribution of delivery delays strongly
depends on the temporal heterogeneity of the contact network
calls for alternate definitions of “time” that are intrinsically
more robust with respect to such heterogeneities. We therefore
turn to a node-specific definition of time [28]: we imagine that
each node has its own clock, and that this clock only runs
when the node is involved in one or more contacts. Since the
clock measures the amount of time a given node has spent
in interaction with other nodes, we refer to this clock as an
“activity clock”. All activity clocks are set to zero at the
beginning of the spreading process, when the initial seed is
infected. In other words, the activity clock of a node measures
the amount of time during which that node could have received
a message propagated along contacts, i.e., it ignores the time
intervals during which the node was isolated from the rest of
the network. For each node i we define the “arrival time” as
the value of its activity clock when it becomes infected, i.e.,
it is the elapsed time node i has spent in contact with others
since the infection time of the seed.

The distributions of message delivery delays, measured in
terms of elapsed contact time are shown in Fig. 4(b) for
the HT09 dataset. Contrary to the case of wall-clock time
(Fig. 4(a)) these distributions exhibit a well-defined pattern
that is robust with respect to changes in the starting time of
the process and is amenable to comparison across different
datasets.

VI. COMPARING DIFFERENT CONTACT NETWORKS

On inspecting the distributions of elapsed contact times
obtained by simulating the SI process over the different empir-
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Fig. 4. Log-binned probability distributions of message delivery delays.
Panel (a): the delay is defined as the time difference between the delivery
time ti of the message at node i and the starting time t0 of the spreading
process. Panel (b): each node carries its own clock that ticks only when it
is in contact with other nodes, i.e., we only count the time intervals during
which messages could be exchanged.

ical contact networks, we notice that the distributions for the
two conferences (SFHH and HT09) approximately collapse, as
shown in Fig. 5. This occurs despite the differences between
the HT09 and SFHH cases: at the HT09 conference, a tightly
knit community shared a small number of social spaces for
several days and met according to a predefined schedule.
Conversely, the SFHH case was a large-scale conference where
many people did not know each other and very different social
spaces coexisted, such as plenary rooms and exhibition spaces.
In the case of the primary school, even though the inter-
contact times distribution is similar to those observed for the
conferences (see Section III), the distribution of elapsed times
shown in Fig. 5 is actually very different from the conference
cases. To quantify this statement, we compute the pairwise
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HT09 SFHH school
HT09 0.0 0.026 0.675
SFHH 0.061 0.0 0.529
school 1.455 0.765 0.0

TABLE III
KULLBLACK-LEIBLER DIVERGENCES BETWEEN THE DIFFERENT

DELIVERY DELAY DISTRIBUTIONS OBTAINED BY USING ACTIVITY-BASED
CLOCKS.

Kullback-Leibler divergences [40] of the three distributions,
defined as:

DIVKL(Di‖Dj) =
∑
t

Di(t) log
Di(t)

Dj(t)
, (1)

where Di(t) and Dj(t) are the distributions of elapsed contact
times we want to compare, i and j indicate the SFHH, HT09,
or school case, and t is the elapsed contact time. Since contact
relations are assessed over consecutive 20-second intervals, the
possible values of t are the discrete multiples of 20 seconds.
Table III reports the computed Kullback-Leibler divergences,
showing that the distributions for SFHH and HT09 are very
close to one another, and that they both differ from the school
case.
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Fig. 5. Log-binned distributions of the elapsed contact time in a SI process
simulated on the SFHH, HT09, and school datasets. Each distribution has
been calculated by aggregating the elapsed contact times on several runs of
the SI process (several starting times, several roots of infection).

VII. DISCUSSION

We used high-resolution time-resolved data on human prox-
imity from wearable sensors to study some properties of
time-varying contact networks that bear direct relevance to
spreading processes and opportunistic routing.

We showed that empirical contacts measured in very dif-
ferent contexts exhibit similar statistical signatures in terms
of customary observables such as the distributions of contact
durations or of inter-contact times. These measures, while well
understood and studied in the literature, are therefore not able
to discriminate between datasets collected in different environ-
ments. On the one hand, this is a positive aspect for modeling
purposes, as it means that any process that is known to depend
only on such distributions can be assumed to behave similarly
in all of the observed contexts. On the other hand, the lack of

discriminative power of the distributions of contact durations
and of inter-contact times points to the fact that they may
be capturing robust but somehow superficial properties of the
contact networks. This is not a surprise, as the characterization
of the structure of time-varying networks, and even more so
of the behavior of dynamical processes over them, lies at
the frontier of our knowledge on complex networks. Here we
provide a first step in the direction of devising novel statistical
indicators that can tell apart environments that are known to
have strong differences in terms of contact behaviors.

We use an epidemic-like process, in particular a susceptible-
infected process, not so much to describe a routing protocol
or a flooding process, but rather as a dynamical probe for
the topological and temporal structure of empirical contact
patterns. However, because of the strong heterogeneity due
to circadian rhythm, bursty human dynamics, and coordinated
human activity, extracting a clear signal that can summarize
the behavior of a dynamical process over a time-varying
network is a challenge in its own merit. We tackle this problem
by shifting from wall-clock time to a distributed notion of time
which is node-specific and depends on the (contact) activity
of individuals nodes. We show that the delay distribution of
delivery times for the epidemic process, once measured using
this node-specific notion of time, displays simple patterns that
are robust with respect to the starting time of the epidemic
process, the identity of the seed node, and more. Remarkably,
the distribution of delivery delays (in terms of activity clocks)
for temporal proximity networks in a school is very different
from the ones obtained for contacts gathered in conference
settings (which turn out to be similar to one another), despite
the overall strong similarity of the distributions of inter-contact
times observed in the three cases.

Thus, the combination of a simple epidemic process and
of activity-based clocks to measure arrival times yields an
indicator that can successfully act as a “fingerprint” for the
topological and temporal structures of the time-varying prox-
imity networks, allowing us to tell apart cases (the school on
the one hand, and the two conferences on the other hand)
that we know are radically different in terms of behavioral
patterns and interaction rhythms. The differences we observe
may be due to a complex interplay of several factors at play
in the school case: the community structure of the contact
network, the correlated activity patterns induced by the school
schedule, the synchronized activity of contacts across classes,
and more. Relating these factors to the actual form of the
observed distributions of elapsed contact times is a problem
that goes beyond the scope of the present work, but it crucially
hinges on the ability to have statistical indicators that reach
beyond what is customarily used and capture more and more
of the real-world complexity of human interaction patterns.
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exponential decay of inter contact times between mobile devices,” in
Proceedings of the 13th annual ACM international conference on Mobile
computing and networking, ser. MobiCom ’07. New York, NY, USA:
ACM, 2007, pp. 183–194.

[30] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from
real user traces,” in Proceedings of the 25th Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM).
Washington, DC, USA: IEEE Computer Society, April 2006, pp. 1–13.

[31] W. V. den Broeck, C. Cattuto, A. Barrat, M. Szomsor, G. Correndo,
and H. Alani, “The live social semantics application: a platform for
integrating face-to-face presence with on-line social networking,” in
Proceedings of the 8th Annual IEEE International Conference on
Pervasive Computing and Communications, Mannheim, Germany, 2010,
pp. 226–231.
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