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Abstract

In this paper, we study the problem of discovering a timeline of events in a temporal net-
work. We model events as dense subgraphs that occur within intervals of network activity.
We formulate the event discovery task as an optimization problem, where we search for a
partition of the network timeline into k& non-overlapping intervals, such that the intervals
span subgraphs with maximum total density. The output is a sequence of dense subgraphs
along with corresponding time intervals, capturing the most interesting events during the net-
work lifetime. A naive solution to our optimization problem has polynomial but prohibitively
high running time. We adapt existing recent work on dynamic densest subgraph discovery
and approximate dynamic programming to design a fast approximation algorithm. Next, to
ensure richer structure, we adjust the problem formulation to encourage coverage of a larger
set of nodes. This problem is NP-hard; however, we show that on static graphs a simple
greedy algorithm leads to approximate solution due to submodularity. We extend this greedy
approach for temporal networks, but we lose the approximation guarantee in the process.
Finally, we demonstrate empirically that our algorithms recover solutions with good quality.
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1 Introduction

Real-world networks are highly dynamic in nature, with new relations (edges) being con-
tinuously established among entities (nodes) and old relations being broken. Analyzing the
temporal dimension of networks can provide valuable insights about their structure and func-
tion; for instance, it can reveal temporal patterns, concept drift, periodicity, temporal events,
etc. In this paper, we focus on the problem of finding dense subgraphs, a fundamental graph-
mining primitive. Applications include community detection in social networks [16,18,48],
gene expression and drug interaction analysis in bioinformatics [22,45], graph compression
and summarization [21,30,32], spam and security threat detection [13,26], and more.

When working with temporal networks, one has first to define how to deal with the
temporal dimension, i.e., how to identify which are the temporal intervals in which the dense
structures should be sought. Instead of defining those intervals a priori, in this paper we
study the problem of automatically identifying the intervals that provide the most interesting
structures. We consider a subgraph interesting if it boasts high density. As a result, we are able
to discover a sequence of dense subgraphs in the temporal network, capturing the evolution of
interesting events that occur during the network lifetime. As a concrete example, consider the
problem of story identification in online social media [3,8]: The main goal is to automatically
discover emerging stories by finding dense subgraphs induced by some entities, such as twitter
hashtags, co-occurring in a social media stream.

In our case, we are also interested in finding different stories over the network lifetime. For
instance, as one story wanes and another one emerges, one dense subgraph among entities
dissipates and another one appears. Thus, by segmenting the timeline of the temporal network
into intervals, and identifying dense subgraphs in each interval, we can capture the evolution
and progression of the main stories over time. As another example, consider a collaboration
network, where a sequence of dense subgraphs in the network can reveal information about
the main trends and topics over time, along with the corresponding time intervals.

Challenges and contributions The problem of finding the k densest subgraphs in a static
graph has been considered in the literature from different perspectives. One natural idea is to
iteratively (and greedily) find and remove the densest subgraphs [49], which unfortunately
does not provide any theoretical guarantee. More recent works study the problem of finding &
densest graphs with limited overlap, while they provide theoretical guarantees in some cases
of interest [7,24]. However, these approaches do not generalize to temporal networks.

For temporal networks, to our knowledge, there are only few papers that consider the
task of finding temporally coherent densest subgraphs. The most similar to our work aims at
finding a heavy subgraph present in all, or k, snapshots [46]. Another related work focuses on
finding a dense subgraph covered by k scattered intervals in a temporal network [44]. Both
methods, however, focus on finding a single densest subgraph.

In this paper, instead, we aim at producing a partition of the temporal network that (i)
it captures dense structures in the network; (i7) it exhibits temporal cohesion; and (iii) it
is amenable to direct inspection and temporal interpretation. To accomplish our objective,
we formulate the problem of k- DENSEST- EPISODES (Sect. 2), which requires to find a par-
tition of the temporal domain into k non-overlapping intervals, such that the intervals span
subgraphs with maximum total density. The output is a sequence of dense subgraphs along
with corresponding time intervals, capturing the most interesting events during the network
lifetime.

For example, consider a simple temporal network shown in Fig. 1. It consists of five nodes
{A, B, C, D, E}, which interact at six different time stamps (1, 2,4, 5,7, 8, 10). Our goal
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Fig.1 Anexample temporal network with five nodes and seven time stamps. The solid lines depict interactions
that occur at a given time stamp, while the dotted lines depict interactions that occur at different time stamps.
The highlighted time intervals, nodes, and interactions depict events discovered in the network

is to discover time intervals that provide the densest subgraphs. One interesting interval is
I = [7, 10], in that four different interactions {(A, C), (C, D), (C, E), (D, E)} occur during
I, with three of them constructing a prominently dense subgraph—a clique {C, D, E}. Thus,
a pair (interval, a subgraph covered by the interval) ([7, 10], {(C, D), (C, E), (D, E)}) sum-
marizes an interesting episode in the history of interactions of this toy network. Another
interesting interval is [1, 4] as it contains a clique {B, C, D}. Thus, our network par-
tition would be (([1, 4], {(B, C), (B, D), (D, E)}), ([7,10],{(C, D), (C, E), (D, E)})).
Note that interaction (A, C) is completely ignored as it does not contribute to any dense
subgraph.

A naive solution to this problem has polynomial but prohibitively high running time. Thus,
we adapt existing recent work on dynamic densest subgraph discovery [19] and approximate
dynamic programming [47] to design a fast approximation algorithm (Sect. 3).

Next (Sect. 4), we shift our attention to encouraging coverage of a larger set of nodes, so
as to produce richer and more interesting structures. The resulting new problem formulation
turns out to be NP-hard. However, on static graphs a simple greedy algorithm leads to
approximate solution due to the submodularity of the objective function. Following this
observation, we extend this greedy approach for the case of temporal networks. Despite the
fact that the approximation guarantee does not carry on when generalizing to the temporal
case, our experimental evaluation indicates that the method produces solutions of very high
quality.

Experiments on synthetic and real-world datasets (Sect. 5) and a case study on Twitter
data (Sect. 6) confirm that our methods are efficient and produce meaningful and high-quality
results.

2 Problem formulation

We are given a temporal graph G = (V, T, E), where V denotes the set of nodes, 7 =
[0, 1, ..., tmax] C Nis adiscrete time domain, and E € V x V x 7 is the set of all temporal
edges. Given a temporal interval T = [f1, ] with t1, 1, € T, let G[T] = (V[T], E[T]) be
the subgraph induced by the set of temporal edges E[T] = {(u,v) | (u,v,1) € E,t € T}
with V[T] being the set of endpoints of edges E[T].

Definition 1 (Episode) Given a temporal graph G = (V, 7, E), we define an episode as a
pair (I, H) where I = [t1, 1] is a temporal interval with t{, #, € 7 and H is a subgraph of
G[I].
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Our goal is to find a set of interesting episodes along the lifetime of the temporal graph. In
particular, our measure of interestingness is the density of the subgraph in the episodes. We
adopt the widely used notion of density of a subgraph H = (V(H), E(H)) as the average
degree of the nodes in the subgraph, i.e., d(H) = :egzgl‘ . While several definitions for density
have been studied in the literature, the one we focus on enjoys the following nice properties:
It can be optimized exactly [27] and approximated efficiently [15], while a densest subgraph

can be computed in real-world graphs containing up to tens of billions of edges [17].

Problem 1 (k-Densest-Episodes) Given a temporal graph G = (V,7, E) and an integer
k € N, find a set of k episodes S = {(I¢, Hp)}, for £ = 1, ..., k such that {/,} are disjoint
intervals and the profit ZIE:I d(Hy) is maximized.

We can solve Problem 1 in polynomial time. To see this, let S* be an optimum solution for
Problem 1 and let Z(S*) = {I, ..., It} and G(S*) = {H}, ..., Hi}. Observe that without
loss of generality, we can assume that the union of the intervals in Z(S*) is equal to the set
of time stamps 7, that is, Z(S*) is a k-segmentation of 7. This follows from the fact that by
increasing the length of the I;’s, the density of the corresponding densest subgraphs cannot
decrease.

Given aninterval I, adensest subgraphin G (/y) can be found by running any algorithm for
computing a densest subgraph: in O(nm log n) time by the easy-to-implement algorithm of
Goldberg et al. [27,43] or in O(nm log(n?/m)) time by the more involved algorithm by Gallo
et al. [25], where n and m denote the number of nodes and edges in G (I;), respectively. An
optimal segmentation can be solved by a standard dynamic-programming approach, requiring
O(k|T|?) steps [9]. By combining the subroutine for computing an optimal segmentation with
either subroutine for computing a densest subgraph for each given interval, one can find a
solution to Problem 1 in O(k|T |*nm log n), or O(k|T|?nm log(n?/m)), respectively.

As a post-processing step, we can trim the intervals in an optimal solution $* = {(1;, Hy)}
by calculating the minimum subinterval of I;, which spans all edges of Hy, for each £ =
1.... k.

3 Approximate dynamic programming

The simple algorithm discussed in the previous section has a running time, which is pro-
hibitively expensive for large graphs. In this section, we develop a fast algorithm with
approximation guarantees.

The derivations below closely follow the ones in [47], which improves [29]. However, we
cannot use those results directly: Both papers work with minimization problems and use the
fact that the profit of an interval is not less than the profit of its subintervals. In contrast, our
problem is a maximization problem and requires a tailored solution.

Given a time interval T = [f1, 2], we write d*(T') to denote the density of the densest
subgraphin 7', thatis, d*(T) = maxycg(r) d(H). For simplicity, we define d*([1, 12]) = 0
if 1 < t;. Problem 1 is now a classic k-segmentation problem of 7" maximizing the total
sum of scores d*(T) for individual time intervals. For notation simplicity, we assume that
all time stamps 7 are enumerated by integers from 1 to r.

Let ol[i, £] be the profit of the optimal £-segmentation using only the first i time stamps.
Then,

oli, €] = maxo[j, £ — 114+d*(j + 1,i), (1)
j<i
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Algorithm 1: ApproxDP(k, €) computes k-segmentation with e-approximation guar-
antee

Input: number of intervals k, parameter €

Output: approximate solution s[i, €] fori € [1,r], £ € [1, k]
1fori=1,...,rdos[i,1]=d*([1,i])for ¢ =2,...,kdo

2 | A=[]

3 fori=1,...,rdo

4 addito A;

5 s[i, €] = max{s[i — 1, ¢],s[i, € — 1], maxgca(sla — 1, € — 1]+ d*([a, i])};
6 A = SPRS(A, s[i, £],¢, €)

7 end

8 end

9 return s

Algorithm 2: SPRS(A, o, ¢, €), a subroutine keeping the candidate list short.

Input: current enumerated candidates A = (ay, ay, ..., aj4)), sparsification factor o = s[i, £], current
number of intervals £, approximation parameter €
Output: sparsified A

18:01&%;

2j=1

3 while j < |A| — 1 do

4 | ifslajpo. € —1]—slaj, £ — 1] < & then remove aj | from A else j = j + 1
5 end

6 return A

and ol[i, k] can be computed recursively.

Our goal is to approximate o[i, £] quickly with a score which we will denote by s[i, £].
The main idea behind the speedup is not to test all possible values of j in Eq. 1. Instead,
we are going to keep a small set of candidates, denoted by A, and only use those values for
testing.

The challenge is how to keep A small enough while at the same time guarantee the
approximation ratio. The pseudo-code achieving this balance is given in Algorithm 1, while
a subroutine that keeps the candidate list short is given in Algorithm 2. Algorithm 1 executes
a standard dynamic programming search: It assumes that partition of i’ < i first data points
into £ — 1 intervals is already calculated and finds the best last interval [a, i] for partitioning
of i first points into / intervals. However, it does not consider all possible candidates [a, i],
but only a sparsified list, which guarantees to preserve a quality guarantee. The sparsified
list is built for a fixed number of intervals £ starting from empty list. Intuitively, it keeps
only candidates A = {a j} with significant difference in s[a;, £ — 1]. The significance of
the difference depends on the current best profit s[i, £]: The larger the value of the solution
found, the less cautious we can be about lost candidates and the coarser becomes A. Thus,
we need to refine A by Algorithm 2 after each processed i.

We first study the approximation guarantee of ApproxDP, assuming that d*(-) is calcu-
lated exactly.

Proposition 1 Let s[i, ] be the profit table constructed by ApproxDP(k,¢€). Then,
sli, Q¢ + 1) = 0, 0).

To prove the proposition, let us first fix £ and let A; be the set of candidates in A to be
tested on line 6 of round i. Let §; be the value of § in Algorithm 2, called on iteration i. Then,
8;—1 is the coarsening parameter used to sparsify A;.
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Lemma1 Foreveryb € [1,i], thereis a; € A;, such that
slaj — 1, —11+d*(laj, i) = s[b—1,£ — 11+ d*([b, i]) — §;—1.
Proof We say that a list of numbers A = (a;) is i-dense, if
slajp1—1,8—=1]=sla; —1,£—=1] <;—yoraj =a; + 1,

for every aj € A with j < |A]. We first prove by induction over i that A; is i-dense.

Assume that A;_1 is (i — 1)-dense. The SPRS procedure never deletes the last element,
so(i—1)e€ Aj_j,and A;_1 U {i}is (i — 1)-dense. Note that §;_» < §;_1, because s[i, €] is
monotone, and s[i, £] > s[i — 1, £], due to explicit check in line 6 of procedure ApproxDP.
Thus, A;j—1 U {i}is i-dense. Since A; = SPRS(A;_1) U {i}, and SPRS does not create gaps
larger than §;_1, the list A; is i-dense.

Let a; be the largest element in A;, such that a; < b. Then, eithera; < b < a4 or
b = aja;; and a; = ax;). In the first case, due to monotonicity, we have s[a;y1, £ — 1] >
s[b, £ — 1], which gives s[b — 1, £ — 1] —s[a; — 1, £ — 1] < §;_1. The second case is trivial.

Due to monotonicity, d*([a;, i]) > d*([b, i]). This concludes the proof. ]

We can now complete the proof of Proposition 1.

Proof of Proposition 1 We will prove the result with induction over £. The claim holds for
¢ = 1 and any i as we initialize s[i, 1] by optimal values (on line 1 of Algorithm 1). We
assume that the approximation guarantee holds for ¢ — 1, that is,

sli 0 — 171 + z(e 1)) > oli, £ — 1]

and we prove the result for £.
Letaa = (1+ %(Z — 1)). Let b be the starting point of the last interval of optimal solution
oli, £], and let a; be as given by Lemma 1. We upper bound

, € , € :
8,-_1:s[l—l,@—l]k_f_idfs[l,Z]k_‘r_eZ §s[z,£]£. 2)
Then,
as[i,ﬂ]Zol(s[aj—I,E—l]-i-d*([aj,i])) (aj € Aj)
>a(s[b—1,0—11+d*(b,i]) — 8i_1) (Lemma 1)
=as[b—1,0—1]+ad*(b,i]) — adi_i
>olb—1,£—1]1+ad*([b,i]) — adi_1 (induction)
>o[lb—1,£—11+d*(b,i]) —ad;i_ (a>1)
Zo[b—l,ﬁ—1]+d*([b,i])—s[i,€]§ (Eq.2)
= oli, €] —s[i,(i]%
As aresult, s[i, £](1 + %5) > oli, £]). O

Let us now address the running time of the approximate dynamic programming.

Proposition 2 The running time of ApproxDP is O(gr )-
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Proof Let us fix i and £, and count the number of candidates in A;. Note that |A;| =
|[SPRS(A;_1)| + 1. The list of candidates SPRS(A;_;) corresponds to a monotonically
increasing sequence of s[a, £], with consecutive elements being at least §;_; apart. Thus,
|[SPRS(A;_1)| < % = kt“ < @ and the number of operations in one call of the
inner loop (lines 4-8) of Algorithm 1 is O(k/€). Since this loop is called kr times, the result
follows. O

Since computing d* requires time O(nm log n), the total running time is O(r énm logn),
where r = |7|. We further speed up our algorithm by approximating the value d* by means
of one of the approaches developed by [19]. In particular, we employ the algorithm that
maintains a 2(1 + €)-approximate solution for the incremental densest subgraph problem
(i.e., edge insertions only), while having poly-logarithmic amortized cost. We shall refer to
such an algorithm as ApprDens.

ApprDens allows us to efficiently maintain the approximate density of the densest sub-
graph d*([a, i]) for each a in A; in ApproxDP, as larger values of i are processed and edges
are added. Whenever we remove an item a from A; in SPRS, we also drop the corresponding
instance of ApprDens.

From the fact that an approximate densest subgraph can be maintained with poly-
logarithmic amortized cost, it follows that our algorithm has quasi-linear running time.

. . . . 2 .
Proposition 3 ApproxDP combined with ApprDens runs in (’)(eklelm[ log2 n) time,
1€3
where €1 and €) are the respective approximation parameters for ApproxDPand ApprDens
and m; is the maximum number of edges per time stamp.

For real-world highly dynamic temporal networks, we can safely assume that m; is a small
constant.

Proof To fill in cell s[i, [], we need to update |A;| = O(k/¢) graphs by adding at most (some
edges can be already in the graphs) m; edges—the number of edges with #; time stamp. Let m;
be the maximum number of edges per time stamp. Theorem 4 in [19] states that maintaining
the graph with m; edges requires O(m,-ez_2 log? n) time. We still need to fill k| 7| cells in the
DP matrix. Combining these two results proves the proposition. O

When combining ApproxDP with ApprDens, we wish to maintain the same approx-
imation guarantee of ApprDens. Recall that ApproxDP leverages the fact that the profit
function is monotone and non-increasing. Unfortunately, ApprDens does not necessarily
yield a monotone score function, as the density of the computed subgraph might decrease
when a new edge is inserted. This can be easily circumvented by keeping track of the best
solution, i.e., the subgraph with highest density. The following proposition holds.

Proposition 4 ApproxDP combined with ApprDens yields a 2(1 + €1)(1 + €3)-approxi-
mation guarantee.

Proof Let d;;(T) be the density of the graph returned by ApprDens for a time interval
T. Let O be the optimal k-segmentation, let Z(O) be the intervals of this solution, and let
g1 = X jez(0)d*(I) be its score. Letalso g» = D7) d; (I). Let g3 be the score of the
optimal k-segmentation O, using d;;. Note that the intervals constituting the solution O, may
not be the same as in O, as they are optimal solutions for different interval scoring functions
d* and d}. Thus, g3 may not be equal to ¢». Let g4 be the score of the segmentation produced
by ApproxDP. Then,

q1 22(1+e)q2 <2(1 +€2)g3 < 2(1 + e2)(1 + €1)qa4,
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completing the proof. O

We will refer to this combination of ApproxDP with ApprDens as Algorithm KGAPPROX.

4 Encouraging larger and more diverse subgraphs

Problem 1 is focused on total density maximization; thus, its solution can contain graphs
which are dense, but union of their node sets can cover only a small part of the network. Such
segmentation is useful when we are interested in the densest temporally coherent subgraphs,
which can be understood as tight cores of temporal clusters. However, segmentations with
larger but less dense subgraphs, covering a larger fraction of nodes, can be useful to get a
high-level explanation of the whole temporal network. To allow for such segmentations, we
extend Problem 1 to take into account node coverage.

Denote the set of subgraphs G;, which are included in solution episodes S = {(I;, G;)}
as G = {G;} fori = 1,...,k . Given a collection of subgraphs G, let x,(G) = {G; € G :
v € V(G;), G; € G}| be the number of subgraphs in G, which include node v. We consider
generalized cover functions of the type

cover(G | w) = Z w(xy(G)),

veV

where w is a nonnegative non-decreasing concave function of x,(G). If w(x,(G)) is a 0-1
indicator function, then the function cover(G | w) is a standard cover, which is intuitive and
easy to optimize by a greedy algorithm. Another instance of the generalized cover function,
inspired by text summarization research [35], is w(x,(G)) = +/x,(G). It ensures that the
marginal gain of a node decreases proportionally to the number of times the node is covered.
We add the cover term to the cost function of Problem 1, and we obtain the resulting problem
formulation.

Problem 2 (k-Densest-Episodes-EC) Given a temporal graph G = (V, T, E), integer k,
parameter A > 0, find a k-segmentation S = {(I;, G;)} of G, such that profit(S) =
ZG,-eg d(G;) + A cover(G | w) is maximized.

Unlike Problem 1, this problem cannot be solved in polynomial time.

Proposition 5 Problem 2 is NP-hard.

Proof We will prove the hardness by reducing the set packing problem to k- DENSEST-
EPISODES- EC. In the set packing problem, we are given a collection C = {Cy, ..., C¢} of
sets and are asked whether there are p disjoint sets. We can safely assume that |C;| = 3.

Assume that we are given such a collection, and let us construct the temporal graph. The
nodes V consist of two sets V; and V5. The first set V; corresponds to the elements in |_J ; Ci
The second set V; consists of ¢ = 6€ 4 3 nodes. There are 2¢ time stamps. At the 2ith time
stamp, we connect the nodes corresponding to C;, while at odd time stamps, we full-connect
V,. Finally, we setk = £ + pand A = 1/(]V| + 1). We use 0-1 indicator function for w.

We claim that there is a solution to the set packing problem if and only if there is a solution
to k- DENSEST- EPISODES- EC with the profit of at least £(g — 1)/2+ p + A(3p + ¢).

To prove the only if direction, assume there is a collection C’ of p disjoint sets. Build a
k-segmentation by selecting each clique spanning V5 to be in its own segment, as well as the
three cliques corresponding to the sets in C’. This solution will have the necessary profit.
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Let us now prove the if direction. Assume an optimal k-segmentation S. It is easy to see
that if the ith segment contains an odd time stamp, then G; must be the clique spanning V>.
On the other hand, if the ith segment is equal to [2, 2], then G is a clique connecting C;.

Let a be the number of segments containing odd time stamps, we can safely assume that
a > 0. Let b be the number of segments containing only even time stamps. Let ¢ be the total
number of nodes in V] covered by at least one segment. Then,

profit(S) = a(g — 1)/2 + b + A(c + q).

We assume that profit(S) > (g —1)/2+ p+Ar(Bp+¢q).Sinceb+A(c+q) <l+1 <
(g—1)/2and A(c+gq) < 1, thisisonly possibleifa = ¢,b = p,and ¢ = 3 p. This completes
the proof. O

4.1 k static overlapping densest subgraphs

Given the complexity of Problem 2, we start with analysis of a static graph case. We for-
mulate the k-overlapping-densest-subgraphs problem and design a linear algorithm with an
approximation guarantee. We will later apply the developed approach to temporal graphs;
however, the algorithm can be used as an efficient stand-alone method for finding overlapping
dense subgraphs.

Problem 3 (k static overlapping densest subgraphs) Given a static graph H = (V, E’),
integer k, and real A > 0, find a set of k subgraphs H = {H; € H}, such that profitg, (") =
ZH,-QH d(H;) 4+ X - cover(H | w) is maximized.

Next, we show below how to obtain a constant-factor approximate solution. We start
with showing that the generalized cover function has beneficial combinatorial properties:
It is submodular, nonnegative, and non-decreasing with respect to the set of subgraphs.
The density term of the cost function of Problem 2 (and Problem 3) is a linear function of
subgraphs, and thus the whole cost function is nonnegative, non-decreasing, and submodular.

Proposition 6 Function cover(G | w) is a nonnegative, non-decreasing, and submodular
function of subgraphs.

Proof For a fixed v € V function x,(G) is non-decreasing modular (and submodular): for
any set of subgraphs X and a new subgraph x holds that x, (X U {x}) — x,(X) = 1l if v
belongs to x and does not belong to any subgraph in X, otherwise 0. By the property of sub-
modular functions, composition of concave non-decreasing and submodular non-decreasing
is non-decreasing submodular. Function cover(G | w) is submodular non-decreasing as a
nonnegative linear combination. Nonnegativity follows from nonnegativity of w. O

To solve Problem 3, we can search greedily over subgraphs. Let H; _1 = {H, ..., Hi_1},
and define marginal node gain, given weight function w, as

S | Hi—1,w) = wlxy(Hi—1 U{v}) — wlxy(Hi-1)). 3

Here, {v} refers to a graph containing only v. Then, denote the marginal gain of subgraph H;
given already selected graphs H;_; as

X(H; | Hior,w) =d(H) + 1Y 80 | Hiop, w). )
veH;
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Greedy algorithm for Problem 3 consequently builds the set H by adding H;, which
maximizes gain x (H; | H;—1). If we can find H; optimally, such algorithm yields 1 — 1/e
approximation due to submodular maximization with cardinality constrains (see [42] for this
classic result).

To find the optimal H;, we need to solve the following problem.

Problem 4 Given a static graph H = (V, E’), a set of subgraphs H;—_; = {H}, ..., Hi_},
find a graph F € H, such that x (F | H;—1) is maximized.

Luckily, Problem 4 can be transformed into a (weighted) densest subgraph problem. In
order to do so, we will define a weighted fully connected graph R = (V, V x V, a) having
the same nodes V as H with the weights a(u, v) defined as

A
a(u,v) =I[(u,v) € E'l+ ———— (@ | Hi—1, w) + (v | Hi—1, w)).
14+ I[u = v]
Here, I[-] is an indicator function, returning 1 if the condition is true, and O otherwise. Note
that we allow self-loop edges. Let R’ be a subgraph in R and let F be the induced subgraph
in H having the same nodes as R’. Then, it is now straightforward to see that

X (F | Hi—1,w) =d(R).

In other words, solving Problem 4 is equivalent to solving densest subgraph problem in R.
Consequently, we can solve Problem 4 exactly in O(]V|3) time [25]. Alternatively, we can
estimate it efficiently with 1/2-approximation in O(]V|?) time by Charikar et al. [15]. We
will use the latter algorithm and refer to it as StaticGreedy.

Now we have everything to design and analyze an approximation algorithm for Problem 3.
Algorithm 3 greedily finds k subgraphs to solve Problem 3.

Each subgraph is sought with 1/2-approximation guarantee, and due to submodularity,
greedy optimal subgraph search would be a (1 —1/¢)-approximation. Combining these results
leads to the following statement.

Proposition 7 Algorithm 3 is a 1/2(1 — 1/e) =~ 0.31606 approximation for Problem 3.

Proof Let y be the value of profitsr score of k greedily sought subgraph, assuming that each
subgraph was sought optimally. The ith subgraph has a marginal gain y;, thus y = Zf vi. Let
optimal solution of Problem 3 be y*. Due to greedy submodular optimization y > (1—1/e)y*,
Algorithm 3 uses 1/2-approximation algorithm StaticGreedy for subgraph search, thus
yi > yi/2, where y; is the marginal gain of the i-th subgraph included into the solution. Let
y be the value of final solution output by Algorithm 3. Putting everything together, we have
¥=Y%5 > Y%y/2=y/2> 1/2(1 — 1/e)y*. This concludes the proof. u]

The running time of Algorithm 3 is defined by the running time of the greedy subroutine
and is © (k| V|?).

4.2 Greedy dynamic programming

Similarly to Problem 1, we will use dynamic programming for Problem 2. However, as the
problem is hard, we have to rely on greedy choices of the subgraphs. Thus, the obtained
solution does not have any quality guarantee.

Let M[¢, i] be the profit of i first points into £ intervals, let C[£, i] be the set of subgraphs
Gy ={G1,..., Gy} selected on these £ intervals, 1 < ¢ <kand0 <i < m.
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Algorithm 3: StaticKDensest
Input: static graph H = (V, E’), integer k, parameter A > 0
Output: a set of k subgraphs H = {H; C H}
1 H=0;
2forj=1,..., k do
3 Hj =F /* where F is a solution of Problem 4 for H = (V,E’) and

Hi—1=H */
4 H:HU{H]},
5 end
6 return H

Define marginal gain interval [, i], given that j — 1 are already segmented into £ — 1
interval, (here x is defined in Eq. 4):

gain([j,i],C[£—1,j—1])= max x(G'|Cl—1,j—1]. 5)
G'SG([.iD

This leads to a dynamic program
M[L,i]= max M[L—1,j— 1]+ gain([j,i],C[£{—1,j—1Dforl < £ <k,
I<j<i+l
M[1,i] =d*([0,i]) for0 <i < m,
MK, 0] =0for1 <k’ <k.

After filling this table, M[k, m] contains the profit of k-segmentation with subgraph
overlaps. C[k, m] will contain selected subgraphs, and the intervals and subgraphs can be
reconstructed, if we keep track of the starting points of selected last intervals. Note that profit
Mk, m] is not optimal, because the choice of subgraph G; depends on the interval and the
previous choices.

We perform dynamic programming by approximation algorithm ApproxDP, and the
densest subgraph for each candidate interval is retrieved by Epasto et al. [19]. We refer to
the resulting algorithm as KGCVR.

To keep track on number of x,, when we construct G, we need to keep frequencies of each
node. To avoid extensive memory costs, in the experiments we use Min-Count sketches.

5 Experimental evaluation

We evaluate the performance of the proposed algorithms on synthetic graphs and real-world
social networks. The datasets are described below. Unless specified, we post-process the
output of all algorithms and report the optimal densest subgraphs in the output intervals. Our
datasets and implementations are publicly available.'

5.1 Synthetic data

We generate a temporal network with k planted communities and a background network. All
graphs are Erd6s-Rényi. The communities G’ have the same density, disjoint set of nodes, and
are planted in consecutive non-overlapping intervals. The background network G includes

! https://github.com/polinapolina/segmentation- meets-densest-subgraph.
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nodes from all planted communities G’. The edges of G are distributed uniformly on the
timeline. In a typical setup, the length of the whole time interval 7 is |T'| = 1000 time units,
while the edges of each G’ are generated in intervals of length ‘T’ ‘ = 100 time units. The
densities of the communities and the background network vary. The number of nodes in G
is set to 100.

We produced two families of synthetic temporal networks: Syntheticl and Synthetic2. In
the first setting (dataset family Syntheticl), we vary the average degree of the background
network from 0.5 to 4 and fix the density of the planted 5-cliques to 4. Syntheticl allows to
test the robustness of our algorithms against background noise. In the second setting (dataset
family Synthetic2), we vary the density of planted eight-node graphs from 2 to 7, while
the average degree of the background network is fixed to 2. A separate synthetic dataset
Synthetic3 is designed to test the effect of setting different parameters & in the algorithms.
The dataset contains k = 10 intervals with the activity of eight-node subgraphs with average
degree 5, and the background noise has average degree 2.

5.2 Real-world data

We use the following real-world datasets: Facebook [51] is a subset of Facebook activity in
the New Orleans regional community. Interactions are posts of users on each other walls.
The data cover the time period from 9.05.06 to 20.08.06. The Twitter dataset tracks activity
of Twitter users in Helsinki in year 2013. As interactions, we consider tweets that contain
mentions of other users. The Students® dataset logs activity in a student online network at
the University of California, Irvine. Nodes represent students, and edges represent messages
with ignored directions. Enron:? is a popular dataset that contains e-mail communication of
senior management in a large company and spans several years.

For a case study, we create a hashtag network from Twitter dataset (the same tweets from
users in Helsinki in year 2013): Nodes represent hashtags—there is an interaction, if two
hashtags occur in the same tweet. The time stamp of the interaction corresponds to the time
stamp of the tweet. We denote this dataset as Twitter#.

5.3 Optimal baseline

A natural baseline for KGAPPROX is OPTIMAL, which combines exact dynamic programming
with finding the optimal densest subgraph for each candidate interval. Due to the high running
time of OPTIMAL, we generate a very small dataset with 60 time stamps, where each time
stamp contains a random graph with 3—-6 nodes and random density. We vary the number of
intervals k and report the value of the solution (without any post-processing) and the running
time in Fig. 2. On this toy dataset, KGAPPROX is able to find near-optimal solution, while
being significantly faster than OPTIMAL.

5.4 Results on synthetic datasets

Next, we evaluate the performance of KGAPPROX on the synthetic datasets Syntheticl and
Synthetic2 by assessing how well the algorithm finds the planted subgraphs. We report mean

2 http://toreopsahl.com/datasets/#online_social_network.

3 http://www.cs.cmu.edu/~./enron/.
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Fig. 2 Comparison between optimum and approximate solutions (OPTIMAL and KGAPPROX). Approximate
algorithm was run with €; = ¢ = 0.1. Running time is in seconds

(a) effect of background noise (b) effect of community density
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Fig. 3 Precision, recall, and F-measure on synthetic datasets. For plot a, the community average degree is
fixed to 5 (Syntheticl dataset), and for plot, b the background network degree is fixed to 2 (Synthetic2 dataset).
Plot a the mean standard deviation for precision is 0.193, for recall is 0.183, and for F-measure is 0.180. Plot
b the mean standard deviation for precision is 0.188, for recall is 0.178, and for F-measure is 0.173

precision, recall, and F-measure, calculated with respect to the ground-truth subgraphs. All
results are averaged over 100 independent runs.

First, Fig. 3a depicts the quality of the solution as a function of background noise. Recall
that the Syntheticl dataset contains planted eight-node subgraphs with average degree 5.
Precision and recall are generally high for all values of average degree in the background
network. However, precision degrades as the density of the background network increases,
as then it becomes cost-beneficial to add more nodes in the discovered densest subgraphs.

Second, Fig. 3b shows the quality of the solution of KGAPPROX as a function of the density
in the planted subgraphs. Note that, in Synthetic2 the density of the background network is
2. Similarly to the previous results, the quality of the solution, especially recall, degrades
much only when the density of the planted and the background network becomes similar.

Figure 4 demonstrates how well the true event intervals are recovered in the case of a
synthetic Synthetic3 dataset with k = 10 planned events intervals. The true value of k was
treated as unknown, and KGAPPROX was run with all possible integer values of & in [2, 20].

Figure 4a shows the quality of the intervals, precision, and recall are calculated with
respect to the length of the overlap between the true interval and the output one.
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(a) quality of the solution intervals (b) quality of the solution subgraphs
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Fig.4 Quality of the solutions in the case of unknown k. Planted & = 10 intervals with eight-node subgraphs
each (Synthetic3 dataset). Plot a shows the quality of the solution segmentation, and plot b shows the quality
of the subgraphs sought in the intervals

Since the number of intervals in the segmentation and the ground truth is different, we
compare each output interval to its best match in terms of F-measure. Thatis, let (11, ..., Ix)
and (/ { R 4 ,2,) be the set of ground-truth intervals and solution intervals with k£ not nec-
essarily be equal to k’. For each I/ in the solution, we find the best matching interval in the
ground truth I} = maxy.e(y. ... 1) F(Il./, I;). Here, F is F-measure, with precision and recall
being calculated with respect to time stamps: the number of time stamps from the ground-
truth interval /;, which also belong to the interval I/, divided by the number of time stamps
in Ilf (precision) or divided by the number of time stamps in /; (recall). Once such matching
interval 1* is found for each I/, we calculate and report precision P (1, I;), recall R(I*, I;),
and F-measure F (Ii*, I;), defined with respect to the time stamps as described above.

All the reported measures are averaged over the output intervals (and over 100 runs). After
matching the intervals, we also evaluate the quality of the densest subgraphs and compare
their node sets to the ground-truth events in the corresponding intervals (Fig. 4b). As we can
see, the intervals are in general recovered quite well, even though the algorithm is given an
incorrect value of k. The quality of the subgraph recovery is generally lower, which is the
results of shifted borders of the intervals.

5.5 Results on real-world datasets

As the optimal partition algorithm OPTIMAL is not scalable for real datasets, we present
comparative results of KGAPPROX with baselines KGOPTDP and KGOPTDS. The KGOPTDP
algorithm performs exact dynamic programming, but uses an approximate incremental algo-
rithm for the densest subgraph search (the incremental framework by Epasto et al. [19]). Vice
versa, KGOPTDS performs approximate dynamic programming while calculating the densest
subgraph optimally for each candidate interval (by Goldberg’s algorithm [27]). Note that
KGOPTDP has 2(1 + eDS)2 approximation guarantee and KGOPTDS has (1 + €,p) approxima-
tion guarantee. However, even these non-optimal baselines are quite slow in practice and we
use a subset of 1 000 interactions of Students and Enron datasets for comparative reporting.

To ensure fairness, we report the total density of the optimal densest subgraphs in the
intervals returned by the algorithms.

In Table 1, we report the density of the solutions reported by KGAPPROX, KGOPTDP, and
KGOPTDS, and Table 2 shows their running time. We experiment with different parameters for
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Table 1 Comparison of KGAPPROX with KGOPTDP and KGOPTDS baselines: total community density

Dataset Community density
€pp

KGAPPROX 0.01 0.1 1 2 KGOPTDS

Students 1000 €ps 0.01 4.24 4.24 4.24 4.24 6.30
0.1 4.24 4.24 4.24 4.24 6.22
1 3.82 3.82 3.82 3.82 5.76
2 3.82 3.82 3.82 3.82 5.61
KGOPTDP 5.73 5.73 3.82 3.82

Enron 1000 €ps 0.01 10.4 10.4 10.0 10.5 11.3
0.1 10.3 10.4 10.0 10.3 11.0
1 9.54 9.54 8.80 9.83 11.0
2 7.34 7.34 7.34 7.34 10.8
KGOPTDP 10.5 11.0 104 8.90

the approximate densest subgraph search (eg) and for approximate dynamic programming
(€pp)-

For both datasets, the best solution (i.e., the solution with the highest value of the profit
function of Problem 1) was found by KGOPTDS. This is expected as this algorithm has the
best approximation factor. The solution cost decreases as €, increases. On the other hand,
KGOPTDS has the largest running time, which decreases with increasing e, but even with
the largest parameter value (e, = 2) KGOPTDS takes about an hour.

The KGOPTDP algorithm typically finds the second-best solution; however it only
marginally outperforms KGAPPROX (e.g., €ps = 0.1), while requiring up to several orders of
magnitude of higher computational time. Naturally, the quality of the solution degrades with
increasing €pg.

The solution quality degrades with increasing the approximation parameters for all algo-
rithms. However, the degradation is not as dramatic as the worst-case bound suggests, while
using such an approximation parameter offers significant speedup. KGAPPROX provides the
fastest estimates of a good quality for a wide range of approximation parameters. Note that
KGAPPROX is more sensitive to the changes in the quality of the densest subgraph search
regulated by €.

5.6 Running time and scalability

Figure 5 shows running time of KGAPPROX as a function of the approximation parameters
€ps and €pp. The figure confirms the theory, that is, €, has significant impact on the running
time, while the algorithm scales very well with €.

We demonstrate scalability in Fig. 6, plotting the running time for increasing number of
interactions, for Facebook and Twitter datasets. Recall that the theoretical running time is
O(kzm log n), where n is the number of nodes and m the number of interactions. In practice,
the running time grows fast for the first thousand interactions and then saturates to linear
dependence. This happens because in the beginning of the network history the number of
nodes grows fast. In addition, new, denser than previously seen, subgraphs are more likely to
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Table2 Comparison of KGAPPROX with KGOPTDP and KGOPTDS baselines: total community density: running
time

Dataset Running time (sec)
€pp
KGAPPROX 0.01 0.1 1 2 KGOPTDS
Students 1000 €ps 0.01 0.62 0.62 0.63 0.64 23678
0.1 0.23 0.23 0.24 0.23 8952
1 0.13 0.26 0.13 0.13 3394
2 0.36 0.20 0.20 0.36 3769
KGOPTDP 162 43.5 29.5 13.23
Enron 1000 €ps 0.01 56.4 55.5 423 31.8 25788
0.1 3.02 2.85 2.07 1.70 16070
1 0.43 0.44 0.29 0.28 7834
2 0.22 0.22 0.23 0.23 3469
KGOPTDP 1654 61.15 17.82 6.07
Students Twitter
10° 10*
o
j”)i 103
o 102
g Z
i) — DSeps = 0.01 102
80 — DSeps=0.1
g 10" — DSeps= 1. \k\/\;/——
£ \/u 10!
=1
~ — A
0 0
100.0 0.5 1.0 1.5 2.0 100.0 0.5 1.0 1.5 2.0
DP epsilon DP epsilon

Fig.5 Effect of different approximation parameters in KGAPPROX. k = 20

occur. Thus, the approximate densest subgraph subroutine has to be computed more often.
Furthermore, the number of intervals k contributes to running time as expected.

Figure 7 shows how the cost of the solution changes as the network evolves. Setting
larger k results in larger total density. However, the relative change of the solution values is
approximately the same for all k: As the number of time stamps goes from 100 to 100000,
the total density increases about 2.5 times for Facebook dataset and 3.5 times for Twitter
dataset. This means that while different k lead to technically different segmentations, they
capture the rate of network evolution.

Naturally, setting larger k results in discovering subgraphs of smaller individual density,
as it follows from Fig. 8. However, the relative difference between the mean density for
different k is typically less than the relative difference between the values of k itself. This
means that the algorithm tends not to split intervals of dense subgraphs to achieve a better
total density, but rather discovers new dense subgraph intervals as k increases.
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Fig.6 Scalability testing with €,y = €, = 0.1
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Fig.7 Total density of the solution subgraphs for different values of k and different lengths of the time series
(eps = €pp = 0.1)
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Fig.8 Mean density of the solution subgraphs for different values of k and different lengths of the time series
(eps = €pp = 0.1)

5.7 Subgraphs with larger node coverage—static graphs

Next, we evaluate STATICGREEDY. To measure coverage, we simply count the number of
distinct nodes in the output subgraphs. We use the 10K first interactions of Students dataset,
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Fig. 9 Pairwise similarities (three heatmap plots on the left) and densities (right plot) of subgraphs returned
by STATICGREEDY

set k = 20, and test different values of 1. Figure 9 shows the density and the pairwise Jaccard
similarity of the node sets of the retrieved subgraphs. The subgraphs are shown in the order
they are discovered. Smaller values of A give larger density, and larger values of A give more
cover. We observe that, for all values of X, in the beginning STATICGREEDY returns diverse
and dense subgraphs, but soon after it starts outputting graphs, which have been already
selected to the solution on the previous iterations. We speculate that the algorithm finds all
dense subgraphs that exist in the dataset. Regarding setting A, we observe that A = 0.002
offers a good trade-off in finding subgraphs of high density and moderate overlap.

5.8 Subgraphs with larger node coverage—dynamic graphs

Finally, we evaluate the performance of KGCVR algorithm. We vary the parameter A and
compare different characteristics of the solution, with the solution returned by KGAPPROX.
For different values of A, Table 3 shows average density and total number of covered nodes,
and Table 4 shows average size of the subgraphs and average pairwise Jaccard similarity.
Although KGCVR does not have an approximation guarantee, for small values of A it finds
subgraphs of the density close to KGAPPROX. Similarly to the static case, A provides an
efficient trade-off between density and coverage.
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Table 3 Total density and total cover size of KGCVR’s outputs with k = 5 and €,y = €, = 0.1

Dataset A Density Cover
KGCVR KGAPPROX KGCVR KGAPPROX
Students le—6 10.690 11.151 136 130
le—5 7.0869 11.151 813 130
le—4 5.0273 11.151 8389 130
Enron le—6 19.995 19.871 38 37
le—5 19.962 19.871 40 37
le—4 6.5684 19.871 1144 37
Facebook le—8 5.3714 5.3933 83 120
le—7 4.2749 5.3933 3470 120
le—6 3.2673 5.3933 4100 120
Twitter le—7 9.9970 10.138 128 152
le—6 6.5500 10.138 3808 152
le—5 3.5389 10.138 4604 152

Table4 Average subgraph size and average Jaccard similarity between the subgraphs in the output of KGCVR
withk =5 and ey = €, = 0.1

Dataset A Size JSim
KGCVR KGAPPROX KGCVR KGAPPROX
Students le—6 48.75 37.6 0.1449 0.0951
le—5 261.0 37.6 0.0788 0.095
le—4 286.0 37.6 0.0910 0.0951
Enron le—6 16.0 16.2 0.3619 0.3851
le—5 17.0 16.2 0.3660 0.3851
le—4 288.8 16.2 0.0808 0.3851
Facebook le—8 22.75 27.6 0.0185 0.0163
le—7 882.0 27.6 0.0027 0.0163
le—6 1228.75 27.6 0.0335 0.0163
Twitter le—7 44.25 54.0 0.1590 0.1673
le—6 1061.75 54.0 0.0837 0.1673
le—5 1379.0 54.0 0.0773 0.1673

5.9 Parameter selection

Both problem formulations, k- DENSEST- EPISODES and k- DENSEST- EPISODES- EC, follow
the classic sequence segmentation problem setting [10] and take as input the number of
segments (k) in the timeline partition. It is primarily assumed that the value of k can be
specified by prior knowledge and user expectation. In the case of problem formulations k-

DENSEST- EPISODES and k- DENSEST- EPISODES- EC, we can show (“Appendix A”) that the
total profitis a strictly increasing function of the number of segments and reaches its maximum
when k is equal to the number of intervals. Thus, the value of k cannot be guided by the optimal
value. Furthermore, it is hard to assess the quality of the subgraphs in the segmentation: Larger
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intervals with denser subgraphs correspond to larger events, while splitting an interval in favor
of less dense subgraphs corresponds to sub-events. Duplicating events in the neighboring
intervals can also lead to different sub-segmentation, when k increases; thus, we cannot
recommend to decrease k if duplicates occur. However, we do not view that uncertainty with
respect to the choice of k as a weakness of the approach: It allows the user to explore the
data at different granularity levels and possibly observe a hierarchy of events.

The problem formulations KGAPPROX and KGCVR require the approximation parameters
€pp and €. As we discussed in the section about the performance of KGAPPROX, KGOPTDP,
and KGOPTDS (Table 1), by design our approximation algorithms are more sensitive to the
changes in the quality of the densest subgraph search. The parameter €4 affects the calculation
of profits of the intervals, and these values are used to guide the dynamic programming
algorithm, while loose values of these approximation parameters are likely to misguide it.
As it follows from the scalability results (Fig. 5), the algorithms scale better with the change
of epg rather than €. However, both parameters contribute equally to the solution quality
guarantee 2(1 + €pg)(1 + €pp) of Problems k- DENSEST- EPISODES and the order of the
approximation factor depended on the largest of €4 and €. Thus, it is not guaranteed (and
not fully supported by empirical results) that reducing only €, will lead to better results
faster. As a rule of thumb in most of our experiments, we use €3 = €, = 0.1, which gives
a satisfactory guarantee of 2.42 and is sufficiently fast. We use the same parameters for the
experiments with KGCVR.

The last parameter to discuss is the parameter A in problem k- DENSEST- EPISODES- EC,
which controls the node coverage in the solution. The sensitivity and the range of meaningful
values of this parameter depend non-trivially on the topological and temporal properties of
the network. To select a good value for A, one could try sampling different values and plot
the density of the resulting subgraphs, similarly to Fig. 9. Then, one can choose a value
for A, which provides a good trade-off between diversity and density: Too small value of A
may lead to dense but repeating structures, and too large value may yield too large and not
dense-enough subgraphs.

6 Case study

We present a case study using graphs of co-occurring hashtags from Twitter messages in
the Helsinki region. We create two subsets of Twitter# dataset: one covering all tweets in
November 2013 and another in December 2013. November dataset consists of 4758 inter-
actions, 917 nodes, and the corresponding static graph has average degree density 3.546.
December dataset has 5559 interactions, 1039 nodes, and the density is 3.290.

Figures 10 and 11 show the dense subgraphs discovered by the KGAPPROX algorithm on
these datasets, with k = 4 and €,3 = €, = 0.1.

For the November dataset, KGAPPROX creates a small 1-day interval in the beginning
and then splits the rest time almost evenly. This first interval includes the nodes movember,
liiga,halloween,and digiexpo, which coverabroadrange of global (e.g., movember
and Halloween) and local events (e.g., game industry event DigiExpo and Finnish ice hockey
league). The next interval is represented by a large variety of well-connected tags related
to mtv and media, corresponding to the MTV Europe Music Awards 13 on November 10.
There are also other ice hockey-related tags, e.g., leijonat and Father’s Day tags, e.g.,
isdnpaiva, which was on November 13. The third interval is mostly represented by Slush-
related tags; Slush is the annual large startup and tech event in Helsinki. The last interval is
completely dedicated to ice hockey with many team names.
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Fig. 10 Subgraphs, discovered in the network of Twitter hashtags Twitter# from November 2013 KGAPPROX
algorithm with k = 4, e, = €,p, = 0.1

There are three major public holidays in December: Finland’s Independence Day on
December 6, Christmas on December 25, and New Year’s Eve on December 31. KGAPPROX
allocates one interval for Christmas and New Year from December 21 to 31. Ice hockey is
also represented in this interval, as well as in the third interval. Remarkably, the Indepen-
dence Day holiday is split into two intervals. The first one is from December 1 to December
6, 3:30pm, and the corresponding graph has two clusters: the first one contains general
holidays-related tags and the second one is focused on Independence Day President’s recep-
tion. (Itsendisyyspdivin vastaanotto or colloquially Linnan juhlat/Slotts balen). This is a large
event that starts on December 6, 6pm, is broadcasted live, and is discussed in media for the
following days. The second interval for December 6-9 is a truthful representation of this event.

To demonstrate the qualitative performance of KGAPPROX for different parameters, we
consider three parameters settings: case;: €pg = 0.1, €pp = 0.1; caser: epg = 0.01, €pp = 0.1;
and cases: epg = 0.1, €5, = 0.01. Table 5 shows the characteristics of the solution graphs
(Hy, Ha, H3, Hy) discovered in the different settings.

The first two rows show the average degree density and the number of nodes (size) of
each graph. Rows 3 and 4 compare an ith graph in one solution (i.e., in one parameters
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Fig. 11 Subgraphs, discovered in the network of Twitter hashtags Twitter# from December 2013 by KGAPPROX
algorithm with k = 4, e, = €, = 0.1

09.12 18:36 — 21.12 12:23

setting) with the ith graph in other solutions (i.e., in other parameters setting). We report
the average overlap in nodes and average Jaccard similarity of node sets. Larger overlap
and larger Jaccard similarity values provide evidence that the algorithm outputs similar i-th
episode graphs for different settings. For the November datasets, the first two episodes are
identical for all settings. Episodes 3 and 4 are similar for cases case; and cases, but different
for casey: As it is discussed before, the change in the densest subgraph search contributes to
the change in the solution. There is a similar trend for the December dataset, although the
similarity values are typically lower.

Rows 5 and 6 present the similarities between the graphs in one solution. We compare
an i-th graph in a solution to all other episode graphs in that solution. We report an average
overlap in nodes and average Jaccard similarity of node sets. Lower overlap and smaller
Jaccard similarity values indicate that the graphs in the solution differ. All similarity values
for both datasets are quite low. Although the average overlap in nodes can be as high as 7.333,
such an overlap is not prominent when the sizes of the graphs are taken into consideration,
as it is shown by the Jaccard similarity metric.
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Table 5 Characteristics of the episode graphs H; discovered for different parameters of e,g and €, in the
case-study dataset

Metric November December
H; casey casey case3 H; casey casey case3

Density Hy 18 1.8 1.8 Hy 3.647 4.857 3.647
Hy 3487 3487 3487 Hy 3778 3.867 3.778
Hz 3563 5091 3563 H3z 44 3.6 2.667
Hy 4.0 1.333 4.0 Hy 4.1 3.0 5.302

Size Hy 10 10 10 H 17 14 17
Hy, 39 39 39 H, 19 30 9
Hz 32 22 32 Hy 35 10 6
Hy 9 3 9 Hy 20 6 43

Avg. overlap (across the solutions) Hy 10 10 10 Hy 145 12.0 14.5

H 39 39 39 H, 60 30 60
Hy 22 12 2 Hy 65 45 30
Hy 45 0 45  Hy 120 55 12,5

Avg. Jac. similarity (across the solutions) H; 1.0 1.0 1.0 Hy 0816 0.632 0.816
H, 1.0 1.0 1.0 Hy, 0541 0.083 0.542
H; 0.643 0.285 0.643 Hz 0.178 0.141 0.103
Hy 05 0.0 0.5 Hy 0335 0.189 0.286

Avg. overlap (inside the solution) H; 3.667 3.0 3.667 Hp 5333 1333 4.0
H, 4333 4333 4333 Hy 4.667 5333 3.667
H; 5.0 4.667 5.0 H; 7333 3.667 1.333
Hy 3.0 0 3.0 Hy 6.667 2333 4333

Avg. Jac. similarity (inside the solution) H; 0.127 0091 0.127 H; 0.199 0.033 0.153
Hy 0.086 0.087 0081 Hp 0.195 0.158 0.151
H; 0.108 0.119 0.108 Hz 0.172 0.160 0.030
Hy 0.113 0.0 0.113  Hy 0.182 0.119 0.088

casey: €pg = 0.1, epp = 0.15 casep: e, = 0.01, epp = 0.1; casez: epg = 0.1, ey, = 0.01

We can conclude that for all parameters, the solution for the case study consists of diverse
graphs. However, changing the accuracy of the densest subgraphs search may lead to differ-
ences in the output episodes graphs.

7 Related work

Partitioning a graph in dense subgraphs is a well-established problem. Many of the exist-
ing works adopt as density definition the average-degree notion [2,23,33,50]. The densest
subgraph, under this definition, can be found in polynomial time [27]. Moreover, there is a 2-
approximation greedy algorithm by Charikar [15] and Asahiro et al. [4], which runs in linear
time of the graph size. Many recent works develop methods to maintain the average-degree
densest subgraph in a streaming scenario [14,19,20,38,39]. Alternative density definitions,
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such as variants of quasi-clique, are often hard to approximate or solve by efficient heuristics
due to connections to NP-complete Maximum Clique problem [1,37,49].

A line of work focuses on dynamic graphs, which model node/edge additions/deletions.
Different aspects of network evolution, including evolution of dense groups, were studied
in this setting [6,11,34,41]. However, here we use the interaction network model, which is
different to dynamic graphs, as it captures the instantaneous interactions between nodes.

Another classic approach to model temporal graphs is to consider graph snapshots, find
structures in each snapshot separately (or by incorporating information from previous snap-
shots), and then summarize historical behavior of the discovered structures [5,12,28,36,40].
These approaches usually focus on the temporal coherence of the dense structures discov-
ered in the snapshots and assume that the snapshots are given. In this work, we aggregate
instantaneous interaction into timeline partitions of arbitrary lengths.

To the best our knowledge, the following works are better aligned with our approach.
A work of Rozenshtein et al. [44] considers a problem of finding the densest subgraph in a
temporal network. However, first, they do not aim at creating a temporal partitioning. Second,
they are interested in finding a single dense subgraph whose edges occur in k short time
intervals. On the contrary, in this work we search for an interval partitioning and consider only
graphs that are span continuous intervals. Other close works are by Jethava and Beerenwinkel
[31] and Semertzidis et al. [46]. However, these works consider a set of snapshots and search
for a single heavy subgraph induced by one or several intervals. The work of Semertzidis et
al. [46] explores different formulations for the persistent heavy subgraph problem, including
maximum average density, while Jethava and Beerenwinkel [31] focus solely on maximum
average density.

8 Conclusions

In this work, we consider the problem of finding a sequence of dense subgraphs in a temporal
network. We search for a partition of the network timeline into k non-overlapping intervals,
such that the intervals span subgraphs with maximum total density. To provide a fast solu-
tion for this problem, we adapt recent work on dynamic densest subgraph and approximate
dynamic programming. In order to ensure that the episodes we discover consist of a diverse
set of nodes, we adjust the problem formulation to encourage coverage of a larger set of nodes.
While the modified problem is NP-hard, we provide a greedy heuristic, which performs well
on empirical tests.

The problems of temporal event detection and timeline segmentation can be formulated in
various ways depending on the type of structures that are considered to be interesting. Here,
we propose segmentation with respect to maximizing subgraph density. The intuition is that
those dense subgraphs provide a sequence of interesting events that occur in the lifetime of the
temporal network. However, other notions of interesting structures, such as frequency of the
subgraphs, or statistical non-randomness of the subgraphs, can be considered for future work.
In addition, it could be meaningful to allow more than one structure per interval. Another
possible extension is to consider overlapping intervals instead of a segmentation.
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A Supporting proofs

For the ease of notations, let us write [¢] for the one-time stamp interval [z, 7].

Proposition 8 The total profit of optimal solution of k- DENSEST- EPISODES is a strictly
increasing function of the number of segments k and reaches its maximum when k is equal
to the number of intervals.

Proof Given a temporal graph G = (V, 7, E) with m time stamps,
let Sk = {(Ik, Hé‘) },for € =1,..., k and be the solution for k- DENSEST- EPISODES for

some k < m. Let S8 = [(Ik’, Hé")], for € = 1, ...,k be the solution for k- DENSEST-

EPISODES for some other X' = k + 1.
We will show that the profit value for S is less than the profit value for S*: lezl d(H f ) <

Yioi d(Hf).
Denote the profit of a solution S as Pr(S).
Fixsome £ € [1, ..., k] so that the corresponding episode ((/ é‘ Hlf‘ )) of S¥ has the interval

1 f with more than one time stamp. By the problem definition, H, é‘ is the densest subgraph of
the interval Ié‘. Let (E*, V*) be edges and nodes of Hlf‘. Now consider an arbitrary split of
1 é‘ into L and R non-empty intervals and construct a new sequence of episodes S’ with k + 1
episode, which is the same as S¥ except for the split episode Ilf‘.

Let E*[L] be the subset of E*, which appear in L, and E*[R] be the subset of E*, which
appear in R. Similarly, define V*[L] and V*[R].

Now the followilzg is true fo*r the density of the densest subgraph in L:

Gty 2251 22 B

The same inequality can be written for d*(G[R]).

Also [E*[L]| + |E*[R]| = |E¥|.

Thus,

d*(GIL)) +d*(GIR]) = 4"FIEZEIL > 4150 = 2d*(GLI{)) > d*(GLI{).

This leads to the larger profit of segmentation S”: Pr(S¥) < Pr(S').

Splitting the interval 1 é‘ into L and R gives a k 4+ 1 segmentation, which profit is by
optimality of S¥ should be not larger than the profit of SK': Pr(s’)y < Pr(s¥).

Thus, Pr(S%) < Pr(k/) and we conclude the proof. O

Similar statement can be proven for k- DENSEST- EPISODES- EC in the same way: As cover
is a nonnegative and non-decreasing function of the subgraphs (Proposition 6), splitting an
episode is still always beneficial.

References

1. Alvarez-Hamelin J I, Dall’Asta L, Barrat A, Vespignani A (2006) Large scale networks fingerprinting
and visualization using the k-core decomposition. In: NIPS
2. Andersen R, Chellapilla K (2009) Finding dense subgraphs with size bounds. In: WAW, pp 25-37

@ Springer


http://creativecommons.org/licenses/by/4.0/

P. Rozenshtein et al.

20.

21.

22.

23.

24.
25.

26.

217.
28.

29.
30.

31.

32.

33.
34.

Angel A, Sarkas N, Koudas N, Srivastava D (2012) Dense subgraph maintenance under streaming edge
weight updates for real-time story identification. PLVDB 5(6):574-585

Asahiro Y, Iwama K, Tamaki H, Tokuyama T (2000) Greedily finding a dense subgraph. J Algorithms
34(2):203-221

Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary
behavior of interaction graphs. TKDD 3(4):16

. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks:

membership, growth, and evolution. In: KDD, pp 44-54

Balalau OD, Bonchi F, Chan T, Gullo F, Sozio M (2015) Finding subgraphs with maximum total density
and limited overlap. In: WSDM, pp 379-388

Balalau O D, Castillo C, Sozio M (2018) Evidense: a graph-based method for finding unique high-impact
events with succinct keyword-based descriptions. In: Proceedings of the twelfth international conference
on web and social media, ICWSM, pp 560-563

Bellman R (2013) Dynamic programming, Courier Corporation

Bellman R, Kotkin B (1962) On the approximation of curves by line segments using dynamic program-
ming. II, Technical report, RAND CORP SANTA MONICA CALIF

. Berlingerio M, Bonchi F, Bringmann B, Gionis A (2009) Mining graph evolution rules. In: ECML PKDD,

pp 115-130

Berlingerio M, Pinelli F, Calabrese F (2013) Abacus: frequent pattern mining-based community discovery
in multidimensional networks. DMKD 27(3):294-320

Beutel A, Xu W, Guruswami V, Palow C, Faloutsos C (2013) Copycatch: stopping group attacks by
spotting lockstep behavior in social networks. In: WWW, pp 119-130

Bhattacharya S, Henzinger M, Nanongkai D, Tsourakakis C (2015) Space-and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic streams. In: STOC, pp 173-182

Charikar M (2000) Greedy approximation algorithms for finding dense components in a graph. In:
APPROX, pp 84-95

Chen J, Saad Y (2012) Dense subgraph extraction with application to community detection. TKDE
24(7):1216-1230

Danisch M, Chan T H, Sozio M (2017) Large scale density-friendly graph decomposition via convex
programming. In: Proceedings of the 26th international conference on World Wide Web, WWW 2017

. DiTursi D, Ghosh G, Bogdanov P (2017) Local community detection in dynamic networks.

arXiv:1709.04033

. Epasto A, Lattanzi S, Sozio M (2015) Efficient densest subgraph computation in evolving graphs. In:

WWW, pp 300-310

Esfandiari H, Hajiaghayi M, Woodruff D (2015) Applications of uniform sampling: Densest subgraph
and beyond. arXiv:1506.04505

Feder T, Motwani R (1995) Clique partitions, graph compression and speeding-up algorithms. JCSS
51(2):261-272

Fratkin E, Naughton BT, Brutlag DL, Batzoglou S (2006) Motifcut: regulatory motifs finding with max-
imum density subgraphs. Bioinformatics 22(14):e150—e157

Galbrun E, Gionis A, Tatti N (2014) Overlapping community detection in labeled graphs. DMKD 28(5—
6):1586-1610

Galbrun E, Gionis A, Tatti N (2016) Top-k overlapping densest subgraphs. DMKD 30(5):1134-1165
Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric maximum flow algorithm and applications.
SIAM J. Comput. 18:30-55

Gibson D, Kumar R, Tomkins A (2005) Discovering large dense subgraphs in massive graphs. In: PVLDB,
pp 721-732

Goldberg A V (1984) Finding a maximum density subgraph, University of California Berkeley

Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social
networks. In: ASONAM

Guha S, Koudas N, Shim K (2001) Data-streams and histograms. In: STOC, pp 471-475

Herndndez C, Navarro G (2012) Compressed representation of web and social networks via dense sub-
graphs. In: SIGIR, pp 264-276

Jethava V, Beerenwinkel N (2015) Finding dense subgraphs in relational graphs. In: ECML PKDD,
pp 641-654

Karande C, Chellapilla K, Andersen R (2009) Speeding up algorithms on compressed web graphs. Internet
Math 6:373-398

Khuller S, Saha B (2009) On finding dense subgraphs. In: ICALP

Li R-H, Yu JX, Mao R (2014) Efficient core maintenance in large dynamic graphs. TKDE 26(10):2453—
2465

@ Springer


http://arxiv.org/abs/1709.04033
http://arxiv.org/abs/1506.04505

Finding events in temporal networks: segmentation meets

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.
45.

46.

47.
48.

49.

50.

51

Lin H, Bilmes J (2011) A class of submodular functions for document summarization. In: ACL, pp
510-520

Lin Y-R, Chi Y, Zhu S, Sundaram H, Tseng B L (2008) Facetnet: a framework for analyzing communities
and their evolutions in dynamic networks. In: WWW, pp 685-694

Makino K, Uno T (2004) New algorithms for enumerating all maximal cliques. In: SWAT, pp 260-272
McGregor A, Tench D, Vorotnikova S, Vu HT (2015) Densest subgraph in dynamic graph streams. In:
MECS. Springer, Berlin

Mitzenmacher M, Pachocki J, Peng R, Tsourakakis C, Xu SC (2015) Scalable large near-clique detection
in large-scale networks via sampling. In: KDD, pp 815-824

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-
dependent, multiscale, and multiplex networks. Science 328(5980):876-878

Myers SA, Leskovec J (2014) The bursty dynamics of the twitter information network. In: WWW, pp 913—
924

Nemhauser G, Wolsey L, Fisher M (1978) An analysis of approximations for maximizing submodular
set functions. Math Progr 14(1):265-294

Orlin JB (2013) Max flows in o (nm) time, or better. In: Proceedings of the forty-fifth annual ACM
symposium on Theory of computing

Rozenshtein P, Tatti N, Gionis A (2017) Finding dynamic dense subgraphs. TKDD 11(3):27

Saha B, Hoch A, Khuller S, Raschid L, Zhang X-N (2010) Dense subgraphs with restrictions and appli-
cations to gene annotation graphs. In: RECOMB

Semertzidis K, Pitoura E, Terzi E, Tsaparas P (2018) Finding lasting dense subgraphs. Data Mining and
Knowledge Discovery

Tatti N (2018) Strongly polynomial efficient approximation scheme for segmentation. arXiv:1805.11170
Taylor D, Caceres RS, Mucha PJ (2017) Super-resolution community detection for layer-aggregated
multilayer networks. Phys Rev X 7(3):031056

Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the densest subgraph: extracting
optimal quasi-cliques with quality guarantees. In: KDD, pp 104-112

Tsourakakis CE (2014) A novel approach to finding near-cliques: the triangle-densest subgraph problem.
arXiv:1405.1477

Viswanath B, Mislove A, Cha M, Gummadi K (2009) On the evolution of user interaction in facebook,
In: WOSN, pp 3742

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Polina Rozenshtein received a M.Sc. degree and an Ph.D. degree from
Aalto University, Espoo, Finland, in 2014 and 2018. She is currently a
Senior Data Scientist at Nordea Data Science Lab, Helsinki, Finland.
Prior to that, she was a postdoctoral researcher in Data Mining Group
of Computer Science Department at Aalto University. Her research
interests include data mining, combinatorial optimization, dynamic
graph mining, social networks analysis, computational social science,
and data analysis for social good.

@ Springer


http://arxiv.org/abs/1805.11170
http://arxiv.org/abs/1405.1477

P. Rozenshtein et al.

@ Springer

Francesco Bonchi is Deputy Director at the ISI Foundation, Turin, Italy,
with responsibility over the Industrial Research area. At ISI Founda-
tion, he is also Research Leader for the “Algorithmic Data Analytics”
group. He is also (part-time) Research Director for Big Data & Data
Science at Eurecat (Technological Center of Catalunya), Barcelona.
Previously, he was Director of Research at Yahoo Labs Barcelona,
where he was leading the Web Mining Research group. He has been
the General Chair of IEEE DSAA 2018, PC Chair of ECML PKDD’18,
ACM HT’17, IEEE ICDM’ 16, ECML PKDD 2010. He is a member of
the Steering Committee of ECML PKDD and IEEE DSAA and asso-
ciate editor of many journals in the data management and mining area
(IEEE TBD, IEEE TKDE, ACM TKDD, ACM TIST, DMKD). More
information at http://www.francescobonchi.com/.

Aristides Gionis is a professor in the Department of Computer Science
in Aalto University. He is currently a fellow in the ISI foundation,
Turin, while he has been a visiting professor in the University of Rome.
Previously, he has been a senior research scientist and group leader
in Yahoo! Research, Barcelona. He obtained his Ph.D. in 2003 from
Stanford University, USA. He is currently serving as an action editor
in the Data Management and Knowledge Discovery Journal (DMKD),
an associate editor in the ACM Transactions on Knowledge Discovery
from Data (TKDD), and an associate editor in the ACM Transactions
on the Web (TWEB). He has contributed in several areas of data sci-
ence, such as algorithmic data analysis, Web mining, social media anal-
ysis, data clustering, and privacy-preserving data mining. His current
research is funded by the Academy of Finland (Projects Nestor, Agra,
AIDA) and the European Commission (Project SoBigData).

Mauro Sozio is currently associate professor in the Department of Com-
puter Science at Telecom ParisTech University in Paris, France. Pre-
viously, he held a visiting scientist position at IBM Almaden (USA)
and a senior researcher position at the Max-Planck Institute for Infor-
matics (Germany). He received his Ph.D. in computer science from
“Sapienza” University of Rome in 2007. He has contributed in sev-
eral research areas of computer science, such as graph mining and
social network analysis, approximation algorithms, and distributed
algorithms. He serves or he has served as PC or senior PC member in
top venues for data mining, the Web, and databases such as TheWeb-
Conf, KDD, PVLDB, ICDM, and others where he has also published
more than 20 research papers.


http://www.francescobonchi.com/

Finding events in temporal networks: segmentation meets

Nikolaj Tatti is an associate professor at University of Helsinki. Previ-
ously, he was a senior data scientist at F-Secure, a HIIT research fellow
in Aalto University, and an FWO postdoctoral fellow in University of
Antwerp. He received his Ph.D. in 2008 from Helsinki University of
Technology, Finland. His current research interest is developing and
analyzing new data mining methodology with diverse applications. He
has published over 60 peer-reviewed papers in top data mining confer-
ences and journals.

@ Springer



	Finding events in temporal networks: segmentation meets densest subgraph discovery
	Abstract
	1 Introduction
	2 Problem formulation
	3 Approximate dynamic programming
	4 Encouraging larger and more diverse subgraphs
	4.1 k static overlapping densest subgraphs
	4.2 Greedy dynamic programming

	5 Experimental evaluation
	5.1 Synthetic data
	5.2 Real-world data
	5.3 Optimal baseline
	5.4 Results on synthetic datasets
	5.5 Results on real-world datasets
	5.6 Running time and scalability
	5.7 Subgraphs with larger node coverage—static graphs
	5.8 Subgraphs with larger node coverage—dynamic graphs
	5.9 Parameter selection

	6 Case study
	7 Related work
	8 Conclusions
	Acknowledgements
	A Supporting proofs
	References




