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Abstract—In this paper we study the problem of discovering
a timeline of events in a temporal network. We model events
as dense subgraphs that occur within intervals of network
activity. We formulate the event-discovery task as an optimization
problem, where we search for a partition of the network timeline
into k non-overlapping intervals, such that the intervals span
subgraphs with maximum total density. The output is a sequence
of dense subgraphs along with corresponding time intervals,
capturing the most interesting events during the network lifetime.

A naı̈ve solution to our optimization problem has polynomial
but prohibitively high running time complexity. We adapt existing
recent work on dynamic densest-subgraph discovery and ap-
proximate dynamic programming to design a fast approximation
algorithm. Next, to ensure richer structure, we adjust the problem
formulation to encourage coverage of a larger set of nodes. This
problem is NP-hard even for static graphs. However, on static
graphs a simple greedy algorithm leads to approximate solution
due to submodularity. We extended this greedy approach for the
case of temporal networks. However, the approximation guaran-
tee does not hold. Nevertheless, according to the experiments, the
algorithm finds good quality solutions.

I. INTRODUCTION

Real-world networks are highly dynamic in nature, with

new relations (edges) being continuously established among

entities (nodes), and old relations being broken. Analyzing the

temporal dimension of networks can provide valuable insights

about their structure and function, for instance, it can reveal

temporal patterns, concept drift, periodicity, temporal events,

etc. In this paper we focus on the problem of finding dense sub-
graphs, a fundamental graph-mining primitive. Applications

include community detection in social networks [1]–[3], gene

expression and drug-interaction analysis in bioinformatics [4],

[5], graph compression and summarization [6]–[8], spam and

security-threat detection [9], [10], and more.

When working with temporal networks one has first to

define how to deal with the temporal dimension, i.e., how to

identify which are the temporal intervals in which the dense

structures should be sought. Instead of defining those intervals

a-priori, in this paper we study the problem of automatically
identifying the intervals that provide the most interesting
structures. We consider a subgraph interesting if it boasts

high density. As a result, we are able to discover a sequence

of dense subgraphs in the temporal network, capturing the

evolution of interesting events that occur during the network

lifetime. As a concrete example, consider the problem of story
identification in online social media [11], [12]: the main goal

is to automatically discover emerging stories by finding dense

subgraphs induced by some entities, such as twitter hash-

tags, co-occurring in a social media stream. In our case, we

are additionally interested in understanding how the stories

evolve over time. For instance, as one story wanes and another

one emerges, one dense subgraph among entities dissipates

and another one appears. Thus, by segmenting the timeline

of the temporal network into intervals, and identifying dense

subgraphs in each interval, we can capture the evolution and

progression of the main stories over time.

As another example, consider a collaboration network,

where a sequence of dense subgraphs in the network can reveal

information about the main trends and topics over time, along

with the corresponding time intervals.

Challenges and contributions. The problem of finding the

k densest subgraphs in a static graph has been considered

in the literature from different perspectives. One natural idea

is to iteratively (and greedily) find and remove the densest

subgraphs [13]. More recent works consider finding k densest

graphs with limited overlap [14], [15]. However, these ap-

proaches do not generalize to temporal networks.

For temporal networks, to our knowledge, there are only few

papers that consider the task of finding temporally-coherent

densest subgraphs. The most similar to our work aims at

finding a heavy subgraph present in all, or k, snapshots [16].

Another related work focuses on finding a dense subgraph cov-

ered by k scattered intervals in a temporal network [17]. Both

of these methods, however, find a single densest subgraph.

In this paper, instead, we aim at producing a segmentation

of the temporal network that (i) captures dense structures

in the network; (ii) exhibits temporal cohesion; (iii) spans

the whole history of the network; and (iv) is amenable to

direct inspection and temporal interpretation. Towards this goal

we formulate the problem of k-DENSEST-EPISODES, which

requires to find a partition of the temporal domain into k non-

overlapping intervals, such that the intervals span subgraphs

with maximum total density. The output is a sequence of dense

subgraphs along with corresponding time intervals, capturing

the most interesting events during the network lifetime.

A naı̈ve solution to this problem has polynomial but

prohibitively-high running-time complexity. Thus, we adapt

existing recent work on dynamic-densest subgraph [18] and

approximate dynamic programming [19] to design a fast
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approximation algorithm.
Next we shift our attention to encouraging coverage of a

larger set of nodes, so as to produce richer, more interesting

structures. The resulting new problem formulation turns out

to be NP-hard even for the case of static graphs. However, on

static graphs a simple greedy algorithm leads to approximate

solution thanks to the submodularity of the objective function.

Following this observation, we extended this greedy approach

for the case of temporal networks. Despite the fact that the

approximation guarantee does not carry on when generalizing

to the temporal case, our experimental evaluation indicates that

the method produces solutions of very high quality.
The contributions of this paper are summarised as follows:

• We introduce (Section II) the k-DENSEST-EPISODES

problem and show that it has a polynomial time exact

algorithm, which is however cubic thus unpractical.

• By leveraging recent work on dynamic densest subgraph

and approximate dynamic programming we achieve a fast

algorithm with approximation guarantees (Section III).

• We then (Section IV) extend the problem formulation to

encourage coverage of a larger set of nodes. We show

that the resulting problem is NP-hard even for the case of

static graph. However, we show on static graphs a simple

greedy algorithm leads to approximate solution due to

submodularity; then we extend this greedy approach for

the case of temporal networks.

• Experiments on synthetic and real-world datasets (Sec-

tion V), and a case study on Twitter data (Section

VI) confirm that our methods are efficient and produce

meaningful and high-quality results.

Due to space limitations some of the proofs are omitted and

available in the extended version.1

II. PROBLEM FORMULATION

We are given a temporal graph G = (V, T , τ), where V
denotes the set of nodes, T = [0, 1, . . . , tmax] � N is a

discrete time domain, and τ : V × V × T → {0, 1} is a

function defining for each pair of nodes u, v ∈ V and each

timestamp t ∈ T whether edge (u, v) exists in t. We denote

E = {(u, v, t) | τ(u, v, t) = 1} the set of all temporal

edges. Given a temporal interval T = [t1, t2] � T , let

G[T ] = (V [T ], E[T ]) be the subgraph induced by the set of

temporal edges E[T ] = {(u, v) | (u, v, t) ∈ E ∧ t ∈ T}.
Definition 1 (Episode). Given a temporal graph G =
(V, T , τ) we define an episode as a pair (I,H) where I � T
is a temporal interval and H is a subgraph of G[I].

Our goal is to find a set of interesting episodes along the

lifetime of the temporal graph. In particular, our measure of

interestingness is the density of the subgraph in the episodes.

We adopt the widely-used notion of density of a subgraph

H = (V (H), E(H)) as the average degree of the nodes in the

subgraph, i.e., d(H) = |E(H)|
|V (H)| . Observe that this definition is

not the only choice, however, such a notion of density enjoys

the following nice properties: It can be optimized exactly [20]

1https://arxiv.org/abs/1808.09317

and approximated efficiently [21], while a densest subgraph

can be computed in real-world graphs containing up to tens

of billions of edges [22].

Problem 1 (k-DENSEST-EPISODES). Given a temporal graph
G = (V, T , τ) and an integer k ∈ N, find a set of k episodes
S = {(I�, H�)}, for � = 1, . . . , k such that the {I�} are
disjoint intervals and

∑k
�=1 d(H�) is maximized.

A solution for Problem 1 can be computed in polynomial

time. To see this, let S∗ be an optimum solution and let

I(S∗) = {I� , � = 1, . . . , k} and G(S∗) = {H� , � =
1, . . . , k}. We can assume without loss of generality that the

union of the intervals in I(S∗) results in the set of time stamps

T , that is, I(S) is a k-segmentation of T . Moreover, a graph

H� ∈ G(S∗) is the densest subgraph of G(I�), and can be

found in O(nm log n) time [20], [23] or in O(nm log(n2/m))
time [24] (where n and m denote the number of nodes and

edges in G(I�) respectively). The optimal segmentation can

be solved with a standard dynamic programming approach,

requiring O(km2) steps [25]. This brings the total running

time to O(km3n log n) or O(km3n log(n2/m)).

III. APPROXIMATE DYNAMIC PROGRAMMING

The simple algorithm discussed in the previous section has

a running time, which is prohibitively expensive for large

graphs. In this section we develop a fast algorithm with

approximation guarantees.

The derivations below closely follows the ones in [19],

which improves [26]. However, we cannot use those results

directly: both papers work with minimization problems, while

leveraging the fact that the profit of an interval is not less

than the profit of its subintervals (monotone non-decreasing).

In contrast, our problem can be viewed as a minimization

problem with monotone non-increasing profit function.

Given a time interval T = [t1, t2], let us write d∗(T ) =
maxH⊆G(T ) d(H). For simplicity, we define d∗([t1, t2]) = 0
if t2 < t1. Problem 1 is now a classic k-segmentation problem

of T maximizing the total sum of scores d∗(T ) for individual

time intervals. For notation simplicity, we assume that the all

timestamps T are enumerated by integers from 1 to r.

Let o[i, �] be the profit of optimal �-segmentation using only

the first i time stamps. It holds:

o[i, �] = max
j<i

o[j, �− 1] + d∗(j + 1, i),

and o[i, k] can be computed recursively. Denote the approx-

imate profit of optimal �-segmentation as s[i, �]. The main

idea behind the speed-up is not to test all possible values of j.

Instead, we are going to keep a small set of candidates, denoted

by A, and only use those values for testing. The challenge is

how to keep A small enough while at the same time guaran-

tee the approximation ratio. The pseudo-code achieving this

balance is given in Algorithm 1, while a subroutine that keeps

the candidate list short is given in Algorithm 2. Algorithm 1

executes a standard dynamic programming search: it assumes

that partition of i′ < i first data points into � − 1 intervals

is already calculated and finds the best last interval [a, i]
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Algorithm 1: ApproxDP(k, ε), computes k-segmentation

with ε-approximation guarantee

Input: number of intervals k, parameter ε
Output: approximate solution s[i, �] for i ∈ [1, r],

� ∈ [1, k]
1 for i = 1, . . . , r do s[i, 1] = d∗([1, i]);
2 for � = 2, . . . , k do
3 A = [];
4 for i = 1, . . . , r do
5 add i to A;

6 s[i, �] = max{s[i− 1, �], s[i, �−
1],maxa∈A(s[a− 1, �− 1] + d∗([a, i]))};

7 A = SPRS(A, s[i, �], �, ε)
8 end
9 end

10 return s

Algorithm 2: SPRS(A, σ, �, ε), a subroutine keeping the

candidate list short.

Input: candidates A, sparsification factor σ = s[i, �],
current number of intervals �, approximation

parameter ε
Output: sparsified A

1 δ = σ ε
k+�ε ;

2 j = 1;

3 while j < |A| − 1 do
4 if s[aj+2, �− 1]− s[aj , �− 1] ≤ δ then remove aj+1

from A;

5 else j = j + 1;

6 end
7 return A

for partitioning of i first points into l intervals. However, it

considers not all possible candidates [a, i], but only a sparsified

list, which guarantees to preserve a quality guarantee. The

sparsified list is built for a fixed number of intervals � starting

from empty list. Intuitively, it keeps only candidates A = [aj ]
with significant difference s[aj , � − 1]. Significance of the

difference depends on the current best profit s[i, �]: the larger

the value of the solution found, the less cautions we can be

about lost candidates and the coarser becomes A. Thus, we

need to refine A by Algorithm 2 after each processed i.

Let us first prove that ApproxDP yields an approximation

guarantee, assuming that d∗(·) is calculated exactly.

Proposition 1. Let s[i, �] be the profit table constructed by
ApproxDP (k, ε). Then s[i, �]( �εk + 1) ≥ o(i, �).

To prove the final result, let us first fix � and let Ai be the

set of candidates in the beginning of round i. Let δi be the

value of δ in Algorithm 2, called on iteration i.

Lemma 1. For every b ∈ [1, i − 1], there is aj , aj+1 ∈ Ai

with aj ≤ b ≤ aj+1, such that

s[aj−1, �−1]+d∗([aj , i]) ≥ s[b−1, �−1]+d∗([b, i])−δi−1.

Proof. We say that a list of numbers A = {aj} is i-dense, if

s[aj+1− 1, �− 1]− s[aj − 1, �− 1] ≤ δi−1 or aj+1 = aj +1,
(1)

for every aj ∈ A with j < |A|. We first prove by induction

over i that Ai is i-dense.

Assume that Ai−1 is (i− 1)-dense. SPRS never deletes the

last element, so i−1 ∈ Ai−1, and Ai−1∪{i} is (i−1)-dense.

Note that δi−2 ≤ δi−1, because s[i, �] is monotonic, s[i, �] ≥
s[i − 1, �], due to explicit check on line 5 of ApproxDP.

Thus, Ai−1 ∪ {i} is i-dense. Since Ai = SPRS(Ai−1 ∪ {i}),
and SPRS does not create gaps larger than δi−1, Ai is i-dense.

Let aj be the largest element in Ai, such that aj ≤ b.
Then either aj ≤ b < aj+1 or b = a|Ai| and j = a|Ai|.
Due to monotonicity, s[aj+1, � − 1] ≥ s[b, � − 1] and gives

s[b− 1, �− 1]− s[aj − 1, �− 1] ≤ δi−1 for the first case. The

second case is trivial.

Due to monotonicity d∗([aj , i]) ≥ d∗([b, i]). This concludes

the proof.

We can now complete the proof.

Proof of Proposition 1. We will prove the result with induc-

tion over �. Let α = (1+ ε
k (�−1)). Let b be the starting point

of the last interval of optimal solution o[i, �], and let aj as

given by Lemma 1. Upper bound δi−1 = s[i−1, �] ε
k+ε(�−1) ≤

s[i, �] ε
k+ε(�−1) = s[i, �] ε

αk . Then

αs[i, �] ≥ α(s[aj − 1, �− 1] + d∗([aj , i]))
≥ α(s[b− 1, �− 1] + d∗([b, i])− δi−1)

≥ o[b− 1, �− 1] + d∗([b, i])− αδi−1

≥ o[i, �]− s[i, �]
ε

k
.

As a result, s[i, �](1 + ε
k �) ≥ o[i, �]).

Let us now address the computational complexity.

Proposition 2. The running time of ApproxDP is O(k
2

ε r).

Proof. Fix i and �, and let cj = s[aj , �], where aj ∈ Ai.

Then cj is monotonically increasing sequence upper bounded

by s[i− 1, �], and having consecutive elements being at least

δi−1 apart. Counting conservatively, this leads to

|Ai| ≤ 2 +
⌈s[i− 1, �]

δi−1

⌉
≤ 2 +

⌈k(1 + ε)

ε

⌉
∈ O(k/ε).

Since we have kr cells in s, the result follows.

Since computing d∗ requires O(nm log n) time, this gives

us a total running time of O(nmr k2

ε ). We further speed up our

algorithm by approximating the value d∗ by means of one of

the approaches developed in [18]. In particular, we employ the

algorithm that maintains a 2(1 + ε)-approximate solution for

the incremental densest subgraph problem (i.e. edge insertions

only), while boasting a poly-logarithmic amortized cost. We

shall refer to such an algorithm as ApprDens.

ApprDens allows us to efficiently maintain the approxi-

mate density of the densest subgraph d∗([a, i]) for each a in

Ai in ApproxDP, as larger values of i are processed and
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edges are added. Whenever we remove an item a from Ai in

SPRS we also drop the corresponding instance of ApprDens.

From the fact that an approximate densest subgraph can be

maintained with poly-logarithmic amortized cost, it follows

that our algorithm boasts quasi-linear running time.

Proposition 3. ApproxDP combined with ApprDens runs
in O( k2

ε1ε22
m log2 n), where ε1 and ε2 are the respective ap-

proximation parameters for ApproxDP and ApprDens.

Proof. Let mj be the number of edges added to the graph

corresponding to aj before it is deleted. The same argument

as in the proof of Proposition 2 states that
∑

i mi ∈ O(k
2

ε1
m).

Theorem 4 in [18] states that maintaining the graph with mi

edges requires O(miε
−2
2 log2 n) time. Combining these two

results proves the proposition.

When combining ApproxDP with ApprDens, we wish to

maintain the same approximation guarantee of ApprDens.

Recall that ApproxDP leverages the fact that the profit func-

tion is monotone non-increasing. Unfortunately, ApprDens
does not necessarily yield a monotone score function, as the

density of the computed subgraph might decrease when a

new edge is inserted. This can be easily circumvented by

keeping track of the best solution, i.e. the subgraph with

highest density. The following proposition holds.

Proposition 4. ApproxDP combined with ApprDens yields
a 2(1 + ε1)(1 + ε2)-approximation guarantee.

Proof. Let d∗a(T ) be the density of the graph returned by

ApprDens for a time interval T . Let O be the optimal k-

segmentation, and let q1 =
∑

I∈I(O) d
∗(O) be its score.

Let also q2 =
∑

I∈I(O) d
∗
a(O). Let q3 be the score of the

optimal k-segmentation using d∗a, and let q4 be the score of

the segmentation produced by ApproxDP. Then,

q1 ≤ 2(1 + ε2)q2 ≤ 2(1 + ε2)q3 ≤ 2(1 + ε2)(1 + ε1)q4,

completing the proof.

We will refer to this combination of ApproxDP with

ApprDens as Algorithm KGAPPROX.

IV. ENCOURAGE COVERAGE

Problem 1 is focused on total density maximization, thus

its solution can contain graphs which are dense, but union of

their node sets cover only a small part of the network. Such

segmentation is useful when we are interested in the densest

temporally coherent subgraphs which can be understood as

tight cores of temporal clusters. However, segmentations with

larger but less dense subgraphs, covering a larger fraction of

nodes, can be useful to get a high-level explanation of the

whole temporal network. To allow for such segmentations we

extend Problem 1 to take node coverage into account.

Let xv(G) = |{Gi ∈ G : v ∈ Gi, Gi ∈ G}| be the number

of subgraphs in G, which include node v.

Here we consider a generalized cover functions of the shape

cover(G) =
∑
v∈V

w(xv(G)),

where w is a non-negative non-decreasing concave function of

xv(G). When w(xv(G)) is a 0-1 indicator function, function

cover(G) is a standard cover, which is intuitive and easy

to optimize by greedy algorithm. Another instance of the

generalized cover function, inspired by text-summarization

research [27], is w(xv(G)) =
√

xv(G). It ensures that the

marginal gain of a node decreases proportionally to the number

of times the node is covered.

Problem 2. Given a temporal graph G = (V,E), integer k,
parameter λ ≥ 0. Find a k-segmentation S = {(Ii, Gi)} of
G, such that profit(S) =

∑
Gi∈G d(Gi) + λ × cover(G) is

maximized.

Proposition 5. There is no polynomial solution for Problem 2
unless P=NP.

Proposition 6. Function cover(G) is a non-negative non-
decreasing submodular function of subgraphs.

Proof. For a fixed v ∈ V function xv(G) is non-decreasing

modular (and submodular): for any set of subgraphs X and a

new subgraph x holds that xv(X ∪ {x}) − xv(X) = 1 if v
belongs to x and does not belong to any subgraph in X . Oth-

erwise 0. By property of submodular functions, composition

of concave non-decreasing and submodular non-decreasing is

non-decreasing submodular. Function cover(G) is submodular

non-decreasing as a non-negative linear combination. Non-

negativity follows from non-negativity of w.

A. K static densest subgraphs and generalized average degree

Before going into the temporal segmentation, we briefly

consider the static case:

Problem 3. Given a static graph H = (V,E′), integer k,
λ ≥ 0. Find a set of k subgraphs H = {Hi ∈ H}, such that
profitST =

∑
Hi∈H d(Hi) + λ · cover(H) is maximized.

To solve this problem we can search greedily over sub-

graphs. Let Hi−1 = {H1, . . . , Hi−1}, and define marginal

node gain, given weight function w, as δv(Hi,Hi−1 | w) =
w(xv(Hi−1 ∪ {Hi}))− w(xv(Hi−1)). Then denote marginal

gain of subgraph Hi given already selected graphs Hi−1 as

χ(Hi,Hi−1 | w) = d(Hi) + λ
∑
v∈Hi

δv(Hi,Hi−1 | w).

Greedy algorithm for Problem 3 consequently builds the set

H by adding Hi, which maximizes gain χ(Hi,Hi−1). If we

can find Hi optimally, such greedy gives 1−1/e approximation

due to submodular maximization over cardinality constrains

(see [28] for this classic result, Euler’s number e ≈ 2.71828).

Problem 4. Given a static graph H = (V,E′), a set of
subgraphs Hi−1 = {H1, . . . , Hi−1}, find graph Hi ∈ H , such
that χ(Hi,Hi−1) is maximized.

Before we proceed, we define a more general and simple

version of Problem 4. First, we note that preselected subgraphs

Hi−1 contribute only to δv(Hi,Hi−1 | w) and this term does

not change through iterations. Thus, once term δv(Hi,Hi−1 |
w) is recalculated we can exclude Hi−1 from consideration.
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Algorithm 3: StaticGreedy
Input: static graph H = (V,E′)
Output: subgraph H̄ ⊆ H which maximizes da(H̄)

1 H̄ = H;

2 while H �= ∅ do
3 v = argminv∈H dega(v | H);
4 H = H \ {v};
5 if da(H) > da(H̄) then H̄ = H;

6 end
7 return H̄

Next, we define a generalized degree as a function of nodes

defined as dega(v | H) =
∑

u∈V \{v} a(v, u | H) with a(v, u |
H) ≥ 0. Let I(v, u | H) be 1, if there is an edge between u and

v in graph H and 0 otherwise. If a(v, u | H) = I(v, u | H),
then dega(v | H) = deg(v | H)—a degree of node v in H .

Denote a half of the average generalized degree of graph H
as da(H) = 1

2|V (H)|
∑

v∈V (H) dega(v | H).

Problem 5. Given a static graph H = (V,E′) find graph
Hi = (V (Hi), E

′(Hi)) ⊆ H , such that a half of the average
generalized degree da(Hi) is maximized.

If a(v, u | H) = I(v, u | H), then the profit of Problem 5 is

the half of average degree da(Hi) = d(Hi). On the other hand,

when a(v, u | H) = I(v, u | H)+2λ|V (H)|δv(Hi,Hi−1 | w),
then Problem 5 is equivalent to Problem 4. Note that in the

latter case a depends on the number of nodes in graph H .

We will continue analysis with Problem 5.

Proposition 7. There is no polynomial solution for Problem 5
unless P=NP.

To solve Problem 5 efficiently we can modify Charikar’s

algorithm for densest subgraphs [21] and obtain 1/2 approxi-

mation guarantee.

Proposition 8. Algorithm 3 gives 1/2 approximation for
Problem 5.

Time complexity of Algorithm 3 is quadratic of number

of nodes (not linear of the edges, like in the case of densest

subgraph), as |V (H)| decreases on each step and we need to

update generalized degree of all nodes, not only neighbors of

the removed node. With a Fibonacci heap time complexity is

Θ(|V |+ |V |(log |V |+ |V |)) = Θ(|V |2).

B. Incremental case

Here we consider the setting of incremental updates for

Problem 5, which may be not interesting by itself, but we

will use it as a subroutine for temporal case.

Given a stream of incremental edge updates to graph H
we would like to find and keep up-to-date a subgraph Hi,

which maximizes da(Hi) for some generalized degree func-

tion dega(u, v | Hi).
To keep Hi updated we can use the data structure and

update procedure designed for the densest subgraph by Epasto

et al. [18]. In the full version of this paper we describe

the approach of Epasto et al. and necessary modifications to

handle generalized degree. We will refer to this extension as

ApprGenDens. The algorithm provides 2(1+ε)-approximate

generalized density densest subgraph using edge insertions.

Similar to the original algorithm, the generalization re-

quires O(|V | + |E|) of space, while running time increases:

O( |V |
2

|E| ε
−2 log2 D) amortized cost per edge insertion, with

D = O(|V |) is the maximum of average generalized degree.

C. Greedy dynamic programming

Similarly to Problem 1, we will use dynamic programming

for Problem 2. However, as the problem is hard we have to

rely on greedy choices of the subgraphs. Thus, the obtained

solution does not have any quality guarantee.

Let M [�, i] be the profit of i first points into � intervals, let

C[�, i] be the set of subgraphs G� = {G1, . . . , G�} selected on

these � intervals, 1 ≤ � ≤ k and 0 ≤ i ≤ m.

Define marginal gain interval [j, i], given that j − 1 are

already segmented into �− 1 interval,

gain([j, i], C[�−1, j−1]) = max
G′⊆G([j,i])

χ(G′, C[�−1, j−1]).

Dynamic programming recurrence:

M [�, i] = max
1≤j≤i+1

M [�− 1, j − 1]

+ gain([j, i], C[�− 1, j − 1]) for 1 < � ≤ k,

M [1, i] =d∗([0, i]) for 0 ≤ i ≤ m,

M [k′, 0] =0 for 1 ≤ k′ ≤ k.

After filling this table, M [k,m] contains the profit of k-

segmentation with subgraph overlaps. C[k,m] will contain

selected subgraphs, the intervals and subgraphs can be recon-

structed, if we keep track of the starting points of selected last

intervals. Note, that profit M [k,m] is not optimal, because

the choice of subgraph Gi depends on the interval and the

previous choices, and there is a fixed order, in which we

explore intervals.

We perform dynamic programming by approximation algo-

rithm ApproxDP, and the densest subgraph for each candidate

interval is retrieved by ApprGenDens. We refer to the

resulting algorithm as KGCVR.

To keep track on number of xv when we construct G we

need to keep frequencies of each node. To avoid extensive

memory costs, in the experiments we use Min-Count sketches.

V. EXPERIMENTS

We evaluate the performance of the proposed algorithms on

synthetic graphs and real-world social networks. The datasets

are described below. Unless specified, we post-process the out-

put of all algorithms and report the optimal densest subgraphs

in the output intervals. Our datasets and implementations are

publicly available.2

2https://github.com/polinapolina/segmentation-meets-densest-subgraph
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A. Synthetic data.

We generate a temporal network with k planted com-

munities and a background network. All graphs are Erdős-

Rényi. The communities G′ have the same density, disjoint

set of nodes, and are planted in non-overlapping intervals.

The background network G includes nodes from all planted

communities G′. The edges of G are generated uniformly on

the timeline. In the typical setup the length of the whole time

interval T is |T | = 1000 time units, while the edges of each

G′ are generated in intervals of length |T ′| = 100 time units.

The densities of the communities and the background network

vary. The number of nodes in G is set to 100.

We test the ability of our algorithms to discover planted

communities in two settings. In the first setting (dataset family

Synthetic1 ) we vary the average degree of the background net-

work from 1 to 6 and fix the density of the planted 5-cliques to

4. Synthetic1 allows to test the robustness against background

noise. In the second setting (dataset family Synthetic2 ) we

vary the density of planted 8-node graphs from 2 to 7, while

the average degree of the background network is fixed to 2.

B. Real-world data.

We use the following real-world datasets: Facebook [29]

is a subset of Facebook activity in the New Orleans regional

community. Interactions are posts of users on each other walls.

The data covers the time period from 9.05.06 to 20.08.06. The

Twitter dataset tracks activity of Twitter users in Helsinki in

year 2013. As interactions we consider tweets that contain

mentions of other users. The Students3 dataset logs activity

in a student online network at the University of California,

Irvine. Nodes represent students and edges represent messages

with ignored directions. Enron:4 is a popular dataset that

contains email communication of senior management in a

large company and spans several years.

For a case study we create a hashtag network from Twitter

dataset (the same tweets from users in Helsinki in year 2013):

nodes represent hashtags – there is an interaction, if two

hashtags occur in the same tweet. The timestamp of the

interaction corresponds to the timestamp of the tweet. We

denote this dataset as Twitter# .

C. Optimal baseline

A natural baseline for KGAPPROX is OPTIMAL, which com-

bines exact dynamic programming with finding the optimal

densest subgraph for each candidate interval. Due to the high

time complexity of OPTIMAL we generate a very small dataset

with 60 timestamps, where each timestamp contains a random

graph with 3–6 nodes and random density. We vary the number

of intervals k and report the value of the solution (without any

post-processing) and the running time in Figure 1. On this toy

dataset KGAPPROX is able to find near-optimal solution, while

it is significantly faster than OPTIMAL.

3http://toreopsahl.com/datasets/#online social network
4http://www.cs.cmu.edu/∼./enron/

objective function value running time (sec.)

Fig. 1. Comparison between optimum and approximate solutions (OPTIMAL

and KGAPPROX). Approximate algorithm was run with ε1 = ε2 = 0.1.
Running time is in seconds.

(a) effect of background noise (b) effect of community density

Fig. 2. Precision, recall and F -measure on synthetic datasets. For plot (a) the
community average degree is fixed to 5 (Synthetic1 dataset), for plot (b) the
background network degree is fixed to 2 (Synthetic2 dataset).

D. Results on synthetic datasets

Next, we evaluate the performance of KGAPPROX on the

synthetic datasets Synthetic1 and Synthetic2 by assessing how

well the algorithm finds the planted subgraphs. We report mean

precision, recall, and F -measure, calculated with respect to

the ground-truth subgraphs. All results are averaged over 100

independent runs.

First, Figure 2(a) depicts the quality of the solution as

a function of background noise. Recall, that the Synthetic1
dataset contains planted 8-node subgraphs with average de-

gree 5. Precision and recall are generally high for all values of

average degree in the background network. However, precision

degrades as the density of the background network increases,

as then it becomes cost-beneficial to add more nodes in the

discovered densest subgraphs.

Second, Figure 2(b) shows the quality of the solution

of KGAPPROX as a function of the density in the planted

subgraphs. In Synthetic2 the density of the background is 2.

Similarly to the previous results, the quality of the solution,

especially recall, degrades much only when the density of the

planted and the background network become similar.

E. Results on real-world datasets

As the optimal partition algorithm OPTIMAL is not scalable

for real datasets, we present comparative results of KGAPPROX

with baselines KGOPTDP and KGOPTDS. The KGOPTDP

algorithm performs exact dynamic programming, but uses an

approximate incremental algorithm for the densest subgraph

search (the incremental framework by Epasto et al. [18]).

Vice versa, KGOPTDS performs approximate dynamic pro-

gramming while calculating the densest subgraph optimally for
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each candidate interval (by Goldberg’s algorithm [20]). Note

that KGOPTDP has 2(1 + εDS)
2 approximation guarantee and

KGOPTDS has (1 + εDP) approximation guarantee. However,

even these non-optimal baselines are quite slow on practice

and we use a subset of 1 000 interactions of Students and

Enron datasets for comparative reporting.

To ensure fairness, we report the total density of the optimal

densest subgraphs in the intervals returned by the algorithms.

In Table I we report the density of the solutions reported

by KGAPPROX, KGOPTDP, and KGOPTDS, as well as their

running time. We experiment with different parameters for the

approximate densest-subgraph search (εDS) and for approxi-

mate dynamic programming (εDP).

For both datasets the best solution was found by KGOPTDS.

This is expected, as this algorithm has the best approximation

factor. The solution cost decreases as εDP increases. On the

other hand, KGOPTDS has the largest running time, which

decreases with increasing εDP, but even with the largest pa-

rameter value (εDP = 2) KGOPTDS takes about an hour.

The KGOPTDP algorithm typically finds the second-best

solution, however it only marginally outperforms KGAPPROX

(e.g., εDS = 0.1), while requiring up to several orders of

magnitude of higher computational time. Naturally, the quality

of the solution degrades with increasing εDS.

The solution quality degrades with increasing the approx-

imation parameters for all algorithms. However, the degra-

dation is not as dramatic as the worst case bound suggests,

and using such an approximation parameter offers significant

speed-up. KGAPPROX provides the fastest estimates of a good

quality for a wide range of approximation parameters. Note

that KGAPPROX is more sensitive to the changes in the quality

of the densest subgraph search regulated by εDS.

F. Running time and scalability

Figure 3 shows running time of KGAPPROX as a function of

the approximation parameters εDS and εDP. The figure confirms

the theory, that is, εDS has significant impact on the running

time, while the algorithm scales very well with εDP.

We demonstrate scalability in Figure 4, plotting the running

time for increasing number of interactions, for Facebook and

Twitter datasets. Recall that the theoretical running time is

O(k2m log n), where n is the number of nodes and m the

number of interactions. In practice, the running time grows fast

for the first thousand interactions and then saturates to linear

dependence. This happens because in the beginning of the

network history the number of nodes grows fast. In addition,

new, denser than previously seen, subgraphs are more likely

to occur. Thus, the approximate densest-subgraph subroutine

has to be computed more often. Furthermore, the number of

intervals k contributes to running time as expected.

G. Subgraphs with larger node coverage — static graphs

Next we evaluate STATICGREEDY. To measure coverage,

we simply count the number of distinct nodes in the output

subgraphs. We use the 10K first interactions of Students
dataset, set k = 20, and test different values of λ. Figure 5

shows the density and the pairwise Jaccard similarity of the

Students Twitter
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Fig. 3. Effect of different approximation parameters in KGAPPROX. k = 20.
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Fig. 4. Scalability testing with εDS = εDP = 0.1.

node sets of the retrieved subgraphs. The subgraphs are shown

in the order they are discovered. Smaller values of λ give larger

density, and larger values of λ give more cover. We observe

that, for all values of λ, in the beginning STATICGREEDY

returns diverse and dense subgraphs, but soon after it returns

identical graphs. We speculate that the algorithm finds all

dense subgraphs that exist in the dataset. Regarding setting λ,

we observe that λ = 0.002 offers a good trade-off in finding

subgraphs of high density and moderate overlap.

H. Subgraphs with larger node coverage — dynamic graphs

Finally we evaluate the performance of KGCVR algorithm.

We vary the parameter λ and compare different characteristics

of the solution, with the solution returned by KGAPPROX. For

different values of λ, Table II shows average density, total

number of covered nodes, average size of the subgraphs, and

average pairwise Jaccard similarity. Although KGCVR does

not have an approximation guarantee, for small values of λ it

finds subgraphs of the density close to KGAPPROX. Similarly

to the static case, λ provides an efficient trade-off between

density and coverage.

VI. CASE STUDY

We present a case study using graphs of co-occurring

hashtags from Twitter messages in the Helsinki region. We

create two subsets of Twitter# dataset: one covering all tweets

in November 2013 and another in December 2013. Figure 6

shows the dense subgraphs discovered by the KGAPPROX

algorithm on these datasets, with k = 4 and εDS = εDP = 0.1.

For the November dataset, KGAPPROX creates a small 1-

day interval in the beginning and then splits the rest time

almost evenly. This first interval includes the nodes movember,

liiga, halloween, and digiexpo, which cover a broad

range of global (e.g., movember and Halloween) and local
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TABLE I
COMPARISON WITH KGOPTDP AND KGOPTDS BASELINES.

Dataset Community density Running time (sec.)

Students 1000

εDS

KGAPPROX 0.01 0.1 1 2 KGOPTDS

εDP

0.01 4.24 4.24 3.82 3.82 6.30
0.1 4.24 4.24 3.82 3.82 6.22
1 4.24 4.24 3.82 3.82 5.76
2 4.24 4.24 3.82 3.82 5.61

KGOPTDP 5.73 5.73 3.82 3.82

εDS

KGAPPROX 0.01 0.1 1 2 KGOPTDS

εDP

0.01 0.62 0.62 0.63 0.64 23678
0.1 0.23 0.23 0.24 0.23 11877
1 0.13 0.26 0.13 0.13 3394
2 0.36 0.20 0.20 0.36 3769

KGOPTDP 162 43.5 29.5 29.5

Enron 1000

εDS

KGAPPROX 0.01 0.1 1 2 KGOPTDS

εDP

0.01 10.4 10.4 10.0 10.5 11.3
0.1 10.3 10.4 10.0 10.3 11.0
1 9.54 9.54 8.80 9.83 11.0
2 7.34 7.34 7.34 7.34 10.8

KGOPTDP 10.5 11.0 10.4 10.4

εDS

KGAPPROX 0.01 0.1 1 2 KGOPTDS

εDP

0.01 56.4 55.5 42.3 31.8 25788
0.1 3.02 2.85 2.07 1.70 16070
1 0.43 0.44 0.29 0.28 7834
2 0.22 0.22 0.23 0.23 3469

KGOPTDP 1654 61.15 17.82 6.07

λ = 0.001 λ = 0.002 λ = 0.003

Fig. 5. Pairwise similarities (3 heatmap plots on the left) and densities (right plot) of subgraphs returned by STATICGREEDY.

events (e.g., game-industry event DigiExpo and Finnish ice-

hockey league). The next interval is represented by a large

variety of well-connected tags related to mtv and media, cor-

responding to the MTV Europe Music Awards’13 on Novem-

ber 10. There are also other ice hockey-related tags, e.g.,

leijonat, and Father’s Day tags, e.g., isänpäivä, which

was on November 13. The third interval is mostly represented

by Slush-related tags; Slush is the annual large startup and tech

event in Helsinki. The last interval is completely dedicated to

ice-hockey with many team names.

There are three major public holidays in December: Fin-

land’s Independence Day on December 6, Christmas on De-

cember 25, and New Year’s Eve on December 31. KGAPPROX

allocates one interval for Christmas and New Year from

December 21 to 31. Ice hockey is also represented in this

interval, as well as in the third interval. Remarkably, the

Independence Day holiday is split into 2 intervals. The first

one is from December 1 to December 6, 3:30pm, and the

corresponding graph has two clusters: the first one containing

general holidays-related tags and the second one is focused on

Independence Day President’s reception. This is a large event

that starts on December 6, 6pm, is broadcasted live, and is

discussed in media for the following days. The second interval

for December 6-9 is a truthful representation of this event.

VII. RELATED WORK

Partitioning a graph in dense subgraphs is a well-established

problem. Many of the existing works adopt as density defi-

nition the average-degree notion [30]–[33]. The densest sub-

graph, under this definition, can be found in polynomial

time [20]. Moreover, there is a 2-approximation greedy algo-

rithm by Charikar [21] and Asahiro [34], which runs in linear

time of the graph size. Many recent works develop methods to

maintain the average-degree densest-subgraph in a streaming

scenario [18], [35]–[38]. Alternative density definitions, such

as variants of quasi-clique, are often hard to approximate or

solve by efficient heuristics due to connections to NP-complete

Maximum Clique problem [13], [39], [40].
A line of work focuses on dynamic graphs, which model

node/edge additions/deletions. Different aspects of network

evolution, including evolution of dense groups, were studied in

this setting [41]–[44]. However, here we use the interaction-

network model, which is different to dynamic graphs, as it

captures the instantaneous interactions between nodes.
Another classic approach to model temporal graphs is to

consider graph snapshots, find structures in each snapshot

separately (or by incorporating information from previous

snapshots), and then summarize historical behavior of the dis-

covered structures [45]–[49]. These approaches usually focus

on the temporal coherence of the dense structures discovered
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TABLE II
RESULTS OF KGCVR WITH k = 5 AND εDS = εDP = 0.1.

Density Cover Size JSim

Dataset λ KGCVR KGAPPROX KGCVR KGAPPROX KGCVR KGAPPROX KGCVR KGAPPROX

Students 1e-6 10.690 11.151 136 130 48.75 37.6 0.1449 0.0951
1e-5 7.0869 11.151 813 130 261.0 37.6 0.0788 0.095
1e-4 5.0273 11.151 889 130 286.0 37.6 0.0910 0.0951

Enron 1e-6 19.995 19.871 38 37 16.0 16.2 0.3619 0.3851
1e-5 19.962 19.871 40 37 17.0 16.2 0.3660 0.3851
1e-4 6.5684 19.871 1144 37 288.8 16.2 0.0808 0.3851

Facebook 1e-8 5.3714 5.3933 83 120 22.75 27.6 0.0185 0.0163
1e-7 4.2749 5.3933 3470 120 882.0 27.6 0.0027 0.0163
1e-6 3.2673 5.3933 4100 120 1228.75 27.6 0.0335 0.0163

Twitter 1e-7 9.9970 10.138 128 152 44.25 54.0 0.1590 0.1673
1e-6 6.5500 10.138 3808 152 1061.75 54.0 0.0837 0.1673
1e-5 3.5389 10.138 4604 152 1379.0 54.0 0.0773 0.1673
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Fig. 6. Subgraphs, discovered in the network of Twitter hashtags Twitter# by KGAPPROX algorithm with k = 4, εDS = εDP = 0.1.

in the snapshots and assume that the snapshots are given. In

this work we aggregate instantaneous interaction into timeline

partitions of arbitrary lengths.

To the best our knowledge, the following works are better

aligned with our approach. A work of Rozenshtein et al. [17]

considers a problem of finding the densest subgraph in a

temporal network. However, first, they do not aim on creating

a temporal partitioning. Second, they are interested in finding

a single dense subgraph whose edges occur in k short time

intervals. On the contrary, in this work we search for an

interval partitioning and consider only graphs that are span

continuous intervals. Other close works are by Jethava and

Beerenwinkel [50] and Semertzidis et al. [16]. However, these

works consider a set of snapshots and search for a single

heavy subgraph induced by one or several intervals. The work

of Semertzidis et al. [16] explores different formulations for

the persistent heavy subgraph problem, including maximum

average density, while Jethava and Beerenwinkel [50] focus

solely on maximum average density.

VIII. CONCLUSIONS

In this work we consider the problem of finding a sequence

of dense subgraphs in a temporal network. We search for a par-

tition of the network timeline into k non-overlapping intervals,

such that the intervals span subgraphs with maximum total

density. To provide a fast solution for this problem we adapt

recent work on dynamic densest subgraph and approximate

dynamic programming. In order to ensure that the episodes
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we discover consist of a diverse set of nodes, we adjust the

problem formulation to encourage coverage of a larger set of

nodes. While the modified problem is NP-hard, we provide a

greedy heuristic, which performs well on empirical tests.
The problems of temporal event detection and timeline

segmentation can be formulated in various ways depending on

the type of structures that are considered to be interesting. Here

we propose segmentation with respect to maximizing subgraph

density. The intuition is that those dense subgraphs provide a

sequence of interesting events that occur in the lifetime of

the temporal network. However, other notions of interesting

structures, such as frequency of the subgraphs, or statistical

non-randomness of the subgraphs, can be considered for future

work. In addition, it could be meaningful to allow more than

one structure per interval. Another possible extension is to

consider overlapping intervals instead of a segmentation.
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