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a b s t r a c t

Dense subgraph discovery is an important graph-mining primitive with a variety of
real-world applications. One of the most well-studied optimization problems for dense
subgraph discovery is the densest subgraph problem, where given an edge-weighted
undirected graph G = (V , E, w), we are asked to find S ⊆ V that maximizes the density
d(S), i.e., half the weighted average degree of the induced subgraph G[S]. This problem
can be solved exactly in polynomial time and well-approximately in almost linear time.
However, a densest subgraph has a structural drawback, namely, the subgraph may
not be robust to vertex/edge failure. Indeed, a densest subgraph may not be well-
connected, which implies that the subgraph may be disconnected by removing only
a few vertices/edges within it. In this paper, we provide an algorithmic framework
to find a dense subgraph that is well-connected in terms of vertex/edge connectivity.
Specifically, we introduce the following problems: given a graph G = (V , E, w) and
a positive integer/real k, we are asked to find S ⊆ V that maximizes the density
d(S) under the constraint that G[S] is k-vertex/edge-connected. For both problems,
we propose polynomial-time (bicriteria and ordinary) approximation algorithms, using
classic Mader’s theorem in graph theory and its extensions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Dense subgraph discovery is an important graph-mining primitive with a variety of real-world applications [21].
xamples include detecting communities and spam link farms in the Web graph [12,20], extracting molecular complexes
n protein–protein interaction networks [3,45], finding experts in crowdsourcing systems [30], and real-time story
dentification from tweets [2].

One of the most well-studied optimization problems for dense subgraph discovery is the densest subgraph problem.
et G = (V , E, w) be a simple undirected graph with edge weight w : E → R>0, where R>0 is the set of positive reals.
Throughout this paper, we assume that |E| ≥ 1, edge-weighted graphs have only positive weights, and G is connected.
For S ⊆ V , let G[S] denote the subgraph induced by S, i.e., G[S] = (S, E(S)), where E(S) = {{u, v} ∈ E | u, v ∈ S}. The
density of S ⊆ V is defined as d(S) = w(S)/|S|, where w(S) is the sum of edge weights of G[S], i.e., w(S) =

∑
e∈E(S) w(e). In

he densest subgraph problem, given a graph G = (V , E, w), we are asked to find S ⊆ V that maximizes d(S). An optimal
olution to this problem is referred to as a densest subgraph.
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Table 1
Details of densest subgraphs G[SDS] in four real-world Web graphs: δ(G[SDS]) represents the minimum
degree of vertices in G[SDS], a trivial upper bound on κ(G[SDS]) and λ(G[SDS]).
Graph |SDS| |E(SDS)| d(S) κ(G[SDS]) λ(G[SDS]) δ(G[SDS])

web-BerkStan 392 40,535 103.41 12 201 201
web-Google 123 3,449 28.04 30 30 30
web-NotreDame 1,367 107,526 78.66 1 155 155
web-Stanford 597 35,456 59.39 60 60 60

Unlike most optimization problems for dense subgraph discovery such as the maximum clique problem [19], the
densest subgraph problem is polynomial-time solvable. Indeed, there are some polynomial-time exact algorithms such as
Goldberg’s flow-based algorithm [22] and Charikar’s linear-programming-based algorithm [8]. Moreover, it was shown by
Charikar [8] that a simple greedy algorithm admits 1/2-approximation in almost linear time. Partially due to its solvability,
the densest subgraph problem has been employed in many real-world applications.

However, it can be seen that a densest subgraph has a structural drawback, that is, the subgraph may not be robust
to vertex/edge failure. To see this, let us introduce some terminology. A vertex subset S ⊂ V is called a vertex separator
f G if its removal disconnects G, i.e., partitions G into at least two non-empty graphs between which there are no edges.
ote that a clique has no vertex separator. An edge subset F ⊆ E is called a cut of G if its removal disconnects G. The
eight of a cut is defined to be the sum of weights of edges within it. The vertex connectivity of G, denoted by κ(G), is
he smallest cardinality of a vertex separator of G if G is not a clique and |V | − 1 otherwise. The edge connectivity of G,
enoted by λ(G), is the smallest weight of a cut of G.
A densest subgraph does not necessarily have large vertex/edge connectivity, which means that the subgraph may be

isconnected by removing only a few vertices/edges within it. For instance, consider an unweighted graph G (i.e., w(e) = 1
or every e ∈ E) consisting of two equally-sized large cliques that share only a few vertices or are connected by only a
ew edges. In both cases, the entire graph is a densest subgraph, but it is easily disconnected by removing the common
ertices in the former case and the bridging edges in the latter case.
In this paper, we provide an algorithmic framework to find a dense subgraph that is well-connected in terms of

ertex/edge connectivity. An (edge-weighted) graph G is said to be k-vertex-connected if κ(G) is no less than k. On the
ther hand, an edge-weighted graph G is said to be k-edge-connected if λ(G) is no less than k. Using these criteria, we
ntroduce the following problems:

roblem 1 (Densest k-Vertex-Connected Subgraph). Given an edge-weighted undirected graph G = (V , E, w), where
w : E → R>0, and a positive integer k ∈ Z>0, the goal is to find S ⊆ V that maximizes the density d(S) subject to
the constraint that the induced subgraph G[S] is k-vertex-connected.

Problem 2 (Densest k-Edge-Connected Subgraph). Given an edge-weighted undirected graph G = (V , E, w), where
w : E → R>0, and a positive real k ∈ R>0, the goal is to find S ⊆ V that maximizes the density d(S) subject to the
constraint that the induced subgraph G[S] is k-edge-connected.

In the two-cliques example we discussed earlier, an optimal solution to Problems 1 and 2 with a sufficiently large
value for k would be one of the cliques, which is robust to vertex/edge failure and nearly as dense as the densest subgraph
(i.e., the entire graph). We observe that Problems 1 and 2 are meaningful for real-world data too; Fig. 1 visualizes densest
subgraphs of the four real-world Web graphs that are publicly available at SNAP (Stanford Network Analysis Project) [33]
using a spring layout positioning.1 As we can visually observe, small separators may exist in real-world densest subgraphs.
Table 1 summarizes the detailed statistics. As can be seen, the densest subgraphs in web-BerkStan and web-NotreDame
have surprisingly small vertex connectivity; in fact, they have vertex connectivity of twelve and one, respectively. Note
that for both densest subgraphs, vertex connectivity is much smaller than the minimum degree of vertices, a trivial upper
bound on that.

For both problems, we propose polynomial-time (bicriteria and ordinary) approximation algorithms. Let wmax and
wmin denote the maximum and minimum weights, respectively, over all edges in G, i.e., wmax = maxe∈E w(e) and
wmin = mine∈E w(e).

Our first result is polynomial-time
(

γ

4 ·
wmin
wmax

, 1/γ
)
-bicriteria approximation algorithms with parameter γ ∈ [1, 2]

for Problems 1 and 2. That is, the algorithm for Problem 1/Problem 2 outputs S ⊆ V having density at least the optimal
value times γ

4 ·
wmin
wmax

but only satisfies a (k/γ )-vertex/edge-connectivity constraint (rather than the original k-vertex/edge-

onnectivity constraint). Note that if we set γ = 1, we can obtain
(

1
4 ·

wmin
wmax

)
-approximation algorithms. The design of

ur algorithms is based on an elegant theorem in graph theory, proved by Mader [35]. The theorem states that any
unweighted) dense graph contains a highly vertex-connected subgraph wherein the minimum degree of vertices is

1 Graphs have been made simple and undirected by ignoring the direction of edges, and by removing self-loops and multiple edges.
35
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Fig. 1. Densest subgraphs in real-world Web graphs.

greater than the density of the entire vertex set. We refer to this subgraph as a Mader subgraph and our algorithm finds a
ader subgraph of a densest subgraph of each maximal k-vertex-connected subgraph of G. It should be noted that to deal

with edge-weighted graphs, we generalize Mader’s theorem. Our generalized version cannot be directly obtained from
the original statement of Mader’s theorem, and is essential to derive the bicriteria approximation ratio for edge-weighted
graphs.

Our second result is polynomial-time
(

6
19 ·

wmin
wmax

)
-approximation algorithms for Problems 1 and 2, which improves the

above approximation ratio of 1
4 ·

wmin
wmax

derived directly from the bicriteria approximation ratio. Our algorithm for Problem 1/

roblem 2 computes the most highly connected subgraph in terms of vertex/edge connectivity, which can be done using
he algorithms in Matula [39]. In the analysis of the approximation ratio, we use a useful variant of Mader’s theorem,
ecently proved by Bernshteyn and Kostochka [5].

aper organization. The remainder of this paper is organized as follows. In Section 2, we review related work. In Section 3,
e extend Mader’s theorem to edge-weighted graphs and design an algorithm for finding a Mader subgraph. In Sections 4
nd 5, we present our bicriteria and ordinary approximation algorithms, respectively. We conclude with some open
roblems in Section 6.

. Related work

ariations of the densest subgraph problem. Wu et al. [52] consider the problem of detecting a dense and connected
ubgraph in dual networks. A dual network is a pair of graphs G = (V , EG) and H = (V , EH ) defined on the same vertex
set V , which encode different types of connections using two edge sets EG and EH . Wu et al. [52] introduced the following
roblem: given a dual network (G,H), we are asked to find S ⊆ V that maximizes d(S) in G under the constraint that H[S]
s connected (i.e., 1-edge-connected). They proved that the problem is NP-hard and devised a scalable heuristic. Problem 2
36
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with k = 1, i.e., the densest 1-edge-connected subgraph, on unweighted graphs, can be seen as a special case of their
roblem wherein two graphs G and H are the same, i.e., EG = EH . Unlike the general form of their problem, the densest
-edge-connected subgraph problem (on unweighted graphs) is polynomial-time solvable. In fact, it suffices to output
the vertex subset of) an arbitrary maximal connected subgraph of the densest subgraph computed.

Two closely related papers are due to Tsourakakis [48] and Kawase and Miyauchi [31]. They aim to find a near-clique
which is robust to vertex/edge failure) by extending the densest subgraph problem. Tsourakakis [48] introduced the
roblem called the k-clique densest subgraph problem. In this problem, given an unweighted graph G = (V , E), we are
sked to find S ⊆ V that maximizes the k-clique density wk(S)/|S|, where wk(S) is the number of k-cliques (i.e., cliques
ith size k) in G[S]. Tsourakakis [48] showed that this problem (with constant k) remains polynomial-time solvable, and

ater, Mitzenmacher et al. [40] proposed a scalable algorithm that obtains a nearly-optimal solution. On the other hand,
awase and Miyauchi [31] introduced the problem called the f -densest subgraph problem with convex f . In this problem,
iven an edge-weighted graph G = (V , E, w), we are asked to find S ⊆ V that maximizes w(S)/f (|S|), where f : Z≥0 → R≥0

is a monotonically non-decreasing function that satisfies (f (x + 2) − f (x + 1)) − (f (x + 1) − f (x)) ≥ 0 for any x ∈ Z≥0.
his formulation generalizes the NP-hard optimal quasi-cliques problem due to Tsourakakis et al. [49,50]. Kawase and
iyauchi [31] studied the hardness of the problem, and proposed a polynomial-time approximation algorithm. Although

he above two problems contribute to computing a dense subgraph that is robust to vertex/edge failure, they cannot
xplicitly impose k-vertex/edge connectivity.
There are also some variants that take into account the robustness to the uncertainty of input graphs. Zou [53] studied

he densest subgraph problem on uncertain graphs. Uncertain graphs are a generalization of graphs, which can model the
ncertainty of the existence of edges. More formally, an uncertain graph consists of an unweighted graph G = (V , E)
nd a function p : E → [0, 1], where e ∈ E is present with probability p(e) whereas e ∈ E is absent with probability
− p(e). In the problem introduced by Zou [53], given an uncertain graph G = (V , E) with p, we are asked to find S ⊆ V
hat maximizes the expected value of the density. Zou [53] observed that this problem can be reduced to the original
ensest subgraph problem, and designed polynomial-time exact algorithm using the reduction. Very recently, Tsourakakis
t al. [51] introduced the problem called the risk-averse dense subgraph discovery (risk-averse DSD). In this problem, given
n uncertain graph G = (V , E) with p, we are asked to find S ⊆ V that has a large expected density and at the same time
as a small risk. The risk of S ⊆ V is measured by the probability that S is not dense on a given uncertain graph. They
howed that the risk-averse DSD can be reduced to the densest subgraph problem with negative edge weights (which is
P-hard), and designed an efficient approximation algorithm based on the reduction.
Miyauchi and Takeda [42] considered the uncertainty of edge weights rather than the existence of edges. To model

hat, they assumed that they have an edge-weight space W = ×e∈E[le, re] ⊆ ×e∈E[0,∞) that contains the unknown true
dge weight w. To evaluate the performance of S ⊆ V without any concrete edge weight, they employed a well-known
easure in the field of robust optimization, called the robust ratio. In their scenario, the robust ratio of S ⊆ V under W is
efined as the multiplicative gap between the density of S in terms of edge weight w′ and the density of S∗

w′
in terms of

dge weight w′ under the worst-case edge weight w′ ∈ W , where S∗
w′

is a densest subgraph of G with w′. Intuitively, S ⊆ V
ith a large robust ratio has a density close to the optimal value even on G with the edge weight selected adversarially

rom W . Using the robust ratio, they formulated the robust densest subgraph problem, where given an unweighted graph
= (V , E) and an edge-weight space W = ×e∈E[le, re] ⊆ ×e∈E[0,∞), we are asked to find S ⊆ V that maximizes the

robust ratio under W . Miyauchi and Takeda [42] designed an algorithm that returns S ⊆ V with a robust ratio of at least
1

maxe∈E
re
le

under some mild condition.
In addition to the above, there are many other problem variations. The most well-studied variants are size restricted

nes [1,6,14,32]. For example, in the densest k-subgraph problem [14], given an edge-weighted graph G = (V , E, w) and a
ositive integer k ∈ Z>0, we are asked to find S ⊆ V that maximizes d(S) subject to the constraint |S| = k. It is known
hat such a restriction makes the problem much harder; indeed, the densest k-subgraph problem is NP-hard and the best
nown approximation ratio is Ω(1/n1/4+ϵ) for any ϵ > 0 [6]. The densest subgraph problem has also been extended to
ore general computation models and graph structures. As for computation models, to cope with the dynamics of real-
orld graphs, some literature has considered dynamic settings [13,27], and moreover, to model the limited computation
esources in reality, some literature has considered streaming settings [2,4,7]. As for graph structures, the problem has
een defined on hypergraphs [27,41] and multilayer networks [18].

ertex and edge connectivity. In the vertex connectivity problem, we are asked to compute κ(G) for a given graph G = (V , E).
or this problem, Gabow [17] developed an O(|V |(κ(G)2 · min{|V |3/4, κ(G)3/2} + κ(G)|V |))-time algorithm, which also
omputes a corresponding minimum vertex separator S ⊂ V . This is one of the current fastest deterministic algorithms for
he problem, although there are various randomized algorithms (e.g., see [15,24,34,44]). Note that there are linear-time
lgorithms that decide whether G is 2-vertex-connected and 3-vertex-connected, respectively, due to Tarjan [47] and
opcroft and Tarjan [26].
Another important problem related to vertex connectivity is to compute the family of maximal k-vertex-connected

ubgraphs, which will be solved in our bicriteria approximation algorithm for Problem 1. For S ⊆ V and k ∈ Z>0, the
nduced subgraph G[S] is called a maximal k-vertex-connected subgraph if G[S] is k-vertex-connected and no superset
f S has this property. For this task, the first polynomial-time algorithm is given by Matula [38]. Note that maximal
-vertex-connected subgraphs may overlap each other; the design of the algorithm by Matula [38] is based on the fact
37
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that the maximum total number of maximal k-vertex-connected subgraphs is O(|V |) [38]. Later, Makino [37] designed
n O(|V | · T )-time algorithm, where T is the computation time required to find a vertex separator of size at most k − 1.

Combined with the above vertex connectivity algorithm by Gabow [17], the algorithm by Makino [37] yields the running
time of O(|V |2(k2 ·min{|V |3/4, k3/2}+k|V |)). For some special k, there are some existing algorithms that have better running
ime. For k = 2 and 3, there are linear-time algorithms by Tarjan [47] and Hopcroft and Tarjan [26], respectively. For any
onstant k, Henzinger et al. [23] presented an O(|V |3)-time algorithm.
In the (global) minimum cut problem, given an edge-weighted graph G = (V , E, w), we are asked to find a minimum

eight cut F ⊆ E. For this problem, Nagamochi and Ibaraki [43] designed an O(|V |(|E|+|V | log |V |))-time algorithm. Later,
toer and Wagner [46] and Frank [16] independently presented a very simple algorithm that still has the same running
ime. For simple unweighted graphs, the seminal work by Karger [28] provides a randomized (Monte Carlo) algorithm
hat runs in nearly-linear, O(|E| log3 |V |), time. As this algorithm does not necessarily return the right answer, Karger [28]
osed an open question to find a nearly-linear-time deterministic algorithm. In a recent breakthrough, Kawarabayashi
nd Thorup [29] answered the question; they developed a deterministic algorithm for simple unweighted graphs that
uns in O(|E| log12 |V |) time. Very recently, Henzinger et al. [25] improved the running time to O(|E| log2 |V | log log2 |V |)
time, which is better even than that of the randomized algorithm by Karger [28].

As in the vertex connectivity case, computing the family of maximal k-edge-connected subgraphs is also an important
problem, which will be solved in our bicriteria approximation algorithm for Problem 2. For S ⊆ V and k ∈ R>0, the
induced subgraph G[S] is called a maximal k-edge-connected subgraph if G[S] is k-edge-connected and no superset of S has
this property. The problem can be solved using any minimum cut algorithm as follows: if the weight of the minimum cut
of the graph is less than k, divide the graph into two subgraphs along with the cut and then repeat the procedure on the
resulting subgraphs. For edge-weighted graphs, we can directly obtain an O(|V |2(|E| + |V | log |V |))-time algorithm using
one of the above minimum cut algorithms by Nagamochi and Ibaraki [43], Stoer and Wagner [46], and Frank [16]. To
the best of our knowledge, there is no existing algorithm that has a better running time. For simple unweighted graphs,
we can again directly obtain an O(|E ∥ V | log2 |V | log log2 |V |)-time algorithm using the above minimum cut algorithm
by Henzinger et al. [25]. Unlike the weighted case, for some special k, there are some existing algorithms that have a
better running time. For k = 2, there is a linear-time algorithm by Tarjan [47]. For any constant k, Henzinger et al. [23]
presented an O(|V |2 log |V |)-time algorithm, and more recently, Chechik et al. [9] provided an O(

√
|V |(|E| + |V | log |V |))-

time algorithm. The latter algorithm is efficient particularly for sparse graphs; indeed, the latter is better than the former
when |E| = o(|V |3/2 log |V |). Very recently, for any k ∈ Z>0, Forster et al. [15] developed a randomized (Las Vegas)
algorithm that has expected running time O(k3|V |3/2 log |V |+ k|E| log2 |V |), which is faster than the algorithm by Chechik
et al. [9] (for general k ∈ Z>0).

3. Mader’s theorem and Mader subgraph

In this section, we extend Mader’s theorem to edge-weighted graphs and design an algorithm for finding a Mader
subgraph.

3.1. Mader’s theorem on edge-weighted graphs

Mader’s theorem [35] is a foundational theorem in graph theory. The precise statement is as follows:

Theorem 1 (Mader [35]; See also Theorem 1.4.3 in Diestel [11]). Let G = (V , E) be an unweighted graph and let d be a positive
integer. If G has density at least d, then G has a (⌊d/2⌋+1)-vertex-connected subgraph wherein the minimum degree of vertices
is greater than d.

A straightforward application of Theorem 1 to edge-weighted graphs would yield the following result. Let G = (V , E, w)
be an edge-weighted graph, let d be a positive real, and assume that G has density at least d. Now consider an unweighted
graph G′ = (V , E) defined on the same vertex set V and edge set E. As G′ has the density of at least d/wmax (i.e., at least
⌊d/wmax⌋), by Theorem 1, we see that G′ has a

(⌊
⌊d/wmax⌋

2

⌋
+ 1

)
-vertex-connected subgraph wherein the minimum degree

of vertices is greater than ⌊d/wmax⌋. Therefore, we can deduce that G has a
(⌊
⌊d/wmax⌋

2

⌋
+ 1

)
-vertex-connected subgraph

herein the minimum weighted degree of vertices is greater than wmin⌊d/wmax⌋. However, this is weaker than what we
eed to prove the approximation guarantee of our algorithms, as we discuss in Section 4.4.
Here we provide a stronger version for edge-weighted graphs. Specifically, we prove the following theorem:

heorem 2. Let G = (V , E, w) be an edge-weighted graph and let d be a positive real. If G has density at least d, then G has(⌊
⌈d/wmax⌉

2

⌋
+ 1

)
-vertex-connected subgraph wherein the minimum weighted degree of vertices is greater than d.

roof. Let H = (S, E(S)) be a subgraph of G with the minimum number of vertices that satisfies

|S| ≥ ⌈d/wmax⌉ and w(S) > d(V )
(
|S| −

⌈d/wmax⌉
)

. (1)

2

38
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There exists such a subgraph H because G itself satisfies the above condition. In fact, since d(V ) ≥ d holds, there exists
a vertex with the weighted degree of at least 2d, implying that the number of neighbors of such a vertex is at least
⌈2d/wmax⌉, thus |V | ≥ ⌈2d/wmax⌉ + 1 > ⌈d/wmax⌉ holds, and w(V ) = d(V )|V | > d(V )

(
|V | − ⌈d/wmax⌉

2

)
. Suppose that

S| = ⌈d/wmax⌉. Then we have

w(S) > d(V )
(
|S| −

⌈d/wmax⌉

2

)
=

d(V )⌈d/wmax⌉

2

≥
wmax(d/wmax)⌈d/wmax⌉

2
> wmax

(
⌈d/wmax⌉

2

)
= wmax

(
|S|
2

)
≥ w(S),

contradiction. Therefore, we see that |S| ≥ ⌈d/wmax⌉+1. Suppose also that there exists a vertex v in H whose weighted
degree is at most d(V ) in H . Let H ′ = (S ′, E(S ′)) be a subgraph constructed by removing v from H . Then we have

|S ′| = |S| − 1 ≥ ⌈d/wmax⌉ and

w(S ′) ≥ w(S)− d(V ) > d(V )
(
|S| −

⌈d/wmax⌉

2
− 1

)
= d(V )

(
|S ′| −

⌈d/wmax⌉

2

)
.

This means that H ′ also satisfies condition (1), which contradicts the minimality of H . Therefore, we see that every vertex
n H has weighted degree greater than d(V ) ≥ d in H .

From now on, we show that H is
(⌊
⌈d/wmax⌉

2

⌋
+ 1

)
-vertex-connected. Suppose, for contradiction, that there exists

T ⊆ S with |T | ≤
⌊
⌈d/wmax⌉

2

⌋
whose removal separates H into two non-empty subgraphs H[S1] and H[S2] so that there are

o edges between them. For any vertex v ∈ S1, its neighbors in H are all contained in S1 ∪ T . As v has weighted degree
reater than d(V ) ≥ d in H , the number of neighbors of v in S1 ∪ T is at least ⌈d/wmax⌉, thus |S1 ∪ T | ≥ ⌈d/wmax⌉ + 1.
rom the minimality of H , we see that the subgraph H[S1 ∪ T ] does not satisfy condition (1), which implies that

w(S1 ∪ T ) ≤ d(V )
(
|S1 ∪ T | −

⌈d/wmax⌉

2

)
olds. Applying the same argument to S2, we also have

w(S2 ∪ T ) ≤ d(V )
(
|S2 ∪ T | −

⌈d/wmax⌉

2

)
.

ombining these two inequalities, we have

w(S) ≤ w(S1 ∪ T )+ w(S2 ∪ T )
≤ d(V )(|S1 ∪ T | + |S2 ∪ T | − ⌈d/wmax⌉)
= d(V )(|S1| + |T | + |S2| + |T | − ⌈d/wmax⌉)

≤ d(V )
(
|S| −

⌈d/wmax⌉

2

)
,

which contradicts that H satisfies condition (1). □

3.2. Algorithm for finding a Mader subgraph

We design an algorithm Mader_subgraph that extracts a Mader subgraph, i.e., the subgraph whose existence is
uaranteed by Theorem 2. To this end, we first present a simple subprocedure, which we call Peel. For an edge-weighted

graph G = (V , E, w) and a positive real d, the procedure Peel returns the maximal subgraph of G wherein the minimum
weighted degree of vertices is greater than d if such a subgraph exists and Null otherwise. Specifically, Peel iteratively
removes a vertex with the minimum weighted degree in the currently remaining graph while the minimum weighted
degree is no greater than d. Note that this procedure is similar to the procedure to find a k-core. For reference, we describe
the entire procedure in Algorithm 1, where degS(v) for S ⊆ V and v ∈ S denotes the weighted degree of v in G[S]. This
lgorithm can be implemented to run in O(|E| + |V | log |V |) time, as mentioned in the literature [41].
Using Algorithm 1, we present Mader_subgraph in Algorithm 2, where the notation V (H ′) denotes the vertex set of

ubgraph H ′ of G. Here we briefly explain the behavior of the algorithm. Let G∗ be a Mader subgraph of a given edge-
eighted graph G. The algorithm keeps a family of subgraphs H in which exactly one subgraph contains G∗ as its subgraph.

n each iteration, the algorithm tests whether a subgraph in H is a Mader subgraph or not, and if not, the algorithm divides
he subgraph into strictly smaller pieces and add (a part of) them to H. The algorithm repeats this operation until it finds
Mader subgraph. It should be noted that our algorithm is based on Matula’s algorithm [39, Algorithm A], which finds

he most highly connected subgraph in terms of vertex connectivity, i.e., H ∈ argmax{κ(H) | H is a subgraph of G }.
The following theorem verifies the validity of Mader_subgraph. The proof strategy is similar to that for Matula

39, Theorem 3].
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Algorithm 1: Peel(G, d)
Input : G = (V , E, w) and d ∈ R>0
Output: Subgraph of G or Null

1 S ← V ;
2 while True do
3 vmin ← argminv∈S degS(v);
4 if degS(vmin) > d then
5 return G[S];
6 S ← S \ {vmin};
7 return Null;

Algorithm 2: Mader_subgraph(G)
Input : G = (V , E, w)
Output: Subgraph of G

1 H ← Peel(G, d(V ));

2 τ ←

⌊
⌈d(V )/wmax⌉

2

⌋
+ 1;

3 H← the family of the maximal connected subgraphs of H that have at least τ + 1 vertices;
4 if there exists a clique K in H then
5 return K ;
6 while True do
7 H ′ ← an arbitrary element of H;
8 C ← the minimum vertex separator of H ′;
9 if |C |≥ τ then

10 return H ′;
11 S ← the family of the vertex sets of the maximal connected subgraphs of G[V (H ′) \ C];
12 H′ ← ∅;
13 for each S ∈ S do
14 if Peel(G[S ∪ C], d(V )) has at least τ + 1 vertices then
15 H′ ← H′ ∪ {Peel(G[S ∪ C], d(V ))};

16 if there exists a clique K in H′ then
17 return K ;
18 H← (H \ {H ′}) ∪H′;

Theorem 3. For a given edge-weighted graph G = (V , E, w), Algorithm 2 outputs a Mader subgraph of G in O(|V |19/4) time.

roof. Observe that if the algorithm terminates, its output is a Mader subgraph of G. In fact, the subgraph K returned
y the algorithm is τ -vertex-connected since it is a clique with at least τ + 1 vertices; moreover, its minimum weighted
egree is greater than d(V ) since it is contained in a family H or H′. Also the subgraph H ′ returned by the algorithm is
-vertex-connected, and its minimum weighted degree is greater than d(V ) since it is taken out from H.
Thus, in what follows, we analyze the time complexity of the algorithm. Specifically, we prove that Algorithm 2 runs in

(|V |19/4) time. The time complexity of the algorithm except for the while-loop is given by O(|E| + |V | log |V |) due to the
ime complexity of the procedure Peel. We can show that the time complexity of the while-loop is given by O(|V |19/4).
o see this, we analyze the time complexity of each iteration and the number of iterations. The time complexity of each
teration is dominated by that required to compute the minimum vertex separator C of H ′. As reviewed in Section 2, the
urrent best algorithm completes this task in O(|V (H ′)|(|C |2 ·min{|V (H ′)|3/4, |C |3/2} + |C ||V (H ′)|)) time. Hence, the time
omplexity of each iteration is bounded by O(|V |15/4). Next we show that the number of iterations of the while-loop is
ounded by |V |. Let G∗ be a Mader subgraph of G, that is, G∗ is a τ -vertex-connected subgraph of G wherein the minimum
eighted degree of vertices is greater than d(V ). It is easy to see that exactly one subgraph in H contains G∗ as its subgraph

n any iteration of the while-loop. Here we define the surplus of H as

s(H) =
∑
H∈H

(|V (H)| − τ − 1).

or the initial H, we have s(H) ≤ |V | − τ − 1. Note that s(H) ≥ 0 holds in any iteration. Let us consider an arbitrary
teration in which the algorithm does not terminate. Let S ′ = {S ∈ S | |V (Peel(G[S ∪ C], d(V )))| ≥ τ + 1}. If |S ′| ≤ 1
40
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holds, then H ′ is simply deleted or replaced by a subgraph with at most |V (H ′)| − 1 vertices, in the updated H. Thus, the
urplus decreases by at least one in the iteration. Assume that |S ′| ≥ 2. Then we have∑

H∈H′
(|V (H)| − τ − 1) =

∑
S∈S′

(|V (Peel(G[S ∪ C], d(V )))| − τ − 1)

≤

∑
S∈S′

(|V (G[S ∪ C])| − τ − 1)

≤ |V (H ′)| + (|S ′| − 1)(|C | − τ )− τ − |S ′|
< |V (H ′)| − τ − 2,

here the last inequality follows from |S ′| ≥ 2 and |C | < τ . Note that |C | < τ holds because the algorithm has not
et terminated in the iteration. The above inequality implies that the surplus decreases by at least two in the iteration.
herefore, the number of iterations of the while-loop is bounded by |V | − τ < |V |. □

. Bicriteria approximation algorithms

In this section, we first design a polynomial-time
(

γ

4 ·
wmin
wmax

, 1/γ
)
-bicriteria approximation algorithm with parameter

γ ∈ [1, 2] for Problem 1, and then present a corresponding result for Problem 2.

4.1. Algorithm for Problem 1

For a given edge-weighted graph G = (V , E, w), our algorithm first finds the family of maximal k-vertex-connected
subgraphs {G[S1], . . . ,G[Sp]} using Makino’s algorithm [37] combined with Gabow’s vertex connectivity algorithm [17],
which takes O(|V |2(k2 · min{|V |3/4, k3/2} + k|V |)) time. Note that if there is no k-vertex-connected subgraph found, our
algorithm returns INFEASIBLE because the instance is actually infeasible.

For each i = 1, . . . , p, the algorithm initializes S∗i as Si. Then the algorithm finds a densest subgraph SDSi (without any
constraint) in G[Si]. This can be done in polynomial time using Charikar’s linear-programming-based algorithm for the

densest subgraph problem [8]. After that, if k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
holds, then the algorithm employs as S∗i the

ertex set of a Mader subgraph of G[SDSi ], i.e., the vertex set of a
(⌊
⌈d(SDSi )/wmax(G[SDSi ])⌉

2

⌋
+ 1

)
-vertex-connected subgraph

n G[SDSi ] wherein the minimum weighted degree of vertices is greater than d(SDSi ), using the procedure Mader_subgraph
Algorithm 2). Here wmax(G[SDSi ]) denotes the maximum weight of edges in G[SDSi ]. Note that wmax(G[SDSi ]) ≤ wmax holds.
or G[SDSi ], Mader_subgraph runs in O(|SDSi |

19/4) = O(|V |19/4) time.
Finally, the algorithm outputs the densest subset among {S∗1 , . . . , S

∗
p }. For reference, we summarize the entire procedure

n Algorithm 3. As the maximum total number of maximal k-vertex-connected subgraphs is O(|V |) [38], the overall
unning time of Algorithm 3 is given by O(|V |(|V |19/4 + TDS(G))), where TDS(G) is the computation time required to
ind a densest subgraph in (any subgraph of) G. Note that as mentioned above, TDS(G) is polynomial in |V | and |E|.
oreover, as mentioned by Kawase and Miyauchi [31], for unweighted graphs, Goldberg’s flow-based algorithm [22]
ives TDS(G) = O(|V |3) using the maximum-flow algorithm by Cheriyan et al. [10].

.2. Analysis

Using our generalized Mader’s theorem (Theorem 2), we provide the bicriteria approximation ratio of Algorithm 3:

heorem 4. For any γ ∈ [1, 2], Algorithm 3 is a polynomial-time
(

γ

4 ·
wmin
wmax

, 1/γ
)
-bicriteria approximation algorithm for

Problem 1.

Proof. We first show that the output of Algorithm 3 is (k/γ )-vertex-connected. To this end, it suffices to confirm (k/γ )-

vertex-connectivity of G[S∗i ] for each i = 1, . . . , p. Fix i ∈ {1, . . . , p}. If k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
does not hold, we

re done since G[S∗i ] is given by G[Si], which is k-vertex-connected (thus (k/γ )-vertex-connected). Consider the case

here k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
holds. Applying Theorem 2 to G[SDSi ] with setting d = d(SDSi ), we see that G[SDSi ] has

a
(⌊
⌈d(SDSi )/wmax(G[SDSi ])⌉

2

⌋
+ 1

)
-vertex-connected subgraph, which is (k/γ )-vertex-connected. Algorithm 3 employs such a

ubset as S∗.
i
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Algorithm 3: Bicriteria approximation algorithm with parameter γ ∈ [1, 2] for Problem 1
Input : G = (V , E, w) and k ∈ Z>0
Output: S ⊆ V or INFEASIBLE

1 Find the family of maximal k-vertex-connected subgraphs {G[S1], . . . ,G[Sp]};
2 if there is no k-vertex-connected subgraph found then
3 return INFEASIBLE;
4 else
5 for i = 1, . . . , p do
6 S∗i ← Si;
7 Find a densest subgraph SDSi (without any constraint) in G[Si];

8 if k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
then

9 S∗i ← The vertex set of Mader_subgraph(G[SDSi ]);

10 return S ∈ argmaxS∈{S∗1 ,...,S∗p } d(S);

We next analyze the first term of the bicriteria approximation ratio. It suffices to show that for each i = 1, . . . , p, the
subset S∗i has density at least γ

4 ·
wmin
wmax

times the optimal value of Problem 1 on G[Si]. Fix i ∈ {1, . . . , p}. Clearly, the optimal
value of Problem 1 on G[Si], which we denote by OPTi, is at most d(SDSi ).

We first consider the case where k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
does not hold. In this case, Algorithm 3 just employs Si

as S∗i . As G[Si] is k-vertex-connected, each vertex has weighted degree of at least wmin ·k > γ ·wmin

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
;

hus, the density of Si is greater than

γ · wmin

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
/2 ≥ γ · wmin

(
d(SDSi )/wmax

2
−

1
2
+ 1

)
/2

>
γ

4
·

wmin

wmax
· d(SDSi ) ≥

γ

4
·

wmin

wmax
· OPTi,

hich means γ

4 ·
wmin
wmax

-approximation.

We next consider the case where k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
holds. Applying Theorem 2 to G[SDSi ] with setting

= d(SDSi ), we see that G[SDSi ] has a
(⌊
⌈d(SDSi )/wmax(G[SDSi ])⌉

2

⌋
+ 1

)
-vertex-connected subgraph wherein the minimum

eighted degree of vertices is greater than d(SDSi ). Algorithm 3 employs such a subset as S∗i . As each vertex has weighted
egree greater than d(SDSi ), the density of S∗i is greater than d(SDSi )/2 ≥ OPTi/2, which means 1/2-approximation (thus

γ

4 ·
wmin
wmax

-approximation). □

From the proof, we see that if the if-condition in the for-loop of Algorithm 3 holds for every maximal k-vertex-
onnected subgraph, the output admits 1/2-approximation, irrespective of edge weights. Moreover, it should be noted
hat setting γ = 1 in the theorem, we can obtain an ordinary 1

4 ·
wmin
wmax

-approximation algorithm for Problem 1. In Section 5,
we present an algorithm with a better approximation ratio.

4.3. Algorithm for Problem 2 and analysis

Here we present a bicriteria approximation algorithm for Problem 2, which is an edge-connectivity counterpart of
Algorithm 3. For a given edge-weighted graph G = (V , E, w), our algorithm first finds the family of maximal k-edge-
connected subgraphs {G[S1], . . . ,G[Sp]}. As reviewed in Section 2, this can be done in O(|V |2(|E| + |V | log |V |)) time using
one of the minimum cut algorithms by Nagamochi and Ibaraki [43], Stoer and Wagner [46], and Frank [16] as a subroutine.
If G is simple unweighted, the time complexity reduces to O(|E ∥ V | log2 |V | log log2 |V |) using the minimum cut algorithm
by Henzinger et al. [25].

In the processing of G[Si] for each i = 1, . . . , p, the algorithm computes a variant of a Mader subgraph of G[SDSi ],

i.e., a wmin

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
-edge-connected subgraph in G[SDSi ] wherein the minimum weighted degree of vertices

s greater than d(SDSi ). The existence of such a subgraph is guaranteed by a corollary of Theorem 2, which we will
resent later. Recall that Algorithm 3 uses the procedure Mader_subgraph. On the other hand, the above variant can
e computed using the strategy employed by the algorithms for computing the family of maximal k-edge-connected
42
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Algorithm 4: Bicriteria approximation algorithm with parameter γ ∈ [1, 2] for Problem 2
Input : G = (V , E, w) and k ∈ R>0
Output: S ⊆ V or INFEASIBLE

1 Find the family of maximal k-edge-connected subgraphs {G[S1], . . . ,G[Sp]};
2 if there is no k-edge-connected subgraph found then
3 return INFEASIBLE;
4 else
5 for i = 1, . . . , p do
6 S∗i ← Si;
7 Find a densest subgraph SDSi (without any constraint) in G[Si];

8 if k ≤ γ · wmin

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
then

9 S∗i ← The vertex set of a wmin

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
-edge-connected subgraph in G[SDSi ] wherein the

minimum weighted degree of vertices is greater than d(SDSi );

10 return S ∈ argmaxS∈{S∗1 ,...,S∗p } d(S);

subgraphs, presented in Section 2. Specifically, the strategy in our scenario is as follows: if the weight of the minimum

cut of G[SDSi ] is less than wmin

⌊
⌈d(SDSi )/wmax⌉

2

⌋
+1, divide the graph into two subgraphs along with the cut and then repeat

the procedure on the resulting subgraphs (until it finds the variant of a Mader subgraph). It should be noted that in order
to satisfy the minimum weighted degree condition, our algorithm needs to conduct the procedure Peel every time before
it processes a new subgraph. For reference, the pseudocode of our algorithm is given in Algorithm 4.

Here we evaluate the running time of Algorithm 4. It is easy to see that the above algorithm for finding the variant
of a Mader subgraph still has the same running time as that of algorithms for computing the family of maximal k-edge-
connected subgraphs. Therefore, the time complexity of the processing of each G[Si] is bounded by O(TDS(Si)+|Si|2(|E(Si)|+
Si| log |Si|)), where TDS(Si) is the computation time required to find a densest subgraph in G[Si]. Recalling that maximal
k-edge-connected subgraphs do not overlap for any k, we see that the time complexity of the entire for-loop is bounded
by O(TDS(G)+ |V |2(|E| + |V | log |V |)), which also bounds the overall running time of Algorithm 4. For simple unweighted
graphs, we have the running time of O(|V |3 + |E ∥ V | log2 |V | log log2 |V |).

Finally we analyze the theoretical performance guarantee of Algorithm 4. It is easy to see that any (edge-weighted)
k-vertex-connected graph G is wmink-edge-connected, which gives the following corollary to Theorem 2:

Corollary 1. Let G = (V , E, w) be an edge-weighted graph and let d be a positive real. If G has density at least d, then G has
a wmin

(⌊
⌈d/wmax⌉

2

⌋
+ 1

)
-edge-connected subgraph wherein the minimum weighted degree of vertices is greater than d.

Using this corollary, we can derive the bicriteria approximation ratio of Algorithm 4:

Theorem 5. For any γ ∈ [1, 2], Algorithm 4 is a polynomial-time
(

γ

4 ·
wmin
wmax

, 1/γ
)
-bicriteria approximation algorithm for

Problem 2.

The proof is similar to that of Theorem 4, and is omitted.

4.4. Remarks on Theorem 2

Here we explain that our generalized Mader’s theorem (i.e., Theorem 2) is essential to derive the bicriteria approxi-
mation ratio given in Theorems 4 and 5. To this end, recall that the straightforward application of the original Mader’s
theorem to edge-weighted graphs derives the following statement: Let G = (V , E, w) be an edge-weighted graph and let
d be a positive real. If G has density at least d, then G has a

(⌊
⌊d/wmax⌋

2

⌋
+ 1

)
-vertex-connected subgraph wherein the

minimum weighted degree of vertices is greater than wmin⌊d/wmax⌋.
Obviously, the above statement is weaker than Theorem 2. Indeed, vertex connectivity of

⌊
⌈d/wmax⌉

2

⌋
+1 in Theorem 2

as decreased to
⌊
⌊d/wmax⌋

2

⌋
+1, which is only a slight deterioration, but the minimum weighted degree of d in Theorem 2

has significantly decreased to wmin⌊d/wmax⌋. It is easy to see that to prove Theorems 4 and 5, vertex connectivity of⌊
⌊d/wmax⌋

⌋
+1 is sufficient, but the minimum weighted degree of w ⌊d/w ⌋ is insufficient. In fact, in the last paragraph
2 min max
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Algorithm 5: Approximation algorithm for Problem 1
Input : G = (V , E, w) and k ∈ Z>0
Output: S ⊆ V or INFEASIBLE

1 H ← argmax{κ(H) | H is a subgraph of G};
2 if κ(H) ≥ k then
3 return the vertex set of H;
4 else
5 return INFEASIBLE;

of the proof of Theorem 4, by using the decreased minimum weighted degree, we can only guarantee that the density of
S∗i is greater than wmin⌊d(SDSi )/wmax⌋

2 ≥
wmin⌊OPTi/wmax⌋

2 (rather than d(SDSi )/2 ≥ OPTi/2 in the proof). Note that wmin⌊OPTi/wmax⌋
2

may be less than γ

4 ·
wmin
wmax
· OPTi, meaning that the decreased minimum weighted degree is insufficient to prove the

heorem. We can see the same issue in the proof of Theorem 5.

. Approximation algorithms

In this section, we design a polynomial-time
(

6
19 ·

wmin
wmax

)
-approximation algorithm for Problem 1, which improves the

approximation ratio of 1
4 ·

wmin
wmax

that is immediately derived by Algorithm 3. Then we present its counterpart result for
roblem 2.

.1. Algorithm for Problem 1

Our algorithm first computes the most highly connected subgraph in terms of vertex connectivity, i.e., H ∈

argmax{κ(H) | H is a subgraph of G }. This can be done using Matula’s algorithm [39, Algorithm A]. Then our algorithm
simply returns the subgraph if its vertex connectivity is no less than k and INFEASIBLE otherwise. Our algorithm is
escribed in pseudocode as Algorithm 5.
Matula [39] showed that the time complexity of the algorithm for computing the most highly connected subgraph in

erms of vertex connectivity is given by O(|V | · T ), where T is the computation time required to find a minimum vertex
eparator of G. If we consider Gabow’s vertex connectivity algorithm [17], the time complexity becomes O(|V |2(κ(G)2 ·
in{|V |3/4, κ(G)3/2} + κ(G)|V |)). Clearly, Algorithm 5 has the same time complexity.

.2. Analysis

From now on, we analyze the theoretical performance guarantee of Algorithm 5. To this end, we use the following
heorem, which is a useful variant of Mader’s theorem:

heorem 6 (Bernshteyn and Kostochka [5]). Let G = (V , E) be an unweighted graph and let t be an integer with t ≥ 2. If G
atisfies |V | ≥ 5

2 t and |E| > 19
12 t(|V | − t), then G has a (t + 1)-vertex-connected subgraph.

We provide the approximation ratio of Algorithm 5 in the following theorem:

Theorem 7. Algorithm 5 is a polynomial-time
(

6
19 ·

wmin
wmax

)
-approximation algorithm for Problem 1.

Proof. Let S ⊆ V be the output of Algorithm 5. Define

κmax = max{κ(H) | H is a subgraph of G}.

As we assumed that |E| ≥ 1, we have κmax ≥ 1. Recall that H = G[S] is a κmax-vertex-connected subgraph. We denote
by OPT the density of an optimal solution to Problem 1. Let SDS ⊆ V be a densest subgraph (unconstrained) in G. As
d(SDS) ≥ OPT, it suffices to show that d(S) ≥ 6

19 ·
wmin
wmax
· d(SDS) holds. Let nDS and mDS denote the number of vertices and

dges in G[SDS], respectively.
Case I: κmax = 1. In this case, G is a forest; therefore, using the fact that mDS ≤ nDS − 1, we have d(SDS) =

w(SDS)
nDS
≤

max ·
mDS
nDS

< wmax. Any vertex subset (with size more than one) inducing a connected subgraph, including the output S,
has density of at least

wmin
>

6
wmin >

6
·

wmin
· d(SDS).
2 19 19 wmax
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Algorithm 6: Approximation algorithm for Problem 2
Input : G = (V , E, w) and k ∈ R>0
Output: S ⊆ V or INFEASIBLE

1 H ← argmax{λ(H) | H is a subgraph of G};
2 if λ(H) ≥ k then
3 return the vertex set of H;
4 else
5 return INFEASIBLE;

Case II: κmax ≥ 2. Let us define t =
⌊

12
19 ·

mDS
nDS

⌋
. As mDS ≤

(nDS
2

)
holds, we have t < 2

5nDS, and thus nDS > 5
2 t . As for the

alue of mDS, if t ̸= 0, mDS ≥
19
12 tnDS > 19

12 t(nDS − t) holds. Thus, by Theorem 6, if t ≥ 2 holds, then the subgraph G[SDS]
has a (t + 1)-vertex-connected subgraph, which is also a subgraph of G. Hence, we have κmax ≥ t + 1 ≥ 12

19 ·
mDS
nDS

. On the
ther hand, if t < 2 holds, then κmax ≥ 2 > 12

19 ·
mDS
nDS

. In either case, noticing that the output S is wminκmax-edge-connected,
e see that S has density at least

wmin · κmax

2
≥ wmin ·

6
19
·
mDS

nDS
≥

6
19
·

wmin

wmax
·
w(SDS)
nDS

=
6
19
·

wmin

wmax
· d(SDS),

hich completes the proof. □

.3. Algorithm for Problem 2 and analysis

Here we present an approximation algorithm for Problem 2, which is an edge-connectivity counterpart of Algorithm
. Specifically, our algorithm first computes the most highly connected subgraph in terms of edge connectivity, i.e., H ∈

argmax{λ(H) | H is a subgraph of G }. This can be done using a simple recursive algorithm mentioned by Matula [39],
which is similar to the algorithms for computing the family of maximal k-edge-connected subgraphs. Then our algorithm
simply returns the subgraph if its edge connectivity is no less than k and INFEASIBLE otherwise. For reference, we
describe the entire procedure in Algorithm 6.

Matula [39] stated that the time complexity of the algorithm for computing the most highly connected subgraph in
terms of edge connectivity is given by O(|V | · T ), where T is the computation time required to find a minimum cut
of G. If we consider one of the minimum cut algorithms by Nagamochi and Ibaraki [43], Stoer and Wagner [46], and
Frank [16], the time complexity becomes O(|V |2(|E|+|V | log |V |)). If G is simple unweighted, the time complexity reduces
to O(|E ∥ V | log2 |V | log log2 |V |) using the minimum cut algorithm by Henzinger et al. [25]. Clearly, Algorithm 6 has the
same time complexity.

Finally we analyze the theoretical performance guarantee of Algorithm 6. The following corollary is an edge-
connectivity counterpart of Theorem 6:

Corollary 2. Let G = (V , E, w) be an edge-weighted graph and let t be an integer with t ≥ 2. If G satisfies |V | ≥ 5
2 t and

E| > 19
12 t(|V | − t), then G has a wmin(t + 1)-edge-connected subgraph.

Using this corollary, we can derive the approximation ratio of Algorithm 6:

Theorem 8. Algorithm 6 is a polynomial-time
(

6
19 ·

wmin
wmax

)
-approximation algorithm for Problem 2.

The proof is similar to that of Theorem 7, and is omitted.

6. Open problems

There are several directions for future research.
The most interesting one is to design a polynomial-time algorithm that has a better (bicriteria or ordinary) approxima-

tion ratio. One might wonder why when γ = 1, the approximation ratio of Algorithm 3 is no better than that of Algorithm
5 even though unlike Algorithm 5, Algorithm 3 computes densest subgraphs. However, we wish to note that Algorithm 3

employs (a Mader subgraph of) a densest subgraph SDSi in G[Si] only if the condition k ≤ γ

(⌊
⌈d(SDSi )/wmax⌉

2

⌋
+ 1

)
holds.

n this case, the algorithm gets a better approximation, i.e., a 1/2-approximation, for the ith component, while violating
he constraint a bit. On the other hand, if the condition does not hold, the algorithm just employs the entire component
i as a candidate, which leads to γ

4 ·
wmin
wmax

-approximation. Is it possible to use a more sophisticated technique to avoid this
loss?
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We wish to remark that assuming Mader’s conjecture [36], which is a stronger version of Theorem 6, we can improve
he approximation ratio of Algorithms 5 and 6, i.e., 6

19 ·
wmin
wmax

, to 1
3 ·

wmin
wmax

. However, Mader [36] also conjectured that the
statement is best possible, making it unlikely to obtain an approximation ratio better than 1

3 ·
wmin
wmax

via similar analysis.
Another interesting direction is to reduce the running time of Mader_subgraph (Algorithm 2), which results in

educing that of Algorithm 3. In the while-loop of Mader_subgraph, an arbitrary element of H is chosen as H ′. Is it
ossible to select an element strategically so that we can reduce the running time?
Conducting numerical experiments to investigate the practical performance of our proposed algorithms is also

nteresting. In terms of the running time, one would expect that Algorithms 3 and 5 have a significant difference; in fact,
lgorithm 3 consumes O(|V |(|V |19/4 + TDS(G))) time, where TDS(G) is the time complexity required to compute a densest
ubgraph in (any subgraph of) G, whereas Algorithm 5 just requires O(|V |2(κ(G)2 ·min{|V |3/4, κ(G)3/2} + κ(G)|V |)), where
(G) is the vertex connectivity of G, which is usually much smaller than |V | in practice. However, the time complexity of
lgorithm 3 is estimated by replacing the vertex connectivity |C | of a subgraph H ′ with |V (H ′)| and also replacing |V (H ′)|
ith |V |, to guarantee the worst case performance (see the proof of Theorem 3). Therefore, it is not clear which one of
lgorithms 3 and 5 is better in terms of the running time. On the other hand, there is no significant difference between the
ime complexities of Algorithms 4 and 6. In fact, Algorithm 4 runs in O(TDS(G)+|V |2(|E|+|V | log |V |)) time and Algorithm
runs in O(|V |2(|E| + |V | log |V |)) time. Recall that from a theoretical perspective, for simple unweighted graphs TDS(G)

s just O(|V |3), and in practice densest subgraphs can be computed quickly in graphs with millions of edges.
Finally, analyzing the computational complexity of Problems 1 and 2 is also interesting.
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