
Information Processing and Management 58 (2021) 102657

A
0
(

F
C
a

b

c

A

K
C
F
e

1

(
S
a
t
d
2
m

8
p
A
p
R
n

h
R

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

airLens: Auditing black-box clinical decision support systems✩

ecilia Panigutti a,∗, Alan Perotti b, André Panisson b, Paolo Bajardi b, Dino Pedreschi c

Scuola Normale Superiore, Pisa, Italy
ISI Foundation, Turin, Italy
University of Pisa, Italy

R T I C L E I N F O

eywords:
linical decision support systems
airness and bias in machine learning systems
Xplainable artificial intelligence

A B S T R A C T

The pervasive application of algorithmic decision-making is raising concerns on the risk of
unintended bias in AI systems deployed in critical settings such as healthcare. The detection and
mitigation of model bias is a very delicate task that should be tackled with care and involving
domain experts in the loop. In this paper we introduce FairLens, a methodology for discovering
and explaining biases. We show how this tool can audit a fictional commercial black-box
model acting as a clinical decision support system (DSS). In this scenario, the healthcare
facility experts can use FairLens on their historical data to discover the biases of the model
before incorporating it into the clinical decision flow. FairLens first stratifies the available
patient data according to demographic attributes such as age, ethnicity, gender and healthcare
insurance; it then assesses the model performance on such groups highlighting the most common
misclassifications. Finally, FairLens allows the expert to examine one misclassification of interest
by explaining which elements of the affected patients’ clinical history drive the model error in
the problematic group. We validate FairLens’ ability to highlight bias in multilabel clinical DSSs
introducing a multilabel-appropriate metric of disparity and proving its efficacy against other
standard metrics.

. Introduction

The growing availability of Electronic Health Records (EHR) and the constantly increasing predictive power of Machine Learning
ML) models are boosting both research advances and the creation of business opportunities to deploy clinical Decision Support
ystems (DSS) in healthcare facilities (Davenport & Kalakota, 2019; Jiang et al., 2017; Moja et al., 2019). Since many of such models
re not equipped to differentiate between correlation and causation, they might leverage spurious correlations and undesired biases
o boost their performance. While there is an increasing interest in the AI community to commit to interdisciplinary endeavors to
efine, investigate and provide guidelines to tackle biases and fairness-related issues (Obermeyer, Powers, Vogeli, & Mullainathan,
019; Pedreschi, Ruggieri, & Turini, 2008; Saleiro et al., 2018), quantitative and systematic auditing of real-world datasets and ML
odels is still in its infancy.
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Fig. 1. FairLens as a tool for auditing a clinical decision support system before its deployment in a healthcare facility. Our contribution, represented by the
color-filled box, provides to the auditor an instrument to detect and explain systematic ML model biases on protected groups.

Ensuring the fairness of the suggestions provided by ML-based clinical DSS is a delicate task that requires to consider the whole
process that goes from data to action. In critical scenarios, ML models do not make autonomous decisions without the supervision
of a human; however, they might inadvertently learn to discriminate using unjustified bases for differentiation that reflect a history
of systematically adverse outcomes for certain groups (Barocas, Hardt, & Narayanan, 2017; Pedreschi et al., 2008; Pierson, Cutler,
Leskovec, Mullainathan, & Obermeyer, 2021), thus leveraging and perpetuating harmful biases in their suggestions. Even under
human supervision, the issue of biased suggestions of clinical DSSs is problematic since it has been shown that clinicians are affected
by automation-bias, i.e., the tendency to over-rely on automation (Goddard, Roudsari, & Wyatt, 2012; Hillson, Connelly, & Liu, 1995;
Lindow, Kron, Thulesius, Ljungström, & Pahlm, 2019). These findings highlight the importance of auditing the clinical DSS before
it reaches its end-user.

While the source and the impact of errors of clinical DSS suggestions are numerous, in this paper we focus on errors that
lead to systematic biases, and as consequence might cause fairness issues. In other words, we analyze the performance of a ML
model across legally recognized protected groups such as gender, ethnicity, age, and on a proxy of socioeconomic status such as
healthcare insurance. Indeed, model performance could create fairness issues if the algorithm suggestions on a protected group are
systematically wrong (Obermeyer et al., 2019; Seyyed-Kalantari, Liu, McDermott, & Ghassemi, 2020). In this paper, we present
FairLens, an auditing tool that allows to test a clinical DSS before its deployment, i.e., before handling it to final decision-makers
such as physicians and nurses. The designated user of FairLens is a healthcare facility expert who wants to audit the ML model
before adopting and deploying it in the facility, as illustrated in Fig. 1.

In this representation, the origin of model bias might be either in the unknown training data or in the learning process. Bias
in training data is usually attributable to a lack of cohort diversity that reflects the data collection process. However, it can also
reflect some discriminatory practices (Boag, Suresh, Celi, Szolovits, & Ghassemi, 2018), the historical exclusion of women and ethnic
minorities from clinical trials (Heiat, Gross, & Krumholz, 2002; Mason, Hussain-Gambles, Leese, Atkin, & Brown, 2003) or lack of
access to care for patients with lower socioeconomic status (Ellis & Jacobs, 2021; McMaughan, Oloruntoba, & Smith, 2020). Since it
is generally not possible to access the training data used to build the clinical DSS, FairLens can become a powerful tool to assess if
the model is appropriate for the specific hospital’s reference population, i.e., the auditing data of Fig. 1. Indeed, FairLens allows the
human expert to perform a thorough analysis of potential fairness issues. However, the final decision on whether the signaled bias
constitutes a real problem or it is a justified basis for differentiation is left to the auditor. Ideally, the FairLens user is an IT expert
with a quantitative background and an in-depth knowledge of the healthcare setting, for example, the director of the IT department
of a big hospital. This type of user usually has the responsibility to ensure the quality and trustworthiness of new technologies before
adoption. FairLens then becomes an additional tool to understand whether to adopt the system or to evaluate if a bias mitigation
strategy is needed, for example, by post-processing the DSS outcomes.

Our Research Question is therefore the following:

How can we audit a black-box Clinical Decision Support Systems in order to detect potential biases on different groups
and explain its mislabelings on specific data points?

FairLens takes bias analysis a step further by explaining the reasons behind the poor model performance on specific groups. FairLens
embeds explainability techniques in order to explain the reasons behind model mistakes instead of simply reporting model scores.
FairLens first stratifies patients according to attributes of interest such as age, gender, ethnicity, and insurance type; it then applies
an appropriate metric to identify patient groups where the model performs poorly. Lastly, it identifies the clinical conditions that are
most frequently misclassified for the selected group and explains which elements in the patients’ clinical histories are influencing
the misclassification.

Throughout this paper, we present a use case where FairLens is used to investigate the potential biases in ML models trained on
patients’ clinical history represented as diagnostic codes using the International Classification of Diseases (ICD) standard. This type of
structured data allows for a machine-readable representation of the patient’s clinical history and is commonly used in longitudinal
ML modeling for phenotyping, multi-morbidity diagnosis classification and sequential clinical events prediction (Che, Purushotham,
Cho, Sontag, & Liu, 2018; Choi, Bahadori, Schuetz, Stewart, & Sun, 2016; Xiao, Choi, & Sun, 2018). The implicit assumption behind
the use of ICD codes in this kind of ML applications is that these codes are a good proxy for the patient’s actual health status.
2
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However, ICD codes can misrepresent such status due to many potential sources of error in translating the patient’s actual disease
into the respective codes (Chen, Szolovits, & Ghassemi, 2019; O’malley et al., 2005). This is particularly true when ICD codes are
fed into black-box ML models, i.e., models whose internal decision-making process is opaque.

The presented methodology is designed to be applied to any sequential ML model trained on ICD codes, and we describe the
whole auditing process applied to a use-case in this context. In this use-case, we use the most recent update of one of the largest
freely available ICU datasets, the MIMIC-IV dataset (Johnson et al., 2020). In this scenario, we show how a domain expert can
use FairLens to audit a multilabel clinical DSS (Choi et al., 2016) acting as a fictional commercial black-box model. A ML model
is trained with a subset of MIMIC-IV and deployed as a black-box clinical DSS, while the remaining MIMIC-IV data acts as the
healthcare facility’s historical medical database for auditing. Moreover, we show that FairLens is not limited to this specific setting:
a use-case where it is applied to a different clinical decision support system is shown in the Supplementary Information. Finally,
we include a computational experiment to validate FairLens in a controlled setting where a known bias is artificially injected in the
black-box. In this experiment, a ML model is trained with a biased subset of MIMIC-IV where some categories are under-represented.
The model is deployed as a black-box clinical DSS, while a fixed and unbiased MIMIC-IV subset acts as the database for auditing.
We compare the results of FairLens using different disparity measures and we show that, as long as the right measure is selected,
FairLens effectively detects the synthetically injected bias.

We believe that applied research and quantitative tools to perform systematic audits specific to healthcare data are very much
needed in order to establish and reinforce trust in the application of AI-based systems in such a high-stakes domain. FairLens is
a first step to make fairness and bias auditing a standard procedure for clinical DSS. We envision such a procedure to be used to
monitor bias and fairness issues in all clinical DSSs life-cycle stages: both during model development and training, in the testing
phase in controlled real-settings and to constantly monitor the performances over time.

The remainder of the paper is structured as follows: Section 2 provides an overview of ML applications on healthcare data, the
fairness problem, and eXplainable Artificial Intelligence. Section 3 introduces FairLens, our novel framework for discovering and
explaining group-related disparities, and Section 4 provides a step-by-step application example of FairLens. Section 5 presents a
computational experiment to validate FairLens in a controlled setting where a known bias is artificially injected in the black-box.
Section 6 ends the paper with a final discussion and directions for future work. The code to run our experiments as well as our
results are available on GitHub.1

2. Background and related work

Advances in artificial intelligence (AI) in healthcare offer groundbreaking opportunities to enhance patient outcomes, reduce
costs, and impact population health (Topol, 2019; Yu, Beam, & Kohane, 2018). Unprecedented results have been achieved leveraging
deep neural networks for pattern recognition to help interpret medical scans (Chilamkurthy et al., 2018; Lindsey et al., 2018;
Nam et al., 2019; Titano et al., 2018), pathology slides (Bejnordi et al., 2017; Capper et al., 2018; Coudray et al., 2018), skin
lesions (Esteva et al., 2017; Haenssle et al., 2018), retinal images (Abràmoff, Lavin, Birch, Shah, & Folk, 2018; Gulshan et al., 2016)
and electrocardiograms (Madani, Arnaout, Mofrad, & Arnaout, 2018; Zhang et al., 2018) to name few examples.

The ability to predict key outcomes can also be exploited to improve clinical practice by training DSSs with Electronic Health
Records (EHR) (Avati et al., 2018; Chen, Hao, Hwang, Wang, & Wang, 2017; Norgeot, Glicksberg, & Butte, 2019; Rajkomar et al.,
2018; Shameer et al., 2017). Compared to more traditional research-oriented clinical data, EHR are usually collected during the
clinical encounter and therefore are a more direct reflection of the health status of the population (Casey, Schwartz, Stewart, & Adler,
2016). Among the many types of EHR, the ICD codes are the easiest to process and to be fed into a ML model (Miranda-Escalada,
Gonzalez-Agirre, Armengol-Estapé, & Krallinger, 2020; Polignano, Suriano, Lops, de Gemmis, & Semeraro, 2020). ICD stands for
International Classification of Diseases, which is the standard for the reporting and coding of diseases and health conditions (WHO
et al., 2018). ICD codes primary use is to share health information in a structured way. In particular, they are used to share
patients’ clinical history across hospitals, monitor prevalence of diseases, evaluate hospital performances, and fill the claims for
health insurance reimbursement. The ICD codes are assigned to each patient by trained human experts using the information
in healthcare providers’ clinical notes. The task of translating clinical notes into ICD codes can be made difficult by the use of
synonyms and abbreviations that can lead to many ambiguities. Therefore, the process is prone to errors and fraudulent behaviors
such as assigning more advantageous codes for reimbursement reasons (O’malley et al., 2005; Piper, 2013) which might create a
bias related to patient’s socioeconomic status and insurance (Chen et al., 2019). These and many other sources of biases might be
present in EHR and can be difficult to track especially if they are fed into a black-box ML model.

In general, besides the technological challenges, the various stakeholders involved with the healthcare ecosystem (clinicians,
atients/patient advocate, researchers, federal agencies and industry) identified the following urgent priorities for healthcare
pplications: trustworthiness, explainability, usability, transparency and fairness (Cutillo et al., 2020). As suggested in Raji et al.
2020), before launching (or deploying) a new ML-based product, a thoughtful auditing process is needed. While the auditing
rocess involves multiple stakeholders and embrace several aspects of product development, one of the ultimate goals is to help
nderstanding if the ML model outcomes are fair. Consequently, the auditing process helps to choose the best actions to perform or
he best bias mitigation strategy to adopt. Building an auditing system first requires defining fairness according to societal values
nd then operationalize it. Many efforts have been devoted to detecting and measuring discrimination in model decisions (Hajian,

1 https://github.com/CeciPani/FairLens.
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Bonchi, & Castillo, 2016; Ruggieri, Pedreschi, & Turini, 2010; Zemel, Wu, Swersky, Pitassi, & Dwork, 2013). Several definitions and
methodologies have been proposed to measure bias and fairness (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012; Hardt, Price, &
Srebro, 2016; Luong, Ruggieri, & Turini, 2011; Pedreschi et al., 2008); however, despite the effort, a general consensus on such
measures is still missing. This is because the most appropriate fairness metric is highly context-dependent. Generally speaking, the
most prevalent approach to fairness in machine learning is to solicit for approximate parity of some statistics of the predictions (such
as false negative rate) across pre-defined groups (Chouldechova, 2017; Kearns, Neel, Roth, & Wu, 2018; Kleinberg, Mullainathan, &
Raghavan, 2016). Moreover, there are very few available general-purposes resources to operationalize them (Adebayo et al., 2016;
Bellamy et al., 2018; Saleiro et al., 2018; Tramer et al., 2017). The majority of such research has focused on binary or multi-class
classification problems to prevent discrimination based on sensitive attributes assessing fairness issues between only two groups
(e.g. female vs. male, black vs. white) (Feldman, Friedler, Moeller, Scheidegger, & Venkatasubramanian, 2015), and a few studies
focus specifically on multi-label classification problems, which is the learning problem of the presented FairLens use-case, with many
concentrating on fairness in ranking and recommendation systems (Abdollahpouri, Burke, & Mobasher, 2017; Edizel, Bonchi, Hajian,
Panisson, & Tassa, 2020; García-Soriano & Bonchi, 2020). In the context of medical applications, a recent paper (Chen et al., 2020)
suggested that the post-deployment inspection of model performance on groups and outcomes should be one out of five ethical
pillars for equitable ML in the advancement of health care.

Another staple of this paper is the research field of eXplainable Artificial Intelligence (XAI) (Gunning, 2017). Indeed, FairLens
mbeds explainability techniques to output the fairness report. XAI techniques have the goal to explain (i.e., present in human-

understandable terms) the decision-making process of an AI system. The need for this kind of technique stems from the fact that
the internal decision-making process of many state-of-the-art AI systems is opaque. This can happen either because the source
code of the algorithm is proprietary software and cannot be directly inspected, or because the model implements a subsymbolic
(numerical) representation of knowledge, often paired with highly non-linear correlations, or both. There are two main approaches
to model explanation in the literature (Guidotti et al., 2018): the transparent-by-design approach (Angelino, Larus-Stone, Alabi, Seltzer,
& Rudin, 2017; Caruana et al., 2015; Wang et al., 2017) and the post-hoc approach (Lundberg & Lee, 2017; Panigutti, Perotti, &
Pedreschi, 2020; Ribeiro, Singh, & Guestrin, 2016). Methods falling into the transparent-by-design category aim to train models that
are both interpretable and accurate. Two illustrative examples of this kind of model are Generalized Additive Models (GAM) and
Generalized Additive Models with Pairwise Interactions (GAM2) (Caruana et al., 2015). Indeed, once trained, the user can directly
inspect the knowledge learned by these models visualizing the relationship between the output and a single feature (in the case
of GAM) or between the output and a pair of features (in the case of GAM2). Another representative example of a transparent-by-
design model is Bayesian Rule Lists (Letham, Rudin, McCormick, Madigan, et al., 2015), where the trained model consists of an
ordered list of if-then rules that describe the decision-making process of the model. Generally, these transparent-by-design models
are based on models recognized as inherently interpretable in the literature: linear models, decision trees, and if-then rules. While
this approach to model explanation is always ideal, it is not applicable in all scenarios. Building transparent models with competitive
prediction performance is particularly difficult in the case of multi-class and multi-label classification problems (Zhang et al., 2019).
Furthermore, this approach to model explanation cannot be applied when the final goal is to audit the decision-making process of
a proprietary software, which is the case presented in this paper.

In this perspective, a greater flexibility is offered by the post-hoc approach. Indeed, this approach focuses on extracting
explanations from a black-box model after training. Several methods falling into the post-hoc category are model-agnostic, i.e., they
can be applied to any black-box since they analyze only its input–output behavior (Lundberg & Lee, 2017; Ribeiro et al., 2016). On
the other hand, model-aware post-hoc XAI techniques are often based on specific ML models and require access to internal values of
the black-box such as the gradients in the convolutional layers for GradCam (Selvaraju et al., 2017) or the attention scores (Vaswani
et al., 2017) as discussed in Wiegreffe and Pinter (2019). Since the model-agnostic approach to model explanation focuses only on its
nput–output behavior, a plethora of methods have been developed to deal with a variety of data sources (relational Anjomshoae,
ampik, & Främling, 2020; Guidotti et al., 2018; Panigutti, Guidotti, Monreale, & Pedreschi, 2019; Ribeiro, Singh, & Guestrin, 2018,

ext Mullenbach, Wiegreffe, Duke, Sun, & Eisenstein, 2018, images Guidotti, Monreale, Matwin, & Pedreschi, 2020; Selvaraju et al.,
017, sequences Panigutti et al., 2020 or several of them Lundberg & Lee, 2017; Ribeiro et al., 2016), and learning problems (binary
nd multi-label classification, regression, scoring) allowing the user to choose the best explainer for the task at hand. These models
re also often local, which means that the provided explanations are valid only for individual predictions and fail to generalize to the
hole model’s logic. To overcome this limitation, some new XAI methods have been proposed to generalize the local explanations

ombining them into a surrogate model able to mimic the black-box logic while being interpretable at the same time (Lundberg
t al., 2020; Setzu, Guidotti, Monreale, & Turini, 2019; Setzu et al., 2021). FairLens methodology, as explained in more details in
ection 3, can be applied using any explainer that allows to combine single explanations into a global one.

. Fairlens pipeline

This Section describes the FairLens methodology to audit black-box Clinical Decision Support Systems in order to (𝑖) detect
otential biases on different groups and (𝑖𝑖) explain its mislabelings on specific data points.

Here we describe an end-to-end use of FairLens on a specific setting (i.e. prediction of future health conditions, based on
ast observation of ICD codes), and we provide an alternative scenario in the Supplementary Information. Indeed, it is worth
tressing that the functional blocks of the pipeline are quite general and thus FairLens can also be used in different settings after an
ppropriate tailoring of the modules. In particular, different applications might be interested in stratifying the data points according
4
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Fig. 2. FairLens pipeline: a tool to support human experts investigating if a black-box clinical decision support system behaves differently on groups based on
protected attributes, highlighting which health conditions are more often misclassified and why.

scoring measure might be different from the one presented here for the high-dimensional multi-label classification, and clearly the
explanation method should be suitable for the black-box as well. Such considerations highlight the potential of FairLens as a useful
framework to allow humans inspecting algorithmic decision-making pipelines, without delegating to yet another automated tool
the delicate task of auditing unintended and potentially harmful consequences of decision support systems. As such, our approach
provides insights about the who and the why of the differential treatment of a clinical decision support system on certain groups,
letting the human experts understanding if such behavior is legit or may lead to fairness issues.

Given a black-box to audit, the building boxes of the pipeline described hereafter are: stratification, scoring, ranking, inspection,
explanation and summary report. A bird’s-eye view of the pipeline is depicted in Fig. 2.

Let 𝐵𝐵 be a sequential black-box ML model trained on ICD data. The model can be available as an on-premise-installed software
or it could be integrated via an exposed API. The only requirement about 𝐵𝐵 is that it can be queried at will.

Let 𝑃 = {𝑝1,… , 𝑝𝑁} be the set of patients. Let each patient 𝑝𝑖 be represented as (𝑝𝑎𝑡𝑡𝑖 , 𝑝𝑐ℎ𝑖 ), where 𝑝𝑎𝑡𝑡𝑖 is a set of attributes such as
ethnicity, gender, and insurance type, and 𝑝𝑐ℎ𝑖 = {𝑣𝑖,1,… , 𝑣𝑖,𝑉 } is the clinical history represented as a sequence of visits. In turn, each
visit is represented by a set of ICD codes.

Let 𝑣𝐵𝐵𝑖,𝑗 = 𝐵𝐵({𝑣𝑖,1,… , 𝑣𝑖,𝑗−1}) be the prediction of the black-box for the 𝑗th visit of patient 𝑝𝑖.
It is worth to notice that the 𝑝𝑎𝑡𝑡𝑖 are not part of the feature space of the 𝐵𝐵, and in principle the patients’ attributes could be

more than those presented here to exemplify the use of FairLens. In general, 𝑝𝑎𝑡𝑡𝑖 could include any attribute that is not used by the
model to predict future health conditions, but can be collected in a structured database (e.g. education level, job status).

3.1. Stratification

The first step of our methodology is depicted in Fig. 2(a). Since we aim to compare the ML model performance across groups, we
stratify our patients set 𝑃 according to a set of conditions 𝑐 on the set of attributes 𝑝𝑎𝑡𝑡, e.g. 𝑐 = {age ≤ 40, insurance = Medicaid}.
Given a set 𝑐 of conditions, we define a group 𝐺 as the set of non-first visits of each patients whose attributes match the conditions
in 𝑐:

𝐺𝑘 = {𝑣𝑖,𝑗 ∣ 𝑗 > 1, 𝑣𝑖,𝑗 ∈ 𝑝𝑐ℎ𝑖 , 𝑝𝑖 ∈ 𝑃 , 𝑝𝑎𝑡𝑡𝑖 ∈ 𝑐𝑘}

The stratification process produces a set of groups 𝐺1,… , 𝐺𝑀 . While the stratification process is based on the attributes of
patients, we create different data-points for each non-first visit, so that we can evaluate the performance of the model on every visit
of the patients’ clinical history. Considering each visit as a different data point is necessary because some demographic attributes
might change between two visits of the same patient (consider for example age and healthcare insurance). The first visit of each
patient (𝑗 = 1) are excluded because in those cases the model has no previous patient history to base its prediction upon.

We remark that there is a degree of freedom regarding which set of attributes are considered. The granularity might be tuned
at will, ranging from one-attribute constraints {gender = F} to more detailed constraints {gender = F, age ≥ 65, ethnicity =
white, insurance = Medicare}.

A domain expert might suggest specific condition sets to isolate a given sub-cohort of known interest, whereas a technician might
opt for building a lattice of all possible combinations of constraints. The attributes considered here are deemed relevant for auditing
purposes as existing literature suggests that minority groups might be at risk of fairness issues, and protected attributes (i.e. traits or
characteristics that, by law, cannot be discriminated against as age and gender) should not affect the model performance. Here, we
also considered the insurance type as it is a proxy for socioeconomic status. According to data availability, other attributes could
be further added to the stratification process. We also remark that some patients might not occur in any group or occur in more
than one, depending on the provided conditions.
5
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3.2. Scoring

After the stratification step, FairLens proceeds to the scoring phase. For every non-first visit 𝑣𝑖,𝑗 occurring in any group 𝐺𝑘, we
uery the 𝐵𝐵 on the previous clinical history of that patient, so that we can compare the ground-truth visit 𝑣𝑖,𝑗 with its predicted
ounterpart 𝑣𝐵𝐵𝑖,𝑗 = 𝐵𝐵({𝑣𝑖,1,… , 𝑣𝑖,𝑗−1}). We therefore obtain the predicted counterparts for every visit in every group, and we can
valuate how different groups fare in terms of truth-prediction disparity.

Although many works in literature define disparity as a distance according to a reference group (Keppel et al., 2005), here
e choose to define disparity as a measure relative to a target standard, that in the case of ML algorithms might be e.g. perfect
rediction of the target values. Therefore, for the purposes of this discussion, we propose the following definition of disparity:

The quantity that separates a group from a target standard using a particular measure of performance.

ence, a disparity function 𝑑 ∶ 𝐺𝑘 → 𝑠𝑘 maps every group 𝐺𝑘 to a disparity score 𝑠𝑘.
FairLens includes a number of disparity functions, such as the standard classification metrics (such as accuracy and F1-score) and

istribution-comparison functions like the Wasserstein distance. Custom disparity functions can be used, as long as their results can
e used for ranking. Given a disparity function, FairLens computes the score 𝑠𝑘 for each group 𝐺𝑘, which represents the performance

of the 𝐵𝐵 on that specific set of patients.

3.3. Ranking

Once each group has been scored, FairLens ranks the groups, as depicted in Fig. 2(b). The ranking highlights groups where
the 𝐵𝐵 performs relatively poorly, signaling them to domain experts for further inspection. Alternatively, the domain experts
might arbitrarily select one group for further inspection, regardless of their scores, due to the cohort’s known peculiarities or
clinical-dependent reasons.

3.4. Inspection

Given a specific group 𝐺𝑘 flagged for further inspection by the group ranking function, FairLens compares the black-box
prediction 𝑣𝐵𝐵𝑖,𝑗 with the ground truth 𝑣𝑖,𝑗 for each visit in 𝐺𝑘. The goal of this step is to check for systematic bias of the 𝐵𝐵 on the
group of patients. For each diagnostic code, the relative frequencies in the predicted and true values are computed and we define
the misdiagnosis score the difference between these two values. Ranking the codes by misdiagnosis scores allows to highlight which
diagnostic codes are particularly over- or under-predicted (high and low difference values respectively). FairLens thus displays the
top three over- and under-represented codes to the domain expert who can ask for an explanation for the highlighted conditions
that might result in producing or reinforcing systematic over- or under-treatment. In Fig. 2(c), we have labeled the true visit value
as 𝐺𝑇 (for ground truth); in the mock example it can be observed that the code 𝛽 is over-represented.

3.5. Explanation

In order to extract an explanation for the mislabeled code, FairLens first assigns binary labels on the visits of the group of
interest. Suppose the domain expert wants to understand what elements of the group clinical histories are most influencing the
over-representation of ICD code 𝛽 in the inspected group 𝐺𝑘, then at each visit 𝑣𝑖,𝑗 ∈ 𝐺𝑘 will be assigned a binary label representing
the misclassification of the ICD code 𝛽:

𝑙(𝑣𝑖,𝑗 ) =

{

1 if (𝛽 ∈ 𝑣𝐵𝐵𝑖,𝑗 )⊕ (𝛽 ∈ 𝑣𝑖,𝑗 )
0 if (𝛽 ∈ 𝑣𝐵𝐵𝑖,𝑗 ) == (𝛽 ∈ 𝑣𝑖,𝑗 )

Then, FairLens selects all the misclassified visits (binary label 1) and explains them using a local XAI technique for sequential
healthcare data. Typically XAI techniques are used to explain the outcome of a black-box ML model. In this setting, we want to
explain why the specific code was wrongly assigned, and we do so by providing the XAI technique with the custom binary label.

More generally, we define the Explainer as a function:

𝜉 ∶ (𝐵𝐵, 𝑥𝑖, 𝛽) → { 𝑓1 ≷ 𝑡1 … , 𝑓𝐹 ≷ 𝑡𝐹 }

that maps a blackbox 𝐵𝐵, a patient’s feature vector 𝑥𝑖 and a clinical code 𝛽 to a set of decision rule premises { 𝑓1 ≷ 𝑡1 … , 𝑓𝐹 ≷ 𝑡𝐹 }
where each 𝑓 is a feature in 𝑥𝑖 that, in combination with a threshold value 𝑡, explains why 𝐵𝐵 misclassified 𝛽 for the patient 𝑝𝑖. In
the case where a black-box 𝐵𝐵 predicts 𝛽 from a feature vector 𝑥𝑖 that is the patient’s clinical history 𝑝𝑐ℎ𝑖 , the feature names 𝑓 are
a subset of the medical codes in 𝑝𝑐ℎ𝑖 .

It is worth noting that while XAI techniques are usually employed to explain the reasons behind a black-box decision, thanks to
the aforementioned binarization process, FairLens uses them to explain the reasons behind a specific mislabeling. Furthermore, we
observe that when a model-agnostic XAI technique is employed, FairLens can be used audit any model without having access to its
internal structure or parameters. However, FairLens can be used with model-aware XAI techniques too, and we provide an example
6

in the Supplementary Information.



Information Processing and Management 58 (2021) 102657C. Panigutti et al.

w
e
s
s

4

f
W
s
r
d
a
a
p

4

c
B
o
d
a
p

4

n
W

c
(
a

Table 1
MIMIC-IV: Data from patients with at least two hospital admissions.

Number of patients 43,697
Number of admissions 164,411
avg. nr. of admissions per patient 3.76
max nr. of admissions per patient 146
Number of unique ICD-9 codes 8259
avg. nr. of codes per admission 11.22

3.6. Reporting

Finally, FairLens combines the local explanations of each mislabeled visit of group 𝐺𝑘 in one set of global rules; this corresponds
to step (e) in Fig. 2. The local explanations extracted by FairLens are in the form of decision rules with premises. Each condition of
the rule premise follows the pattern

ICD_code ≷ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒

here the threshold value expresses whether and when the ICD code was observed in the patient’s clinical history. These local
xplanations are merged by FairLens employing a state-of-the-art XAI technique, GlocalX (Setzu et al., 2021), that outputs a compact
et of global rules by hierarchically merging the local explanations based on their similarity. Finally, FairLens translates the final
et of global rules into natural language and presents the report to the user.

. Use case: auditing a medical decision support system

In this section we show how a domain expert can use FairLens on the historical data available at her healthcare facility to audit a
ictional commercial clinical decision support system (DSS) that predicts patient’s future clinical events based on their clinical history.

e assume that the domain expert has access to the DSS as a black-box, i.e. she can query the DSS at will but has no access to its
ource code, to its weights or to the data used for its training. We use the MIMIC-IV (see Section 4.1) database of electronic health
ecords as the fictitious historical database of the facility and DoctorAI (see Section 4.2) as the fictional clinical DSS. We split the
ataset in training (29.714 patients, 68%), validation (5.244 patients, 12%) and test set (8.739, 20%). Training and validation sets
re used to deploy DoctorAI as a black-box and are not seen during the auditing process, while the patients in the test set are used
s auditing data. We exploit DoctorXAI (Section 4.3) as the backbone of the FairLens explainer, and we show how this auditing
rocess is effective to detect and explain potential biases on different groups.

.1. Dataset: MIMIC-IV

The MIMIC (Medical Information Mart for Intensive Care) (Goldberger et al., 2000; Johnson et al., 2016) database is a single-
enter freely available database containing de-identified clinical data of patients admitted to the ICU (intensive care unit) of the
eth Israel Deaconess Medical Center in Boston. Its most recent update, MIMIC-IV (Johnson et al., 2020), contains information
f 383,220 patients collected between 2008 and 2019 for a total of 524,520 hospital admissions. The database includes patient’s
emographics, clinical measurements and diagnoses and procedures codes of each admission. We focused our analysis on hospital
dmissions coded with ICD-9 billing codes and on patients having at least two admissions to the hospital, reducing the number of
atients to 43,697 and the number of admission to the hospital to 164,411 (see Table 1).

.2. Clinical DSS: Doctor AI

Doctor AI by Choi et al. (2016) is a Recurrent Neural Network (RNN) with Gated Recurrent Units (GRU) that predicts the patient’s
ext clinical event’s time, diagnoses and medications. For the purpose of this use-case, we focused only on diagnoses prediction.
e trained the model on MIMIC-IV using the training and validation set as defined previously using default hyperparameters.
Doctor AI can be trained to predict patient’s future clinical event in terms of either CCS (Clinical Classifications Software) or ICD

odes. CCS codes are used to group ICD codes into smaller number of clinically meaningful categories. As suggested in Choi et al.
2016) we trained Doctor AI to estimate the probability that a CCS code is assigned to a visit at time 𝑡 + 1 given the ICD-9 codes
ssigned to patient’s visits until time 𝑡, and measured its performance using Recall@𝑛 with 𝑛 = 10, 20, 30.

4.3. Local explainer: DoctorXAI

DoctorXAI (Panigutti et al., 2020) is a post-hoc explainer that can deal with any multi-label sequential model. Since it is agnostic
w.r.t. the model, i.e. it does not use any of its internal parameter in the explanation process, it is suitable for our methodology which
considers the clinical DSS as a black-box. Furthermore, DoctorXAI exploits medical ontologies in the explanation process and in our
case we exploited the ICD-9 ontology. The explanations provided by DoctorXAI are local decision rules, which means that they
provide the rationale for one particular classification.

In our scenario, we want to provide an explanation for a over- or under-diagnosis observed in a group of patients, therefore
FairLens binarizes the black-box probability estimates and it combines the explanations as described in the Explanation and Reporting
7

paragraphs of Section 3.
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Table 2
Clinical DSS performance.

BB recall @10 @20 @30

On auditing data 0.481 0.623 0.712

Fig. 3. Distributions of demographic attributes in the auditing data.

4.4. Local-to-global approach: GlocalX

GlocalX (Setzu et al., 2021) is a model-agnostic XAI algorithm that explains the global behavior of black-boxes by aggregating
a set of local explanations in the form of decision rules. GlocalX hierarchically merges local explanations optimizing both the
complexity and fidelity of the decision rules set, i.e., its size and ability to mimic the black-box behavior correctly. In our case,
we used GlocalX to merge all the local explanations extracted by DoctorXAI to explain the individual misclassifications of a group.
We stress that while GlocalX is a methodology to generate a transparent model able to mimic the black box’s global behavior,
in our scenario, we use it as an aggregator of explanations for the patients of the group under investigation, i.e., all the patients
having a specific misclassification. Therefore the validity of the provided global explanation is limited to the black-box behavior on
those patients. As described in Section 3, DoctorXAI produces rules that follow the pattern ICD_code ≷ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒, and GlocalX
preserves this structure. To map back these rules onto human-readable sentences, we simply revert DoctorXAI’s temporal encoding.
In order to circumvent the temporal nature of medical history data, DoctorXAI exploits a fairly straightforward temporal encoding,
where each ICD9 code receives an exponentially decreasing value according to its occurrence (or lack thereof) in the visits of the
patient, explored backwards. The last visit corresponds to a score of .5, the second-to-last to a score of .25, and so on. For instance,
if some condition 𝐶 was diagnosed in the third-to-last and second-to-last visits, but not in the last one, 𝐶 would be given the value
of .375. Given this logic, it is trivial to interpret the inequalities produced by DoctorXAI and aggregated by GlocalX: 𝐶 < .5 means,
for instance, that the ICD9 𝐶 was not diagnosed in the last visit, while 𝐶 ≥ .25 means that the ICD9 𝐶 was diagnosed at least once
in the last two visits of the patient.

4.5. Auditing DoctorAI on MIMIC-IV

4.5.1. Assessing the dss performance on the healthcare facility data.
The first step that a domain expert would perform before deploying the clinical DSS on her dataset is to measure its global

performance on the facility data. In our scenario, a domain expert would obtain the results in Table 2.

4.5.2. Identifying problematic groups of patients.
Once the global performance has been assessed, the domain expert can apply FairLens to discover potential biases learned by

the model. The domain expert would start by deciding which attributes to use to stratify the patients. For the purpose of our
fictional scenario, we consider the following attributes occurring in the auditing data: Gender, Ethnicity, Age and Insurance type. The
distributions of these attributes is shown in Fig. 3.

Once these attributes are selected, FairLens computes the disparities across groups. In our scenario, the black-box is a sequential
multi-label model that predicts the set of codes diagnosed in the next visit in terms of CCS codes. In this multi-label case, the
disparity is evaluated using the Wasserstein distance which has already been successfully employed as a loss function for multi-label
and multi-class ML tasks (Frogner, Zhang, Mobahi, Araya, & Poggio, 2015) and to post-process the output of a classifier to achieve
fair treatment (Jiang, Pacchiano, Stepleton, Jiang, & Chiappa, 2020). This metric measures the distance between two probability
distributions: for each group of interest, the distance between the distribution of CCS codes in the black-box output and the same
distribution in the ground truth. In our scenario, the DSS outputs the top 30 CCS codes ranked by estimated probability. Similarly to
the recall@k we define the disparity score@k which is the Wasserstein distance between the ground truth and the predicted probability
distributions over the top-𝑘 CCS codes. From now on, we will perform the analysis using the disparity@30 unless otherwise specified.

The domain expert can decide to either explore a specific group of interest or to have a comprehensive view of the biases of the
DSS on all possible groups.
8
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Fig. 4. Normalized disparity scores vs. group sizes with bootstrap outliers bands capturing 50% (light gray) and 95% (dark gray) of the random variability for
that group size. The median of the bootstrap distribution is shown as a solid gray line.

Table 3
Groups with the highest disparity score in each group size bin. All disparity scores marked with
∗ are above the 95th percentile of random variability for the group size.

Group size bin Insurance Gender Age group Ethnicity Disparity score Group size

10–50 medicaid f 25–45 asian 1.00 ∗ 23
50–100 medicare f over 65 other 0.84 ∗ 70
100–200 any f over 65 other 0.84 ∗ 111
200–400 any any over 65 asian 0.88 ∗ 286
400–800 any any any asian 0.83 ∗ 657
800–1500 other m over 65 white 0.86 ∗ 1082
1500–3000 medicare m over 65 white 0.86 ∗ 2783
3000–5000 any m over 65 white 0.86 ∗ 3894
5000–24 446 medicare any over 65 white 0.86 ∗ 5679

The scatter plots in Fig. 4 confront the normalized disparity score with the group size for all possible groups. Each scatter plot
focus on a specific attribute, and each point represents a group with a combination of attributes, for a total of 340 combinations. The
color-coding allows to explore the disparities of each intersectional identity. Data points labeled and color-coded as any correspond
to groups that do not represent a specific value for the stratification feature: for instance, the group (male, medicare) includes patients
of all ages and ethnicities.

In the same plots we show the variability in disparity score as function of the group size, when selecting the same number of
patients independently of their group assignment. In particular, we randomly sample with replacement 1000 times for each group
size to estimate its disparity score’s sampling distribution. The plots show the median (solid gray line) and the bands capturing
the 50% (light gray) and 95% (dark gray) of the distribution for each group size. The groups falling above the dark gray band’s
upper limit have a disparity score above the 95th percentile of the distribution for that group size when no demographic variable
is considered. These groups are also marked with an asterisk in Table 3.

A higher variability in terms of disparities is observed among smaller groups. While this might suggest fairness issues for relatively
rare groups, given the small size of these groups, the high variability and dispersion away from the mean could also occur by chance;
therefore Table 3 also provides an overview of the groups with the highest disparity in predefined group-size bins. The results in
this table (supported by the Age Bracked plot in Fig. 4) suggest that the DSS seems to often misdiagnose older patients; indeed they
are the most prevalent age group with the largest disparity score by group size bin.

4.5.3. Identifying systematic sources of error in the selected group.
For each group, FairLens then computes the misdiagnosis score of each CCS code by subtracting its ground truth value (clinical

conditions) from the value predicted by the DSS. This score allows to rank the codes, so that the most over- and under-diagnosed
CCS codes can be isolated. Table 4 reports the top 3 groups by disparity score in the largest bins, and the top 3 codes ranked by
over- and under-diagnosis scores.

The domain expert auditing the system can further select a specific group for a more in-depth investigation. Suppose she decides
to focus on one of the groups with the highest disparity and also a fairly high group-size, for example patients of Asian ethnicity
9
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Table 4
Groups ranked by disparity scores and most over/under-diagnosed conditions when auditing the black-box.

Group Size Disp. Over-diagnosed (Misdiagnosis Under-diagnosed (Misdiagnosis
score score) score)

Female, 65+,
Medicare, Other
ethn.

70 0.83
106: Dysrhythmia 0.027 2621: E Codes:Place of occurrence −0.010
98: Essential hypertension 0.02 2603: E Codes: Fall −0.009
259: Unclassified 0.019 210: Systemic lupus erythematosus −0.007

Female, 65+,
Other ethn. 111 0.84

259: Unclassified 0.024 2621: E Codes:Place of occurrence −0.009
98: Essential hypertension 0.024 2603: E Codes: Fall −0.007
106: Dysrhythmia 0.022 250: Nausea/vomit −0.006

Asian, 65+ 286 0.88
259: Unclassified 0.023 6: Hepatitis −0.009
98: Essential hypertension 0.020 204: Other non-traumaticjoint disorder −0.008
663: Hist. of mental healthand subs. abuse 0.016 96: Heart valve disorders −0.007

Table 5
Set of rules produced by DoctorXAI and aggregated by GlocalX to explain why the CCS code 96: Heart valve disorders was
under diagnosed for over-65 Asian patients by the model DoctorAI. Each row group is a rule with a set of premises, each
premise is in the form of ICD-9 ≷ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒. For the human-readable description of each ICD-9 code the reader can consult
http://www.icd9data.com/.
427.31 ≤ 0.25 410.91 ≤ 0.25 396.3 ≤ 0.25 410.71 ≤ 0.25 424.0 > 0.25 162.3 > 0.125

424.1 ≤ 0.25 425.4 > 0.16 202.10 > 0.0005 427.31 > 0.5 244.9 > 0.5 E933.1 > 0.1
V10.3 > 0.004 V49.86 > 0.024 V12.72 > 0.033 E930.7 > 0.016 V45.82 > 0.244

427.31 > 0.62 V45.82 > 0.125 428.0 > 0.437 567.29 > 0.125 575.4 > 0.125 574.00 > 0.062
362.50 > 0.125 530.81 > 0.375 411.1 > 0.25 412 > 0.187 401.9 > 0.25 564.00 > 0.062
V04.81 > 0.25

427.31 ≤ 0.25

424.1 > 0.25 V12.71 > 0.344 401.9 > 0.148 305.1 > 0.219 E849.9 > 0.023 403.90 > 0.344
288.3 > 0.0625 255.9 > 0.0625 V13.01 > 0.25

and over 65 years of age (see Table 4). This analysis tells the domain expert that across groups the DSS tends to over-diagnose
general conditions such as Essential hypertension or Unclassified. More interestingly, for the group of patients of Asian ethnicity and
over 65 years of age, the DSS seems to under-diagnose Heart valve disorder, which is a potentially severe condition that might need
surgery.

4.5.4. Obtaining explanations for systematic misclassifications.
Once the groups with the highest disparities are identified, the domain expert can use FairLens to obtain an explanation for

one particular misclassification. Consider, for example, the under-diagnosis of Heart valve disorders (CCS code 96) for over-65 Asian
patients. FairLens uses DoctorXAI to discover which elements in the patients’ clinical history drive the under-diagnosis of that specific
CCS. This is done by first projecting the black box’s multi-label output on the single label 96 (as explained in Section 3), then calling
DoctorXAI to explain the binarized outcome for the 19 patients where the CCS code 96 was wrongly not diagnosed.

By doing so we obtain 19 explanations, one for each CCS-96-misdiagnosed patient in our patients group. As a further step, the
GlocalX local-to-global algorithm aggregates these local explanations into a more compact and doctor-readable global explanation,
as introduced in Section 2. GlocalX, for this explanation set, produces the global rules of Table 5. While the original rule set had 19
rules of mean length 10, the resulting rule set contains only 5 rules of mean length 8. Clearly, this is a more compact set but not
yet comprehensible.

As a very first feedback to the expert, FairLens produces Fig. 5: this plot highlights the ICD9 codes that occur in the global
rules (and therefore are brought out by the FairLens pipeline as misclassification culprits) and are also most common among the
patients of the group under scrutiny. In our case, for instance, the domain expert can immediately observe that the highlighted ICD9
codes are 410.91 (Acute myocardial infarction of unspecified site, initial episode of care), 396.3 (Mitral valve insufficiency and aortic valve
insufficiency) and 410.71 (Subendocardial infarction, initial episode of care). Fig. 5 provides useful preliminary insights to the FairLens
ser, but at the same time the information conveyed by the global explanations is richer and can be presented in greater details. First,
e want to translate these rules back into natural language, and we do so as explained in the previous subsection: for instance, the

ast global conjunct is V13.01>0.25 and it corresponds to ‘Personal history of urinary calculi’ was diagnosed in the last visit. Second,
e want to rank our global rules. To do so, we measure the coverage of each rule as the number of patients whose features do
ot violate the rule, and we select the rules in a greedy fashion, highlighting those with higher coverage. For our case-study, the
e-interpreted output of GlocalX is the following:

• FairLens focused on 19 patients
• 13 patients were misdiagnosed because ‘Atrial fibrillation’ was not diagnosed in the last visit.
• 5 remaining patients were misdiagnosed because ‘Aortic valve disorders’ was not diagnosed in the last visit, ‘Other primary
cardiomyopathies’ was diagnosed at least once in the latest two visits, ‘Mycosis fungoides, unspecified site, extranodal and solid
10
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Fig. 5. Aggregated visualization of the relevant ICD-9 codes for the under-diagnosis of Heart valve disorders in over-65 Asian patients.

organ sites’ was diagnosed at least once in the latest three visits, ‘Atrial fibrillation’ was diagnosed in the last visit, ‘Unspecified
acquired hypothyroidism’ was diagnosed in the last visit, ‘Antineoplastic and immunosuppressive drugs causing adverse effects in
therapeutic use’ was diagnosed at least once in the latest three visits, ‘Personal history of malignant neoplasm of breast’ was
diagnosed at least once in the latest three visits, ‘Do not resuscitate status’ was diagnosed at least once in the latest three visits,
‘Personal history of colonic polyps’ was diagnosed at least once in the latest three visits, ‘Antineoplastic antibiotics causing adverse
effects in therapeutic use’ was diagnosed at least once in the latest three visits, and ‘Percutaneous transluminal coronary angioplasty
status’ was diagnosed at least once in the latest two visits.

• 1 remaining patient was misdiagnosed because ‘Aortic valve disorders’ was diagnosed in the last visit, ‘Hypertensive chronic
kidney disease, unspecified, with chronic kidney disease stage I through stage IV, or unspecified’ was diagnosed in the last visit, and
‘Eosinophilia’ was diagnosed at least once in the latest three visits.

This human-readable snippet is the final output of FairLens pipeline – it provides medical experts with insights on why the medical
decision support system misdiagnosed patients of the selected group, failing to diagnose the highlighted condition, CCS 96 – Heart
valve disorder.

5. Validation

To empirically validate the reliability of FairLens in discovering biases, we created an artificially biased DSS and we ran the
FairLens pipeline on it. The aim of this validation is to check whether the disparity measure used by FairLens is able to highlight
the bias we injected in the DSS even when standard measures of multi-label performance (e.g. recall@n and microAUC) do not detect
it.

5.1. Creating the biased dss.

One of the most common causes of bias in machine learning is the under-representation of some categories in the training set.
We then performed a random undersampling of patients having Other as Insurance, removing 90% of them from MIMIC-IV dataset
(sampling A of Fig. 6). Finally, we used this skewed dataset as the training set for DoctorAI creating the biased DSS. While in this
case we used such approach to validate the proposed pipeline, it is worth to notice that several studies suggest that ICD9 codes
might be severely biased by the insurance type variable (Geruso & Layton, 2020; Harrington, Allen, & Ruchala, 2007; Lyon et al.,
2011; Piper, 2013).

The biased DSS created using this training set also contains, by construction, all the biases already present in the original dataset.
To check whether the bias detected by FairLens in the biased DSS is actually the one we synthetically injected rather than the one
already present in the original dataset, we created a baseline DSS by training DoctorAI on a random undersampling of MIMIC-IV
sampling B in Fig. 6). This sampling creates a training set that has the same size as the biased one, but that has the same distributions
f demographic variables as the auditing dataset. Fig. 6 shows the resulting distributions of training set demographic variables for
he two sampling and for the test set.

The fact that the size of the training set is the same for both the biased and the baseline DSS allows a fair comparison of the
erformance metrics among the two. Indeed comparing the performance of the biased DSS with a baseline trained on a MIMIC-IV
ataset without sampling would result in a baseline performance higher than the biased one only due to the bigger size of training
et, creating a confounding factor for the analysis. The performance of the two DSSs on the test set are shown in Table 6.

Comparing the distributions of demographic variables of these two black-boxes (Fig. 6), we note that by removing 90% of
atients having Other insurance, we also changed the distributions of other demographic variables. Consider, for example, the age
11

istribution in the biased training set. We can see that patients having age 0–15 almost disappear from the dataset.
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Fig. 6. Sampling procedure and distribution of demographic variables in the training sets and test set. We first extract from the whole MIMIC-IV a test set
with 20% of data points. From the remaining points, we extract two training sets with different sampling procedures (sampling A and sampling B). Sampling A
produces a training set with artificially injected bias. Sampling B produces a training set with random sampling that respects the same distribution of demographic
variables as the original dataset.

Table 6
Performance of clinical DSS trained on the biased and on the baseline training sets.

BB recall trained @10 @20 @30

On biased training set 0.449 0.586 0.671
On baseline training set 0.454 0.591 0.683

Table 7
Groups with the highest disparity score in each group size bin for the biased DSS. All disparity scores marked with ∗ are above
the 95th percentile of random variability for the group size.

Group size bin Insurance Gender Age braket Ethnicity Disparity score Group size

10–50 other f 0.0–15.0 white 1.00 ∗ 10
50–100 other any 0.0–15.0 any 0.66 ∗ 57
100–200 other m any asian 0.42 ∗ 149
200–400 any any over 65 asian 0.40 ∗ 286
400–800 any any any asian 0.39 657
800–1500 other m any black/african american 0.40 ∗ 866
1500–3000 medicare f over 65 white 0.41 ∗ 2896
3000–5000 medicare f over 65 any 0.41 ∗ 3832
5000–24 447 any f over 65 any 0.40 ∗ 5351

5.2. Fairlens analysis

We then proceed to run FairLens Pipeline on these two DSS. The first step is to identify potentially problematic groups of patients
using FairLens scatterplots (Fig. 7) and tables (Table 7).

Comparing the two scatterplots we can immediately see that FairLens detect both the Insurance and the Age bias synthetically
injected in the biased DSS. Indeed, the majority of patients having the biggest disparity scores are those of age 0–15 and those
having insurance Other. This is visible also in the tables that show the highest disparity scores binned by group size (see Tables 3
and 7).

We also compared FairLens average ranking aggregated by insurance type for both the biased and the baseline DSS. The results
reported in Table 8 show that, for the baseline DSS, FairLens ranks Medicare as the insurance having the highest disparity score
across different groups, while Other is ranked above the others for the biased DSS.
12
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Fig. 7. FairLens scatterplots for the baseline DSS (a) and biased DSS (b).

Table 8
The ranking performed by FairLens using disparity score for the baseline and biased DSS.

Insurance Rank on Rank on Mean rank on Mean rank on
baseline biased baseline biased

medicare 1 2 107.82 119.09
other 2 1 111.24 93.97
medicaid 3 3 143.75 155.04

Finally, we measured the outcome disparity for the insurance variable using the multi-label standard metrics used to evaluate

DoctorAI performance in the original paper, recall@k and the microAUC. We compared the difference of these metrics in the baseline

and biased DSS in Fig. 8. We can see that while the standard metrics remain almost constant or slightly decrease in the biased BB
13
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Fig. 8. Average metrics across insurance groups.

with respect to the baseline DSS, both disparity scores evaluated at top 𝑘 = 20 and 𝑘 = 30 exhibit a clear increase for the under
ampled group in the BB where bias was artificially injected.

. Discussion and conclusions

Fairness and explainability are key features to gain trust from patients and clinicians. As black-box ML-based clinical decision
upport systems will be deployed in real-world healthcare settings, systematic auditing procedures must be in place. In this paper
e proposed FairLens, an algorithmic pipeline to inspect clinical DSSs to spot potential fairness issues in patients’ groups that call

or further investigation of potential over-/under-diagnosed conditions. The proposed methodology is able to drive domain experts
o investigate the reason behind the systematic black-box misclassification by pointing to the most common causes of error within
roups through XAI techniques.

The main use-case presented in this paper describes the auditing process of a clinical decision support system trained on
equential visits aimed at predicting the diagnoses associated to the next patient’s visit. FairLens can be generalized to other use-cases
ith different DSS tasks, as far as the building blocks are adequately adapted. In the Supplementary Information, the application of
airLens to a different clinical decision support system is shown. While the final aim (auditing a black-box) and the intended user (IT
xpert responsible for deploying the DSS in the healthcare facility) are the same, the machine learning model is completely different.
he experiment highlights the flexibility of our framework, that is adapted to work on the task of predicting the ICD9 codes given
he raw text of clinical notes, relaxing the temporal dimension of sequential visits. While the scoring mechanism remains unchanged,
he explainability approach and the local-to-global aggregation mechanism are adapted to the prediction task. We highlight that
airLens can also be used by the DSS developers to perform a sanity check of the model and detect and mitigate potential biases
efore its release. However, this would require the ML engineers to have some knowledge of the medical domain, or to cooperate
ith medical personnel, to understand if the potential bias signaled by FairLens reflects a real fairness issue.

It is worth stressing that FairLens is not designed to be an automated tool, but rather to help human auditors in identifying
roups where fairness issues may arise. Moreover, FairLens is not able to provide the origin of such misbehavior (e.g. eliciting if
14
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the source of bias is in the original training data, or is embedded in the algorithm itself García-Soriano & Bonchi, 2020 or in the
prediction task), as it is designed to perform external audit without having access to information about the black-box nor to the
original training data.

We firmly believe in the primary urgency of building external algorithmic auditing tools that allow an objective evaluation of
he effectiveness and fairness of algorithmic systems. Even though an internal algorithmic auditing process is of pivotal importance
o release a product that meets the ethical and reliability standards of whom developed and marketed the product, its cost–benefit
nalysis might be skewed toward maximizing profit. External auditing tools allow companies to be held accountable to third parties
nd increase the credibility of the algorithmic pipeline. Independent auditing is also useful to test the model in the actual deployment
etting: it may also happen that the population used for training the DSS is just not compatible with the target population where the
SS should be deployed, thus making it harmful or ineffective. In the healthcare context, external auditing tools such as FairLens
ould also identify ICU patients’ over/under-treatment to improve patient-processes. Under the assumption that high disparity scores
uggest a mismatch between what the clinical decision support system learned and how the patients were historically treated in the
ealthcare facility, the auditor might even find biases in the auditing data, that should lead to additional investigation and quality
ssessment of hospital services. It is also important to discuss potential uses of FairLens, which differ from the one envisioned
nd discussed in this paper. Theoretically, if linked with information that leads to the identification of the operator responsible for
atients’ treatments, FairLens could be used to identify doctors that systematically treat groups differently. While doctor performance
ssessment is extremely valuable and several techniques to operationalize it already exist (Overeem et al., 2007), such unintended
se of FairLens should be properly considered.

Future work will be devoted to test FairLens in a setting with a panel of domain experts in the loop to optimize tool usability and
nderstand if the provided metrics, explanations and investigation steps are meaningful and understandable by the end-users, and
f FairLens is ultimately helpful in taking better informed decisions on DSS deployment. Finally, additional experiments to generate
ounterfactual examples as explanations will be implemented to increase FairLens adoption by domain experts.
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