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A B S T R A C T

Ranking items or people is a fundamental operation at the basis of several processes and
services, not all of them happening online. Ranking is required for different tasks, including
search, personalization, recommendation, and filtering. While traditionally ranking has been
aimed solely at maximizing some global utility function, recently the awareness of potential
discrimination for some of the elements to rank, has captured the attention of researchers,
which have thus started devising ranking systems which are non-discriminatory or fair for the
items being ranked. So far, researchers have mostly focused on group fairness, which is usually
expressed in the form of constraints on the fraction of elements from some protected groups that
should be included in the top-𝑘 positions, for any relevant 𝑘. These constraints are needed in
order to correct implicit societal biases existing in the input data and reflected in the relevance
or fitness score computed.

In this article, we tackle the problem of selecting a subset of 𝑘 individuals from a pool
of 𝑛 ≫ 𝑘 candidates, maximizing global utility (i.e., selecting the ‘‘best’’ candidates) while
respecting given group-fairness criteria. In particular, to tackle this Fair Top-𝑘 Ranking problem,
we adopt a ranked group-fairness definition which extends the standard notion of group fairness
based on protected groups, by ensuring that the proportion of protected candidates in every
prefix of the top-𝑘 ranking remains statistically above, or indistinguishable from, a given
minimum threshold. Our notion of utility requires, intuitively, that every individual included
in the top-𝑘 should be more qualified than every candidate not included; and that for every
pair of candidates in the top-𝑘, the more qualified candidate should be ranked above.

The main contribution of this paper is an algorithm for producing a fair top-𝑘 ranking that
can be used when more than one protected group is present, which means that a statistical test
based on a multinomial distribution needs to be used instead of one for a binomial distribution,
as the original FA*IR algorithms does. This poses important technical challenges and increases
both the space and time complexity of the re-ranking algorithm. Our experimental assessment
on real-world datasets shows that our approach yields small distortions with respect to rankings
that maximize utility without considering our fairness criteria.
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1. Introduction

Ranking is a fundamental task at the basis of several processes and services in the online and offline world, including search,
ecommendation, personalization, and filtering. The position that an item (or a person, as in our case of interest) receives in a ranking
an have a substantial economic impact. For instance, in a university admission only the top-𝑘 ranked applicants are admitted (for

some specific value of 𝑘), so that those ones not making it into the top-𝑘 have zero benefit. In online search platforms, the position
in a ranking influences to a large extent the attention that an item receives: only the top-𝑘 items are shown in the first results page,
due to physical limitations of the screen. Moreover, it is well known that users inspecting the results are susceptible to position bias,
i.e., they pay attention mostly to the top of the page and thus to the top-ranked items (Craswell, Zoeter, Taylor, & Ramsey, 2008).
As people search engines are increasingly common for job recruiting (Raghavan, Barocas, Kleinberg, & Levy, 2020) and even for
finding companionship or friendship, top-𝑘 ranking algorithms might have a direct and tangible impact on people’s life.

The main concern motivating this work is that ranking algorithms based in machine learning, may produce ranked lists that can
systematically reduce the visibility of already disadvantaged groups (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012; Pedreshi,
Ruggieri, & Turini, 2008) and legally protected categories such as people with disabilities, racial or ethnic minorities, or an
under-represented gender in a specific professional domain. This systematic bias may have various origins, including training data
annotated by biased experts, click data from users exhibiting various kinds of biases, and even differences in document construction
across groups (e.g., women and men complete sections of their professional profiles differently (Altenburger, De, Frazier, Avteniev,
& Hamilton, 2017)). Furthermore, it is assumed that this bias manifests differently across groups, rendering inter-group relevance
scores incomparable with each other.

According to Friedman and Nissenbaum (1996), a computer system is biased ‘‘if it systematically and unfairly discriminate[s]
against certain individuals or groups of individuals in favor of others. A system discriminates unfairly if it denies an opportunity
or a good, or if it assigns an undesirable outcome to an individual or a group of individuals on grounds that are unreasonable
or inappropriate’’. Yet ‘‘unfair discrimination alone does not give rise to bias unless it occurs systematically’’ and ‘‘systematic
discrimination does not establish bias unless it is joined with an unfair outcome’’. In a ranking, the desired outcome for an individual
is to be ranked as high as possible. In the cases in which there is a complete or big drop in utility after the 𝑘th position, the desired
outcome is to be ranked amongst the top-𝑘. A ranking outcome can be deemed unfair, if members of one or more protected groups
are systematically ranked below those of a privileged group. In this regard, the main issue is that machine learning models trained
on datasets incorporating preexisting societal biases will learn and structure such biases, eventually producing biased results, which
once deployed in decision making in the real world, can reinforce existing biases and strengthen inequalities (O’Neil, 2016). In some
cases, the bias can even be amplified (Kleinberg, Lakkaraju, Leskovec, Ludwig, & Mullainathan, 2018).

Based on this observation, in this article we study the problem of producing a ranking that we will consider fair, given legally-
protected attributes. Specifically, we extend the top-𝑘 ranking algorithm FA*IR (Zehlike et al., 2017) and its ranked group fairness
criterion to handle multiple protected groups. Intuitively, given a set 𝐺 of different minority groups, our aim is to produce a ranking
in which the proportion of each group 𝑔 ∈ 𝐺 in any ranking prefix does not fall below given minimum proportions 𝑝𝐺, where 𝑝𝐺 is a
vector containing the respective minimum proportion 𝑝𝑔 per group 𝑔. In this ranking, we also would like to preserve relevance/utility
as much as possible. A formal definition of the problem can be found in Section 3.

The input vector 𝑝𝐺 of minimum proportions can originate from a legal mandate or from voluntary affirmative actions. For
instance, the US Equal Employment Opportunity Commission sets a goal of 12% of workers with disabilities in federal agencies in
the US,1 while in Spain, a minimum of 40% of political candidates in voting districts exceeding a certain size must be women (Verge,
2010). In other cases, such quotas might be adopted voluntarily, for instance through a diversity charter.2 In general these measures
do not mandate perfect parity, in part because distributions of qualifications across groups can be unbalanced for legitimate,
explainable reasons (Pedreschi, Ruggieri, & Turini, 2009a; Žliobaite, Kamiran, & Calders, 2011). The ranked group fairness criterion
compares the number of protected elements in every prefix of the ranking with the expected number of protected elements if they
were picked at random using a multinomially distributed statistical process (‘‘dice rolls’’ with each side 𝑔 of the dice representing
a group, and having success probability 𝑝𝑔 ∈ 𝑝𝐺). Given that we use a statistical test for this comparison, we include a significance
parameter 𝛼 corresponding to the probability of a type-I-error, which means rejecting a fair ranking.
Example. In the following we want to illustrate why we have to extend the Fair Top-𝑘 Ranking Problem from Zehlike et al. (2017) to
be based on a multinomial distribution, instead of just applying binomial FA*IR to a ranking for each group consecutively. Consider
the rankings in Table 1, corresponding to five hypothetical ways of ranking ten candidate applicants in a credit approval process. The
rankings are obtained based on the credit worthiness of each applicant, taking into account different features such as account status,
credit duration, and credit amount. We also present to which protected group each individual belongs based on their demographics
‘‘age’’ and ‘‘race’’. Suppose we have two protected groups, namely ‘‘young’’ white candidates and ‘‘old’’ black candidates, and one
non-protected group, old white candidates; for now, in this example, we do not consider young black candidates on purpose.

Running FA*IR for one protected group (Zehlike et al., 2017) with minimum proportion 𝑝 = 0.3 and significance 𝛼 = 0.1 translates
into requiring at least one protected candidate in the top seven positions of a ranking with ten positions in total. Suppose we set
the same minimum proportions for both protected groups 𝑝y/w = 𝑝o/b = 0.3 and we assume that the colorblind ranking (upper most
ranking in Table 1) does not meet ranked group fairness with these requirements. The next two rankings have been obtained using
FA*IR for one protected group, each focusing either on the protected group of old blacks or young whites, while treating the rest

1 US EEOC: https://www1.eeoc.gov/eeoc/newsroom/release/1-3-17.cfm, Jan 2017.
2 European Commission: http://ec.europa.eu/justice/discrimination/diversity/charters/.
2

https://www1.eeoc.gov/eeoc/newsroom/release/1-3-17.cfm
http://ec.europa.eu/justice/discrimination/diversity/charters/


Information Processing and Management 59 (2022) 102707M. Zehlike et al.

A
t
i
l
D
f

q
c
q
h

Table 1
Five possible rankings of top-10 results with people from two protected groups: young white (red) and old black persons (blue), and one non-protected group:
old white persons. Suppose we set the same minimum proportions for these two groups 𝑝y/w = 𝑝o/b = 0.3. The first ranking shows the colorblind ranking, which
is unfair for both groups (note that the remaining protected candidates have been ranked outside of the top-10 and are not shown). The next three rankings are
created using FA*IR from (Zehlike et al., 2017) with respective minimum proportions: The second ranking would be considered fair for young people, but not for
black people; the third ranking would be considered fair for black people, but not for young people; the fourth ranking combines black and young people into
one protected group, but because the group-specific bias is higher for young people, they are ranked below all black candidates; the fifth ranking was created
using the multinomial extension of FA*IR and would satisfy the multinomial ranked group fairness condition for both young and black people. Note that this is
only one possible fair ranking out of many possibilities.

Position 1 2 3 4 5 6 7 8 9 10

Colorblind o/w o/w o/w o/w o/w o/w o/w o/w o/b y/w
Young whites 𝑝𝑦∕𝑤 = 0.3 o/w o/w o/w o/w o/w o/w y/w o/w o/w o/b
Old blacks 𝑝𝑜∕𝑏 = 0.3 o/w o/w o/w o/w o/w o/w o/b o/w o/w y/w
y/w and o/b as one group o/w o/w o/b o/w o/b o/w o/b o/w y/w o/w
𝑝𝑦∕𝑤+𝑜∕𝑏 = 0.6;
y/w and o/b as distinct groups o/w o/w y/w o/b o/w y/w o/b o/w y/w o/b
𝑝𝑦∕𝑤 = 𝑝𝑜∕𝑏 = 0.3;

as non-protected. We see directly why this is problematic: equal minimum proportions 𝑝 result in exactly the same requirements of
protected candidates for each group. It is not clear whether an old black or a young white candidate should be preferred at position
7. More importantly, it is also not clear how to proceed with the candidate that is not chosen. Let us assume that the young white
candidate is chosen to be ranked to position 7. As old black candidates are not considered as protected in this setting, then they
would be ranked even lower than their original position in the colorblind ranking (observe the second ranking in Table 1).

To overcome this, suppose we aggregate all protected groups together into a single protected group and add up the minimum
proportions to one that fits the total share of protected candidates. In our example, we combine the group of young whites and old
blacks into one group with minimum proportion 𝑝 = 0.6. This however, neglects to account for any bias that manifests differently
across protected groups. Hence, if the bias in credit scores of young people is significantly higher than for black people, then all
young whites will be ranked below the old blacks in the fair ranking (observe the fourth ranking in Table 1). Additionally, combining
all protected groups into one group ignores the problem of intersectional discrimination. Intersectional discrimination refers to the fact
that personal, political, and social identities of an individual can be combined to form a unique profile that can be discriminated.
If we also considered young black people as a third protected group, the bias in their scores would manifest itself through two
dimensions of discrimination, namely through age and race, which may lead to even more bias in their scores, and thus potentially
to the lowest positions, even when applying FA*IR. Therefore young black candidates should be considered as their own group
whose scores are not comparable with the ones of young whites, or old blacks.

From the above we conclude that providing a fairness definition for rankings that either treats protected groups consecutively,
or assembles all groups into one big group, cannot guarantee a fair ranking for multiple protected groups with different bias
manifestations. This highlights the need for a ranked group fairness notion for multiple protected groups that is based on a
multinomial distribution. The fifth ranking in Table 1 is an example of a multinomially fair top-10 ranking for the protected groups
young and black. It is created using our multinomial ranked group fairness criteria and the multinomial FA*IR algorithm proposed in
this paper. Note that this is only one of the possible fair rankings out of many possibilities. We remark that our method is suitable
for concerns about intersectional discrimination, by forming groups through the Cartesian product of protected attributes.

1.1. Contributions and roadmap

We define and analyze the Fair Top-𝑘 Ranking problem with multiple protected groups, in which we want to determine a subset
of 𝑘 candidates from a large pool of 𝑛 ≫ 𝑘 candidates, in a way that maintains high utility (selects the ‘‘best’’ candidates from each
group), subject to a group fairness criterion. This work addresses multiple protected groups extending our previous work (Zehlike
et al., 2017) that only considered the single protected group case.

Our notion of utility assumes that we want to invite the most qualified candidates from each group, while their qualification is
equal to a relevance score calculated by a ranking algorithm. This score is assumed to be based on relevant metrics for evaluating
candidates for a work position, which depending on the specific skills required for the job could be their grades (e.g., Grade Point

verage), their results in a standardized knowledge/skills test specific for a job, such as their typing speed in words per minute for
ypists, or their number of hours of flight in the case of pilots. We note that this measurement will embody preexisting bias (e.g.,
f black pilots are given less opportunities to pilot an airplane they will accumulate less flight hours), as well as technical bias, as
earning algorithms are known to be susceptible to direct and indirect discrimination (Hajian, Bonchi, & Castillo, 2016; Hajian &
omingo-Ferrer, 2013). We furthermore note that different manifestations of such bias exist for each group and are usually stronger

or intersectional groups, that is, the preexisting bias against black women is stronger than the one for women or blacks in general.
Our utility principle is operationalized in two ways. First, we prefer rankings in which every individual in the top-𝑘 is more

ualified than every candidate not included in the top-𝑘 (or in which the difference in their qualifications is small). We call this
riterion selection utility. Second, we prefer rankings in which for every pair of individuals included in the top-𝑘, either the more
ualified candidate is ranked above, or the difference in their qualifications is small. We call this criterion ordering utility. Note
owever, that in a setting with multiple protected groups, optimal selection and ordering utility cannot be guaranteed because of
3
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said differences in the group skews. Mathematically this means that the optimal solution for multinomial ranked group fairness (i.e.,
for more than one protected group) is a solution space rather than just a single point as it was in (Zehlike et al., 2017), while the
optimal solution in terms of utility is still a single point within said solution space whose location depends on the candidate set
at hand. We want to stress that trying to find this point of optimal utility corresponds to a world view in which one assumes that
utility measures of candidates across different groups are actually comparable and that the per-group bias is known a-priori. We
believe that the group skew unawareness is a necessary condition for the justification of post-processing algorithms in general and
we therefore explicitly do not search for the optimal solution in terms of utility. We will go into more depth on this in Section 3.3.

Our definition of ranked group fairness reflects the legal principle of group under-representation in obtaining a benefit (Ellis &
Watson, 2012; Lerner, 2003). We formulate a criterion by applying a statistical test on the proportion of protected candidates on
every prefix of the ranking, which should be above a certain minimum. We also show that the verification of the ranked group
fairness criterion can be implemented efficiently after pre-computing a verification data structure that we call mTree. This tree
contains all possibilities to create a ranking that satisfies ranked group fairness and we provide an algorithm to build and maintain
it. We also provide an algorithm AdjustSignificance for the mTree adjustment due to multiple dependent hypothesis testing, where
we compute 𝛼𝑐𝑜𝑟𝑟 such that the type-I-error is less or equal to 𝛼 for the entire tree.

Finally, we propose an algorithm, named FA*IR, for producing a top-𝑘 ranking that maintains high utility while satisfying ranked
group fairness, as long as there are ‘‘enough’’ protected candidates from each group to achieve the desired minimum proportions.
Note that if a group of protected candidates is too small to satisfy ranked group fairness, the ranking is necessarily bound to under-
represent them. Nevertheless, we output a ranking that follows our utility principles. We also present extensive experiments to
evaluate the performance of our approach compared to a group-unaware method (the so-called ‘‘color-blind’’ method) with respect
to both, the expected utility of a ranking and the fairness degree measured, in terms of expected exposure.

Summarizing, the main contributions of this paper are:

(1) the principled definition of ranked group fairness for multiple protected groups, and the associated Fair Top-𝑘 Ranking problem;
(2) the FA*IR algorithm for multiple protected groups to produce a top-𝑘 ranking that maximizes utility while satisfying ranked

group fairness.
(3) a mathematical framework to solve the problem of multiple dependent hypotheses testing: we will see how to adjust the given

significance level 𝛼 to a corrected 𝛼𝑐𝑜𝑟𝑟, such that the overall probability for a type-1-error equals the given significance level
𝛼.

(4) the algorithms ComputeMTree and AdjustSignificance which translate ranked group fairness into a pre-computed data structure.
This will enable efficient verification of ranked group fairness at testing time and efficient creation of fair rankings at creation
time.

Our method can be used within an anti-discrimination framework such as affirmative actions (Sowell, 2005). We do not claim
these are the only way of achieving fairness, but we provide an algorithm grounded in statistical tests that enables the implementation
of an affirmative action policy in the context of ranking.

The rest of this paper is organized as follows. The next section presents a brief survey of related literature, while Section 3
introduces our ranked group fairness and utility criteria and a formal problem statement. Section 4 presents a data structure (mTree)
that allows fast verification of the ranked group fairness criterion. Section 5 presents a procedure for statistical test significance
adjustment, which is required due to multiple hypotheses testing. Section 6 describes the FA*IR algorithm for fair rankings, while
Section 7 presents experimental results. Finally, Section 8 presents our conclusions and future work.

2. Related work

Algorithmic Fairness is a relatively new computer science topic, with most research published during the last ten years (Hajian
et al., 2016; Rosenbaum & Fichman, 2019). Some proposals are oriented to discovering and measuring discrimination (e.g., Angwin,
Larson, Mattu, and Kirchner (2016), Bonchi, Hajian, Mishra, and Ramazzotti (2017), Pedreshi et al. (2008)); while others deal with
mitigating or removing discrimination to ensure that the results of different algorithms do not lead to discriminatory decisions
(e.g., Dwork et al. (2012), Hajian and Domingo-Ferrer (2013), Hajian, Domingo-Ferrer, and Farràs (2014), Kamiran, Calders, and
Pechenizkiy (2010), Zemel, Wu, Swersky, Pitassi, and Dwork (2013)). All these methods are known as fairness-aware algorithms.

2.1. Group fairness and individual fairness

Two basic frameworks have been adopted in recent studies on algorithmic discrimination: (i) individual fairness, a requirement
that individuals should be treated consistently (Dwork et al., 2012; Žliobaitė, 2015); and (ii) group fairness, a requirement that the
protected groups should be treated similarly to the advantaged group or the population as a whole (Pedreschi, Ruggieri, & Turini,
2009b; Pedreshi et al., 2008). Other work speaks of inter- and intra-group fairness (Beutel et al., 2019; Grgić-Hlača, Zafar, Gummadi,
& Weller, 2017; Yeom & Tschantz, 2021), where inter-group fairness is concerned with fair assignment of outcomes for items from
different groups, and intra-group fairness relates to items that belong to the same group.

Different fairness-aware algorithms have been proposed to achieve group and/or individual fairness, mostly for predictive
tasks. Calders and Verwer (2010) consider three approaches to deal with naive Bayes models by modifying the learning algorithm.
Kamiran et al. (2010) modify the entropy-based splitting criterion in decision tree induction to account for attributes denoting
4
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function) to probabilistic discriminative models, such as logistic regression. Zafar, Valera, Rodriguez, and Gummadi (2015) describe
fairness constraints for several classification methods. Feldman, Friedler, Moeller, Scheidegger, and Venkatasubramanian (2015)
study disparate impact in data, which corresponds to an unintended form of group discrimination, in which a protected group is
ess likely to receive a benefit than a non-protected group (Barocas & Selbst, 2016). A technically similar framework has been
roposed by Zehlike, Hacker, and Wiedemann (2020) for a setting with multiple protected groups, which continuously interpolates
etween group fairness as statistical parity and individual fairness. We use this method as one of our experimental baselines in
ection 7.2. Their method uses optimal transport to calculate a fair score representation for each group, which is the Wasserstein-
arycenter of all group distributions. It also enables a ‘‘continuous interpolation’’ that generates protected group scores between the
riginal distribution in the protected groups and the distribution of the barycenter; this is controlled by a parameter but there are no
uarantees on the proportions along the ranking. Recently, other fairness-aware algorithms have been proposed for mostly supervised
earning algorithms and different bias mitigation strategies (Celis, Deshpande, Kathuria, & Vishnoi, 2016; Corbett-Davies, Pierson,
eller, Goel, & Huq, 2017; Friedler, Scheidegger, & Venkatasubramanian, 2016; Hardt, Price, & Srebro, 2016; Jabbari, Joseph,
earns, Morgenstern, & Roth, 2016; McNair, 2018). Hardt et al. (2016) study fairness in terms of equalized odds and proposes

methods to ensure equal precision across groups. Zafar, Valera, Gomez Rodriguez, and Gummadi (2017) introduces a new concept
called disparate mistreatment and proposes a method that seeks to reduce differences in error rates. McNair (2018) introduces a set
of statistical tests, two frequentist methods (Cochran–Mantel–Haenszel test and beta regression) and one Bayesian method (Bayesian
Model Averaging), to assess the likelihood of fair decisions.

In contrast, our paper considers the more general setting by achieving fairness in ranking algorithms and it even can be reduced
to other problems such as classification (see Problem 1). Our framework provides an evaluation criterion, ranked group fairness,
and offers guarantees under this criterion, which can be directly controlled by a external parameter. Moreover, it takes into account
both frameworks of group and individual fairness.

2.2. Fair ranking

Algorithmic fairness for rankings is concerned with a sufficient representation of different groups and consistent treatment of
individuals across all ranking positions (Castillo, 2018). This leads to the motivation of producing rankings that do not systematically
place items from protected groups at the lower positions of the result list.

Yang and Stoyanovich (2016) propose a statistical parity measure based on comparing the distributions of protected and non-
protected candidates on different prefixes of the list and then averaging these differences in a discounted manner. We use the
synthetic ranking generation procedure of Yang and Stoyanovich (2016) to calibrate our method, and optimize directly the utility
of a ranking that has statistical properties (ranked group fairness) resembling the ones of a ranking generated using that procedure;
in other words, unlike them, we connect the creation of the ranking with the metric used for assessing fairness. Moreover, we also
take into account the individual fairness criteria.

Regarding how to evaluate fairness/bias in a ranking, Kulshrestha et al. (2017) propose a quantification framework that measures
the bias of the results in a search engine. This framework discerns to what extent this output bias is due to the input dataset that
feeds into the ranking system, and how much is due to the bias introduced by the system itself. Kuhlman, VanValkenburg, and
Rundensteiner (2019) also propose a quantification and diagnostics framework using pairwise error metrics as means of evaluation
for fairness in rankings. Another quantification and bias mitigation framework is presented by Geyik, Ambler, and Kenthapadi
(2019), which can be tuned towards different definitions of fairness such as demographic parity and so-called equal opportunity.
Yang et al. (2018) present a collection of metrics for fairness in ranked outputs which is inspired by nutrition labels.

As a general framework for constrained ranking, Celis, Straszak, and Vishnoi (2018) propose algorithms in which the constraint
is a 𝑘 × 𝓁 matrix with 𝑘 being the length of the ranking and 𝓁 the number of classes, indicating the maximum number of elements
f each class (protected or non-protected in the binary case) that can appear at any given position in the ranking. Kuhlman
nd Rundensteiner (2020) propose algorithms for rank aggregation, in which we are given various rankings on the same items
e.g., rankings of the same candidates by each member of a committee) and we would like to produce a consensus ranking that
uarantees fairness for disadvantaged groups of candidates.

Singh and Joachims (2018) introduce the concept of exposure or attention given to a group, incorporating the empirical
bservation that the probability for items to be examined by a searcher decreases quickly with each lower position. Parallel
ith Biega, Gummadi, and Weikum (2018), they propose an integer linear program that receives a vector of relevance scores and

anks items accordingly subject to constraints in disparate attention across groups. They also introduce a time component into their
ptimization problem, such that their notion of disparate attention is to be considered over time.

Lahoti, Gummadi, and Weikum (2019) focus on individual fairness for rankings and propose an advancement of its definition
y Dwork et al. (2012) in such way that it no longer relies on a human specification of a distance metric.

Zehlike and Castillo (2020) introduce the first bias mitigation algorithm within a learning to rank framework, by defining the
earning objective in terms of accuracy as well as in terms of exposure fairness of the result ranking. The learning objective is
oncerned with disparate impact, as in the work by Shang, Sun, and Lam (2020), whereas Beutel et al. (2019) and Singh and
oachims (2019) introduce fairness objectives in learning to rank methods that comply with disparate treatment considerations.

The referenced works cannot be directly compared with the method we propose in this paper. Some of them require the number
f protected candidates at each position to be given as an input (Celis et al., 2018), while we determine the required number of
andidates, or require input preferences to be given as rankings to be aggregated (Kuhlman & Rundensteiner, 2020). Others introduce
etrics of exposure (Singh & Joachims, 2018), amortized exposure (Biega et al., 2018), or NDCG variants (Yang & Stoyanovich,
016), or ratios (‘‘skew’’) or KL-divergence based metrics (Geyik et al., 2019) that do not match the probability-based metric that
e use. In our experiments, we compare with CFA𝜃 (Zehlike, Hacker, et al., 2020), which is an utility-based framework such as
urs, and one in which utilities can only be considered comparable within a group, but not across groups.
5
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2.3. Diversity

The Information Retrieval community has studied for many years how to avoid showing only items of the same class in a
anking. A motivation to investigate this problem is that user queries may have different intents and the system should cover
everal of them with answers. A common approach to solve this, since Carbonell and Goldstein (1998), is to retrieve a ‘‘diverse’’
ut relevant set of items. This is achieved through on one side, maximizing the overall relevance (utility) and on the other side,
onsidering the distances between elements and adding a penalty for selecting an item that is too similar to an item already ranked
t a higher position. Another commonly used definition is that diversity should be understood as a way to incorporate uncertainty
bout user intent, in the sense that all queries have some degree of ambiguity (Agrawal, Gollapudi, Halverson, & Ieong, 2009). Other
orks Channamsetty and Ekstrand (2017), Kunaver and Požrl (2017) are concerned with different types of bias such as presentation
ias, where only a few items are shown and most of the items are not shown, as well as popularity bias and a negative bias towards
ew items. An exception is the work of Sakai and Song (2011), which provides a framework per-intent for evaluating diversity.
n this framework, an ‘‘intent’’ can be mapped to a protected/non-protected group in the fairness ranking setting. However, their
ethod is concerned with evaluating a ranking, similar to the NDCG-based measures described by Yang and Stoyanovich (2016)

nd that we described before, and not with the construction of such a ranking, as we do in this work.
In contrast to most of the research on diversity of ranking results or recommendation systems, our work operates on a set of

iscrete classes and not on similarity measures to previous items. Furthermore, we are not only concerned with the utility that search-
and recommendation system users receive, but also with the exposure received by the ranked items, which can represent individuals,
places or organizations. Another main difference is that diversification is usually symmetric yielding interchangeable groups, while
fairness-aware algorithms are mostly asymmetric, because they focus on increasing the overall benefit received by a protected or
disadvantaged group.

2.4. Fairness in recommender systems

Next line of complimentary related work is looking at algorithmic bias in recommender systems (Burke, Sonboli, & Ordonez-
Gauger, 2018; Chakraborty, Patro, Ganguly, Gummadi, & Loiseau, 2019; Edizel, Bonchi, Hajian, Panisson, & Tassa, 2020; Ekstrand
& Kluver, 2021; Jannach, Lerche, Kamehkhosh, & Jugovac, 2015; Kamishima, Akaho, Asoh, & Sakuma, 2018; Steck, 2018; Yao &
Huang, 2017; Zhu, Hu, & Caverlee, 2018). Recommendation and personalization are useful technologies which influence more and
more our daily decisions. Recent works show that biased recommendations can reinforce stereotypes such as those based on gender
or ethnicity, possibly resulting in disparate impact. Even when the recommender system does not take as input any demographic
information: nevertheless, by carefully exploiting items’ and users’ similarities, the algorithm might end up recommending an item
to a very homogeneous set of users. For example, the algorithm would be considered biased if displays ads for high-income jobs
to men much more often than it does to women. Thus, even when recommendations are of high quality, they might be not well
perceived by the user that might find them ‘‘too accurate’’ and discriminatory. To address such biases in recommender systems,
different mitigation approaches have been proposed such as limiting the predictability of sensitive features from the user–item
recommendation matrix (Edizel et al., 2020; Kamishima et al., 2018).

3. The fair top-k ranking problem for multiple protected groups

In the following, we introduce the needed notation (Section 3.1), and present the definition of ranked group fairness (Section 3.2),
as well as definitions of utility (Section 3.3). Lastly we present a formal problem statement (Section 3.4). Our formalization extends
the one previously presented for a binomial setting (one protected group) (Zehlike et al., 2017) into a multinomial setting. We
explicitly frame this as an extension rather than an entirely new framework, and hence the definitions in this paper follow those
from (Zehlike et al., 2017). The notation used in this paper is summarized on Table 2.

3.1. Preliminaries and notation

For our setting we examine a set of candidates [𝑛] = {1, 2,… , 𝑛}, where 𝑘 of them will be selected based on their respective
qualification. We denote this ‘‘utility’’ of candidate 𝑐 for each 𝑐 ∈ [𝑛] by 𝑞𝑐 , which can be viewed as the fitness of candidate 𝑐 for the
task at hand, or e.g., a search query. We assume this score to be given and denote that it may be a weighted combination of several
different attributes. If this utility is computed by a machine learning model, an effort must be done to prevent preexisting and
technical biases towards a protected group to be embodied in the model (see, e.g., (Sweeney, 2013)). We define a set of candidate
groups 𝐺 =

{

𝑔0, 𝑔1,… , 𝑔
|𝐺|

}

that form a partition of [𝑛]. We will consider 𝑔0 as non-protected (or privileged) and all remaining
groups as protected (or disadvantaged). We assume there are at least 𝑘 candidates in each group.

Let 𝑘,𝑛 denote all subsets of [𝑛] with exactly 𝑘 elements and let 𝑘,𝑛 represent the union of all permutations of sets in 𝑘,𝑛. Thus
𝑘,𝑛 forms the solution space of the top-𝑘 ranking problem. For a permutation 𝜏 ∈ 𝑘,𝑛 and an element 𝑐 ∈ [𝑛], let

𝑟(𝑐, 𝜏) =

{

rank of 𝑐 in 𝜏 if 𝑐 ∈ 𝜏 ,
𝑘 + 1 otherwise.

By 𝜏𝑔 we denote the number of elements of group 𝑔 that are present in 𝜏, i.e. 𝜏𝑔 = |{𝑐 ∈ 𝜏 ∧ 𝑐 ∈ 𝑔}|. We set 𝜏𝐺 = ⟨𝜏𝑔⟩𝑔∈𝐺, i.e., the
6
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Table 2
Notation.

Candidates

[𝑛] Set of candidates
𝑞𝑐 Qualifications of candidate 𝑐
𝑔𝑐 ∈ 𝐺 0 if candidate 𝑐 is in the non-protected group, > 0 otherwise
|𝐺| The number of protected groups

Rankings

𝑘,𝑛 All permutations of 𝑘 elements of [𝑛]
𝜏 One such permutation
𝑟(𝑐, 𝜏) The position of candidate 𝑐 in 𝜏, or |𝜏| + 1 if 𝑐 ∉ 𝜏
𝜏𝐺 =

(

𝜏1 , 𝜏2 ,… , 𝜏
|𝐺|

)

Vector of number of elements from group 𝑔 in 𝜏
𝑐𝑏 The "color-blind" ranking of [𝑛] by decreasing 𝑞𝑐

Group fairness criteria

𝑝𝐺 =
(

𝑝1 , 𝑝2 ,… , 𝑝
|𝐺|

)

Vector of minimum proportions for candidates of each protected group 𝑔 > 0.
The proportion 𝑝0 of the non-protected group is implicitly given by 𝑝0 = 1 −

∑

𝑔∈𝐺 𝑝𝑔 .
𝛼 Significance value for ranked group fairness test
𝛼𝑐𝑜𝑟𝑟 Adjusted significance for each fair representation test

Individual fairness criteria

utility(𝑐, 𝜏) Qualification difference between candidate 𝑐 and the least qualified candidate ranked
above 𝑐 while 𝑞𝑐 > 𝑞𝑑

Model adjustment

𝑃fail Probability that our test fails on a fair ranking
𝑚𝛼,𝑝(𝑘) Minimum number of protected candidates in top 𝑘 positions; a vector of integers in case

of |𝐺| > 1

Let 𝑐𝑏 ∈ 𝑛,𝑛 be the total ranking of all candidates by decreasing utility: ∀𝑢, 𝑣 ∈ [𝑛], 𝑢 = 𝑐𝑏(𝑖), 𝑣 = 𝑐𝑏(𝑗), 𝑖 < 𝑗 ⟹ 𝑞𝑢 ≥ 𝑞𝑣. If
ome utilities 𝑞𝑐 are equal, we break ties arbitrarily. We refer to this as the color-blind ranking of candidates in [𝑛], because it simply
ocuses on their utility but ignores their protection status. Let 𝑐𝑏|𝑘 = ⟨𝑐𝑏(1), 𝑐𝑏(2),… , 𝑐𝑏(𝑘)⟩ be a prefix of size 𝑘 of this ranking.
Fair top-𝑘 ranking criteria. To solve the fair top-𝑘 ranking problem, our method searches for a particular ranking 𝜏 ∈ 𝑘,𝑛 that
maximizes the following objectives:

riterion 1. Ranked group fairness: 𝜏 should fairly represent each protected group 𝑔 ∈ 𝐺;
riterion 2. Expected selection utility: 𝜏 should contain the most qualified candidates; and
riterion 3. Expected ordering utility: 𝜏 should be ordered by decreasing qualifications.

he formal problem statement is given in Section 3.4, but first, we need to formally define each criterion, which we do in the next
ections.

.2. Group fairness for rankings

Criterion 1. is operationalized as a ranked group fairness criterion with two input parameters: (i) 𝜏𝐺, the vector containing the
number of candidates from each protected group in ranking 𝜏, and (ii) 𝑝𝐺, a vector containing minimum target proportions for each
protected group. Instinctively, a ranking is said to not fulfill the ranked group fairness condition, if the number 𝜏𝑔 of candidates
from a protected group 𝑔 falls far below the required number according to the given target proportions. Additionally, this criterion
looks at the ordering in which those candidates appear within the ranking by comparing the actual number of protected elements
from each group 𝜏𝐺 with their expected number. This number is calculated using the stochastic process of a multinomial distribution
(i.e. the roll of a |𝐺|-sided dice), and simulates that candidates were picked at random at each position if the dice shows the side
of their group. This is a translation of the idea of luck-egalitarianism, which is a subcategory of substantive equality of opportunity
(see, e.g., Heidari, Loi, Gummadi, and Krause (2019)). The process is repeated for every prefix of the ranking.

Definition 3.1 (Multinomial Cumulative Distribution Function). Let 𝑛 ∈ N be a number of trials where each trial results in one of the
events 𝐸0, 𝐸1, 𝐸2,… , 𝐸

|𝐺|

and on each trial 𝐸𝑗 occurs with probability 𝑝𝑗 .
Let then 𝑋 be a set of random variables that is multinomially distributed 𝑋 ∼ Mult(𝑛, 𝑝) with parameters 𝑛 and 𝑝 =

⟨𝑝0, 𝑝1, 𝑝2,… , 𝑝
|𝐺|

⟩, and let 𝑋𝑗 be the number of trials in which event 𝐸𝑗 occurs.
We then define 𝐹 (𝑋; 𝑛, 𝑝) = 𝑃

(

𝐸1 ≤ 𝑋1, 𝐸2 ≤ 𝑋2,… , 𝐸
|𝐺|

≤ 𝑋
|𝐺|

)

the multinomial cumulative distribution function which
computes the probability that each event 𝐸𝑗 occurs at most 𝑋𝑗 times in 𝑛 trials given probabilities 𝑝.

With the multinomial CDF (The Pennsylvania State University, 2018) the ranked group fairness criterion is formalized as a
statistical significance test. To express the probability of rejecting a fair ranking (i.e. a type-I-error) we include a significance
parameter (𝛼 ∈ [0, 1]).
7
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Definition 3.2 (Fair Representation Condition). Let 𝐹 (𝑋; 𝑛, 𝑝) be the multinomial cumulative distribution function as defined above.
A ranking 𝜏 ⊆ 𝑘,𝑛, having 𝜏𝐺 protected candidates from each group fairly represents all protected groups with minimal

roportions 𝑝𝐺 = ⟨𝑝1,… , 𝑝
|𝐺|

⟩ and significance 𝛼,
if 𝐹 (𝜏𝐺; 𝑘, 𝑝𝐺) > 𝛼.
The minimum proportion 𝑝0 of the non-protected group is implicitly given by 𝑝0 = 1−

∑

𝑔∈𝐺 𝑝𝑔 and we will not include it explicitly
n 𝑝𝐺 to be consistent with 𝜏𝐺.

The fair representation condition implements a statistical test, with null hypothesis 𝐻0 assuming that all protected groups
re represented with a minimal proportion. The alternative hypothesis 𝐻𝑎 translates into an insufficient proportion of protected
lements. Our test setup sets the 𝑝-value to 𝐹 (𝜏𝐺; 𝑘, 𝑝𝐺) and we reject 𝐻0, hence announce the ranking under test to be unfair, if
he 𝑝-value is less than or equal to the threshold 𝛼. Note that according to this definition, in the case of a set of size one, either the
lement is in the protected group, and then we satisfy fair representation, or the element is not in the protected group, and then
e satisfy fair representation if 1 − 𝐹 > 𝛼.

To obtain the ranked group fairness condition, we require the fair representation condition to be met for all prefixes of the
anking:

efinition 3.3 (Ranked Group Fairness Condition). A ranking 𝜏 ∈ 𝑘,𝑛 satisfies the ranked group fairness condition with parameters
𝐺 and 𝛼, if for every prefix 𝜏|𝑖 = ⟨𝜏(1), 𝜏(2),… , 𝜏(𝑖)⟩ with 1 ≤ 𝑖 ≤ 𝑘, the set 𝜏|𝑖 satisfies the fair representation condition with group

target proportions 𝑝 and significance 𝛼𝑐𝑜𝑟𝑟 = AdjustSignificance(𝑘, 𝑝𝐺 , 𝛼).
Function AdjustSignificance(𝑘, 𝑝𝐺 , 𝛼) is a corrected significance to account for multiple hypotheses testing (described in Section 5).

We note there exists a solution space of rankings that satisfy this condition for a given 3-tuple (𝑘, 𝑝𝐺 , 𝛼), instead of just a single
ranking as it is the case when only one protected group is present. We further note that a lower significance 𝛼 translates into a
lower probability of wrongly declaring a fair ranking as unfair, and we therefore use a relatively conservative setting of 𝛼 = 0.1 in
our experiments (Section 7). It is possible to convert the binary choice (fair vs. unfair) of the ranked group fairness condition into a
ranked group fairness metric. This metric would be the maximum 𝛼 ∈ [0, 1] for which a ranking 𝜏 satisfies the ranked group fairness
condition, given minimum proportions 𝑝𝐺. In this metric space, larger values imply a stronger compliance with the required number
of protected elements from the top-positions onward.

3.3. Utility

Notions of utility aim to measure desiderata of rankings like ranking well qualified candidates as high as possible. Previous
works (Celis et al., 2018; Yang & Stoyanovich, 2016) assumed to know the exact utility contribution of a candidate at a specific
position. In contrast to that, we base our utility calculation on losses due to non-monotonicity (i.e., due to candidates not being
ordered by decreasing scores anymore to satisfy the ranked group fairness constraint). This can also be understood as a measure
of individual unfairness, as it calculates the largest score difference between a high-scoring candidate ranked below a low-scoring
candidate.
Ranked utility. The ranked individual utility loss of a candidate 𝑐 in a ranking 𝜏 is high, if another candidate with a low score was
ranked at a better position.

Definition 3.4 (Ranked Utility of an Element). The ranked utility of an element 𝑐 ∈ [𝑛] in ranking 𝜏, is:

𝚞𝚝𝚒𝚕𝚒𝚝𝚢(𝑐, 𝜏) =

{

𝑞 − 𝑞𝑐 if 𝑞 < 𝑞𝑐where 𝑞 ≜ min𝑑∶𝑟(𝑑,𝜏)<𝑟(𝑐,𝜏) 𝑞𝑑
0 otherwise

Thus, a candidate 𝑐 achieves the maximum ranked individual utility of zero, if there was no candidate with a lower score ranked
t a better position in the ranking.
election utility. In order to satisfy Criterion 2. we define selection utility of a ranking. We will use this objective to prefer rankings
n which more qualified candidates are included and less qualified are excluded.

efinition 3.5 (Selection Utility). The selection utility of a ranking 𝜏 ∈ 𝑘,𝑛 is

min
𝑐∈[𝑛],𝑐∉𝜏

𝚞𝚝𝚒𝚕𝚒𝚝𝚢(𝑐, 𝜏).

Analogous to the ranked utility of an element, a ‘‘color-blind’’ ranking of 𝑘 items 𝑐𝑏|𝑘 has a maximum selection utility of zero,
f all candidates included in the ranking have higher scores than the candidates excluded from the ranking.
rdering utility and in-group monotonicity. In order to satisfy Criterion 3. of we introduce ordering utility and an in-group
onotonicity constraint as objectives. Both are necessary in order to prefer rankings in which candidates with higher scores are

anked above candidates with lower scores.

efinition 3.6 (Ordering Utility). The ordering utility of a ranking 𝜏 ∈ 𝑘,𝑛 is

min
𝑐∈𝜏

𝚞𝚝𝚒𝚕𝚒𝚝𝚢(𝑐, 𝜏).
8
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A rankings’ ordering utility is only concerned with the worst ranked individual utility a candidate attains in it. In contrast to
hat, we define the in-group monotonicity constraint with respect to all elements in the ranking. The constraint guarantees, that,
ithin groups, all candidates must be sorted by their scores.

efinition 3.7 (In-Group Monotonicity). A ranking 𝜏 ∈ 𝑘,𝑛 satisfies the in-group monotonicity condition if ∀𝑐, 𝑑 s.t. 𝑔𝑐 = 𝑔𝑑 ,
(𝑐, 𝜏) < 𝑟(𝑑, 𝜏) ⇒ 𝑞𝑐 ≥ 𝑞𝑑 .

A ‘‘color-blind’’ ranking of length 𝑘, 𝑐𝑏|𝑘 has a maximum ordering utility of zero and it also satisfies the in-group monotonicity
onstraint.
onnection to the individual fairness notion. In contrast to taking distributive measures like the average utility, our notion of
tility focuses on individuals by using the ‘‘worst-off’’ candidates. While other choices are possible, this has the advantage that we
an only maximize utility through improving the outcome of specific individuals. Those people are the ‘‘worst-off’’ because they are
xcluded from a ranking in which others have lower scores or because they a ranked below other candidates with lower scores. Our
efinitions connect to notions of individual fairness, which require consistent treatment of individuals (Dwork et al., 2012). Two
andidates with equal scores or qualifications should be treated equally. In our framework, a deviation from this equal treatment
ill end in a loss of utility. Thus, any trade-off can be measured explicitly and traced back to an individual.

.4. Formal problem statement

The criteria we have described enable two different problem statements. First, we can use ranked group fairness as a constraint
nd maximize ranked utility. Second we can use ranked utility as a constraint and then maximize ranked group fairness.

roblem 1 (Fair top-k ranking). Given a set of candidates [𝑛], a partition of [𝑛] in groups 𝐺 =
{

𝑔0, 𝑔1,… , 𝑔
|𝐺|

}

, the vector 𝑝𝐺 of
minimum proportions per group, and parameters 𝑘 ∈ N+ and 𝛼 ∈ [0, 1], produce a ranking 𝜏 ∈ 𝑘,𝑛 that:

(i) satisfies the in-group monotonicity constraint;
(ii) satisfies ranked group fairness with parameters 𝑝𝐺 and 𝛼;

(iii) achieves high selection utility subject to (i) and (ii); and
(iv) achieves high ordering utility subject to (i), (ii), and (iii).

Related problems. Other problem definitions with respect to the general criteria described in are possible, however one has to
carefully consider their implications on a probabilistic fairness assumption. For instance, instead of maintaining high selection and
ordering utility, we may seek to always find the one ranking 𝜏∗ from all possible fair rankings that maximizes selection and ordering
utility. We acknowledge that this seems to be a tempting ‘‘optimization’’ of FA*IR but we believe that such a strategy is not fully
compliant with multinomial ranked group fairness anymore (see Section 6.4 for more details).

4. Ranked group fairness verification

To verify ranked group fairness efficiently in time 𝑂(𝑘), a pre-computed data structure can be used, which is obtained by the
inverse multinomial CDF with parameters 𝑘, 𝑝𝐺 and 𝛼. The inverse CDF takes as input a probability (in our case multiple probabilities
𝑝𝐺) and returns that value of a random variable, at which the probability of said random variable being less than or equal to the
returned value equals the input probability. As the multinomial CDF is not injective and hence has no inverse, there is no quantile
function that tells us exactly how many candidates are needed at each 𝑘. Instead, there are various manifestations of 𝜏𝐺 that satisfy
the fair representation condition 𝐹 (𝜏𝐺; 𝑘, 𝑝𝐺) > 𝛼, which is why the verification data structure has the shape of a tree for each 𝑝𝐺 , 𝑘
and 𝛼.

Fig. 1 shows an example of such tree with 𝑝𝐺 = ⟨1∕3, 1∕3⟩. Each tree level corresponds to the 𝑘th position in the ranking and are
to be read from left to right, i.e., the root level corresponds to the first ranking position and so forth. As an example, consider tree
level 4 in Fig. 1. At this level, we have three nodes ‘‘(4, [2,0])’’, ‘‘(4, [1,1])’’, and ‘‘(4, [0,2])’’ each of them containing a set of minima
for elements of the protected groups (the nodes do not include any minima for the non-protected group). This means it is acceptable
to have among the first four elements in the ranking either at least 2 elements from protected group 1, or at least 1 element from
each protected group, or at least 2 elements from protected group 2. Note however, that nodes have parental relationships and that
each path corresponds to a fair distribution of protected candidates in the ranking. Thus, if at level 4 we rank two candidates from
protected group 1, thus satisfying the node with the asterisk in Fig. 1, at level 5 have to satisfy either node ‘‘(5, [2,1])’’ or node
‘‘(5, [3,0])’’. The other nodes ‘‘(5, [1,1])’’, ‘‘(5, [1,2])’’, and ‘‘(5, [0,3])’’ are not a child of node ‘‘(4, [2,0])’’ and therefore cannot be
considered to satisfy the ranked group fairness condition anymore. The tree is symmetric when the minimum proportions 𝑝𝑔 ∈ 𝑝𝐺
are equal, and asymmetric when they are different. We note that it is possible to trade-off under-representation in one protected
group against over-representation in another protected group, but only up to a point: the representation of every protected group
cannot fall below a certain minimum. Additionally, when using this method to construct a ranking, we choose the most likely path,
not any path, and thus avoid extremely unbalanced situations.

As stated at the beginning of this section mTrees are pre-computed data structures that allow efficient verification of the ranked
9
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Fig. 1. Example of an mTree with two protected groups with minimum proportions 𝑝𝐺 = ⟨1∕3, 1∕3⟩ and 𝛼 = 0.1. The notation (𝑘, [𝑥, 𝑦]) indicates that at ranking
osition 𝑘, we need at least 𝑥 elements of group 1 and 𝑦 elements of group 2 to satisfy ranked group fairness; group 0, which is the non-protected group, is
lways unconstrained. For instance, the node marked ‘‘(4, [2, 0])∗ ’’ indicates that in the first 4 positions of this ranking, one of the acceptable configurations is
o have 2 or more elements from group 1 and 0 or more elements from group 2. We see that in case of multiple protected groups, there are various ways of
atisfying Definition 3.3. Thus, each path in the tree corresponds to one valid strategy to place protected candidates in the ranking.

Algorithm 1: Algorithm ComputeMTree computes the data structure to efficiently verify or construct a ranking that satisfies multinomial ranked group
fairness.

input : 𝑘, the size of the ranking to produce; 𝑝𝐺, the expected proportions of protected elements for each group; 𝛼𝑐𝑜𝑟𝑟, the significance for
each individual test.

output : mtree: A tree data structure that contains the minimum number of protected candidates for each group.
1 mtree[0] ← zeros(|G|) // initialize auxiliary root node with |𝐺| entries
2 for 𝑖 ← 1 to 𝑘 do
3 for parent in mtree[𝑖 − 1] do

// find all child nodes that satisfy ranked group fairness
4 𝚌𝚑𝚒𝚕𝚍𝚛𝚎𝚗 ← 𝙸𝚗𝚟𝚎𝚛𝚜𝚎𝙼𝚞𝚕𝚝𝚒𝚗𝚘𝚖𝚒𝚊𝚕𝙲𝙳𝙵(𝛼𝑐𝑜𝑟𝑟; 𝚒, 𝚙𝙶, 𝚙𝚊𝚛𝚎𝚗𝚝)
5 parent.children ← children
6 end
7 end
8 return mtree

Algorithm 2: Algorithm InverseMultinomialCDF computes the inverse of the multinomial cumulative distribution function 𝐹 −1(𝛼𝑐𝑜𝑟𝑟; 𝑖, 𝑝𝐺). It finds all
ossible child nodes of a given parent that satisfy the ranked group fairness condition.

input : parent, the node of which we calculate all minimum target children;
𝑖, the current position in the ranking;
𝑝𝐺, the vector of expected proportions of protected elements of each group;
𝛼𝑐𝑜𝑟𝑟, the significance for each individual test.

output : children: A list of nodes with minimum targets that satisfy ranked group fairness
1 children ← {}
2 child ← copy(parent)
3 mcdf ← 𝐹 (child; 𝑖, 𝑝𝐺)
4 if mcdf > 𝛼𝑐𝑜𝑟𝑟 then

// if the multinomial cdf is greater than 𝛼𝑐𝑜𝑟𝑟 we do not need to increase the number of required protected candidates
5 children.add(child)
6 end
7 else
8 for 𝑗 ← 1 to |𝐺| do

// test whether the multinomial cdf is greater than 𝛼𝑐𝑜𝑟𝑟, if one more candidate of group 𝑗 was required at postion 𝑖
9 temp ← child
10 temp[j] ← temp[j] + 1
11 mcdfTemp ← 𝐹 (temp; 𝑖, 𝑝𝐺)
12 if mcdfTemp > 𝛼𝑐𝑜𝑟𝑟 then

// if yes, append the new requirement to the mTree
13 children.add(temp)
14 end
15 end
16 end
17 return children
10



Information Processing and Management 59 (2022) 102707M. Zehlike et al.
Fig. 2. Experiments on data generated by a simulation, showing the need for multiple tests correction. The data has two protected groups, rankings of lengths
𝑘 are created by the stochastic process of a multinomial distribution (‘‘rolling a 3-sided dice’’) with 𝑝𝐺 = (0.33, 0.33). These rankings should have been rejected
as unfair at a rate 𝛼 = 0.1. However, we see that the rejection probability increases with 𝑘. Note the scale of 𝑘 is logarithmic.

as input and returns the mTree for these parameters. First it creates an auxiliary root node that contains |𝐺| zero entries, which serves
as the root parent. Then, for each parent node parent at each position 𝑖 ≤ 𝑘 it calls the inverse multinomial CDF function. The
second algorithm InverseMultinomialCDF takes as input a 4-tuple (𝛼𝑐𝑜𝑟𝑟, 𝑖, 𝑝𝐺 , 𝚙𝚊𝚛𝚎𝚗𝚝) and returns all nodes satisfying the following
two conditions: (i) they have to be children of node parent, and (ii) they satisfy the fair representation condition (Definition 3.2).

5. Model adjustment

Recall that we restrict the probability of a type-I-error in our ranked group fairness test to 𝛼 (Definition 3.2). To verify ranked
group fairness, we test if a ranking satisfies the fair representation condition (Definition 3.2) for each prefix of size 1, 2,… , 𝑘. Because
of this multiple hypotheses testing, if we perform each test with significance 𝛼𝑐𝑜𝑟𝑟 = 𝛼, we risk rejecting fair rankings at a rate larger
than 𝛼. Hence, we require an adjusted significance 𝛼𝑐𝑜𝑟𝑟 = AdjustSignificance(𝛼, 𝑘, 𝑝) for each fair representation test.

Fig. 2 illustrates what happens, if we do correct the significance level 𝛼. In the figure, we assume there are two protected groups
with 𝑝1 = 𝑝2 =

1
3 , and we generate inherently fair rankings of various lengths from 𝑘 = 5 to 𝑘 = 5, 000. We test each ranking for fair

representation with 𝛼𝑐𝑜𝑟𝑟 = 𝛼 and plot the probability of a type-I-error (declaring this fair ranking as unfair). We observe that the
probability of rejecting a fair ranking as unfair increases with the number of hypotheses tests, i.e. with 𝑘.

If each of the 𝑘 tests performed on a ranking were independent, we could use Šidák’s correction, and set 𝛼𝑐𝑜𝑟𝑟 = 1 − (1 − 𝛼)1∕𝑘.
However, the tests are not independent, as the tests with prefixes 𝑘1, 𝑘2 (for instance), overlap on their first min(𝑘1, 𝑘2) elements. In
this section, we present a procedure to adjust the significance level under dependent hypotheses tests, such that an mTree has an
overall probability for a type-I-error of 𝛼.

5.1. General procedure

With the presence of more than one protected group, the analytical extension of the model adjustment to a multinomial setting
is too complex to be written into a closed formula. In contrast to the model adjustment for one protected group which we used
in (Zehlike et al., 2017), we found no analytical way to calculate all permutations which pass or fail the test. Therefore, we develop
an empirical procedure to adjust 𝛼:

(1) Get input 𝑝𝐺 , 𝑘, 𝛼.
(2) Build mTree with input 𝛼𝑐𝑜𝑟𝑟 = 𝛼.
(3) Create 𝑀 rankings by rolling a biased |𝐺|-sided dice with each side’s probability to show corresponding to a minimum

proportion in vector 𝑝𝐺.
(4) Test all those rankings against the mTree and count how many tests fail.

Remember that we want to observe a maximum failure probability of 𝑃fail = 𝛼, because all rankings created by this
multinomial stochastic process are considered to be inherently fair.

(5) If 𝑃fail > 𝛼, we choose a new 𝛼𝑐𝑜𝑟𝑟 using a binary search heuristic.
(6) Now we build a new mTree using 𝛼𝑐𝑜𝑟𝑟 and repeat the procedure until 𝑃fail ≈ 𝛼.

Once we found 𝛼𝑐𝑜𝑟𝑟 we can recompute the mTree from Fig. 1 to obtain an overall significance level of 𝛼 = 0.1. Fig. 3 shows the
adjusted mTree with the same parameters 𝑝 .
11
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Fig. 3. Example of an mTree with two protected groups with minimum proportions 𝑝𝐺 = [1∕3, 1∕3] and 𝛼𝑐𝑜𝑟𝑟 = 0.1. Compared to Fig. 1 this tree is less strict
such that its total probability 𝛼𝑐𝑜𝑟𝑟 of rejecting a fair ranking (i.e. a type-1-error) is 0.1.

5.2. Optimizations for the MTree calculation

In this subsection we explain how we optimize the adjustment procedure from the previous section to reduce complexity. At
each iteration, it requires to compute a new mTree, which is expensive on its own. Furthermore, depending on the level of accuracy
needed, a large number of iterations 𝑀 might be required and the binary search heuristic may need many steps to find 𝛼, if large
intervals have to be searched. We use three strategies to drastically reduce computational costs of this simulation-based adjustment:
(i) we reduce the space requirements of the mTree structure; (ii) we exploit the monotonicity of 𝛼𝑐𝑜𝑟𝑟 with respect to 𝛼 and use a
regression procedure to speed up the binary search. (iii) we apply the adjustment procedure for small trees first and only increase
𝑘, if we found the correct 𝛼𝑐𝑜𝑟𝑟 for the small trees.

5.2.1. Reducing mTree space requirements
We improve the mTree data structure by excluding the calculation and storage of redundant information. First, we store each

node only once at each level and duplicate nodes are combined into a single node with multiple parents.
Second, in case of equal minimum proportions for all groups 𝑝1 = 𝑝2 = ⋯ = 𝑝

|𝐺|

the mTree shows a convenient property that we
can use to reduce additional space, as well as computation time. Remember that whenever the multinomial CDF value falls below
𝛼 for a particular position 𝑖, we have to put a protected candidate onto 𝑖. For equal minimum proportions the tree branches into
|𝐺| − 1 symmetric nodes 𝑚(𝑖) of the same likelihood. As an example reconsider the mTree from Fig. 3 at level 6. For two protected
groups with minimum proportions [1∕3, 1∕3] we see that the tree branches into two symmetric nodes (6, [1, 0]) and (6, [0, 1]). Both
have the same multinomial CDF values. We store only one of the nodes and flag it as ‘‘has mirrored node’’ and continue our mTree
computation only in the stored branch. This way we save half of the space and computation time needed, without losing any
information about the tree.

Furthermore, we reduce the size of the mTree by actually leaving out the parent–child relationship and merely storing the nodes
itself together with their respective depth levels. Fig. 3 shows the mTree structure with all parent–child relations as edges. We leave
out these edges, thus reducing space, because we can prove that, if a single node exists on each level, which accepts a given ranking
as fair, then a valid path to that node exists in the tree.

Before we can prove this property, we need to introduce the following definition, which formalizes what a successful mTree test
at level 𝑖 looks like.

Definition 5.1 (Successful mTree Testing). Let 𝜏 be a ranking of size 𝑘 and 𝜏𝐺,𝑖 = (𝜏1,… , 𝜏
|𝐺|

) the numbers of ranked protected
elements from group 1,… , |𝐺| up to position 𝑖. Let us assume 𝑀𝑇 be a 𝑚𝑇 𝑟𝑒𝑒, with node 𝑀𝑇𝐺,𝑖 = [𝑚1(𝑖),… , 𝑚

|𝐺|

(𝑖)] giving the
number of protected candidates of group 1,… , |𝐺| required up to position 𝑖. We write 𝜏𝐺,𝑖 ≥ 𝑚𝐺,𝑖 if 𝜏𝑔 ≥ 𝑚𝑔 for all 𝑔 = 1,… , |𝐺|. We
call a test on level 𝑖 of 𝑀𝑇 successful, iff 𝜏𝐺,𝑖 ≥ 𝑚𝐺,𝑖.

Again, in order to remove the parental relationships in the mTree, thus reducing storage space, we have to prove that, if we test
a ranking on each level of the mTree successfully, the entire ranking will be fair according to the ranked group fairness definition.
We prove this by showing that, if a ranking passes the test for any two nodes 𝑛1 and 𝑛2 at two consecutive levels ℎ and ℎ + 1, and
𝑛1 is not a parent of 𝑛2, then all actual children of 𝑛1 will have a weaker requirement than 𝑛2 and will hence also test successfully.
Moreover, we show that all nodes at level ℎ + 1 for which the ranking fails the test are part of a path that already rejected it as
unfair at level ℎ. Consider an example from Fig. 3 : Let us assume a ranking passes the test at level 8 with exactly the required
protected items (8, [1, 1]). Now let us assume that at level 9, the given ranking would pass the test for node (9, [2, 1]), which is not a
successor of (9, [1, 1]). In fact we see that the actual successor of (8, [1, 1]) is a node with the same requirements (9, [1, 1]). However,
if our ranking passes the test for the stricter node (9, [2, 1]), it also passes for (9, [1, 1]) and thus we do not need to know the true
parent of (9, [2, 1]). Note that the ranking would fail at node (9, [3, 0]), but with 𝜏𝐺 = (1, 1) at level 8 it would have failed already at
(9, [3, 0])’s predecessor (8, [2, 0]).

Theorem 5.2. Let 𝑀𝑇 be a mTree and 𝜏 a ranking of size 𝑘. There exists at least one successful test for 𝜏 at each level of 𝑀𝑇 , iff there
exists a path from the root of 𝑀𝑇 to a leaf of 𝑀𝑇 and 𝜏 passes the test at each node on that path.
12
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Proof.
‘‘⇐’’.: If there exists a path for which 𝜏 passes the test at each node, there also exists a node on each level of 𝑀𝑇 where 𝜏 passes

the test because every path has a node on every level.
‘‘⇒’’.: Let 𝑀𝑇 be a mTree and 𝜏 be a ranking that passes the test at level ℎ of 𝑀𝑇 .
Let 𝑚𝐺,ℎ = [𝑚1(ℎ),… , 𝑚

|𝐺|

(ℎ)] be the node on level ℎ that successfully tested 𝜏.
Let further be 𝜏𝑔(ℎ) the number of protected candidates of group 𝑔 ranked at up to position ℎ.
Let ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝜏𝑔(ℎ)| = 0, meaning that the ranking includes the exact amount of required protected candidates at level ℎ and
not more.

Note that this assumption reduces the number of nodes at which 𝜏 passes the test at level ℎ to a minimum.
If we assumed that 𝜏 included more protected candidates than required, we would only increase the number of nodes at level ℎ

or which 𝜏 would pass the test.
Thus, we can proof this direction with the above assumption without loss of generality.
Let 𝑚𝐺,(ℎ+1) be a node which tests 𝜏 successfully on level ℎ + 1 with ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ + 1) − 𝜏𝑔(ℎ + 1)| = 0.
For all entries 𝑚𝑔(ℎ+1) of 𝑚𝐺,(ℎ+1) it is that 𝑚𝑔(ℎ) ≤ 𝑚𝑔(ℎ+1) by construction of the mTree, in which requirements for protected

andidates can only increase or stay the same, but cannot decrease.
We can now distinguish between the following two cases:
Case 1: 𝑚𝐺,(ℎ+1) is a child of 𝑚𝐺,ℎ.
Then they form a path.
Case 2: 𝑚𝐺,(ℎ+1) is not a child of 𝑚𝐺,ℎ.
Let now 𝑚′

𝐺,(ℎ+1) be a child of 𝑚𝐺,(ℎ).
Because of ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝜏𝑔(ℎ)| = 0, and a successful test at level ℎ+1, the following inequations hold: ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| ≤ 1
nd ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| ≤ 1.

If ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| =
∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 0 or ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| =
∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 1, it follows

hat 𝑚𝐺,(ℎ+1) = 𝑚′
𝐺,(ℎ+1) and we would have a contradiction with the fact that 𝑚′

𝐺,(ℎ+1) is not a child of 𝑚𝐺,ℎ, because then the nodes
ould be equal or different by one unit in one position.

Hence, we need that either (2.1) ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| = 1 and ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 0, or (2.2) ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| =
and ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 1.

Case (2.1) means because of ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| = 1 >
∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 0 that the mTree accepts a ranking

ith one more protected candidate than required by the actual child of 𝑚𝐺,ℎ, which contradicts our hypothesis that the ranking
ncluded the exact amount of required protected candidates. It follows that if we test 𝜏𝑔(ℎ + 1) successfully with 𝑚𝐺,ℎ+1 it would
lso satisfy 𝑚′

𝐺,ℎ+1. Case (2.2) is impossible according to algorithm 2. In detail, if ∑

|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚𝑔(ℎ + 1)| = 0 it means that
𝑔(ℎ + 1) = 𝑚𝑔(ℎ) and therefore, 𝐹 (𝑚𝑔(ℎ);ℎ + 1, 𝑝𝐺) > 𝛼 (line 4 of algorithm 2). But if for the child of 𝑚𝐺,ℎ, namely 𝑚′

𝐺,ℎ+1 it
olds that ∑|𝐺|

𝑔=1 |𝑚𝑔(ℎ) − 𝑚′
𝑔(ℎ + 1)| = 1, it means that 𝐹 (𝑚𝑔(ℎ);ℎ+ 1, 𝑝𝐺) ≤ 𝛼 so that we would have added a new node as a child of

𝑔(ℎ) according to lines 8 − 14 of algorithm 2. Since both conditions cannot be true at the same time, Case (2.2) cannot occur.
In summary, Case (2.1) will only occur if we ranked more protected candidates than needed, and that the resulting test would

e stricter than following a path through the mTree. We showed that Case (2.2) is impossible. There is only Case 1 left if we have
anked exactly the number of protected candidates needed at each level of the mTree. It follows that for any ranking that is tested
uccessfully on each level of the mTree, it either was tested by nodes of a path through the mTree or was tested by a series of nodes
hich is stricter than such path. □

Because of Theorem 5.2 we do not need to keep the tree structure (i.e. parental relationship between nodes) and may store only
set of nodes for each level, while removing duplicate entries.

.2.2. Finding a good starting candidate for the binary search
We use a second-degree polynomial regression model to get our first estimate for a good 𝛼𝑐𝑜𝑟𝑟 candidate and apply the binary

earch heuristic from that candidate, rather than starting with a random value, that might be very far away from the correct
𝑐𝑜𝑟𝑟. We need a few additional parameters as input: kTarget — the length of the target ranking, kStart — the size of the
irst mTree, maxPreAdjustK — the maximum size of the mTree before we use regression to predict a good candidate 𝛼𝑐𝑟 for
he final 𝛼𝑐𝑜𝑟𝑟, and num_iterations — the number of training instances to be computed. To create a training dataset 𝑅,
e compute num_iterations small mTrees (i.e. with different 𝑘 ≤ maxPreAdjustK) and adjust the respective 𝛼 values as
escribed in Section 5.1. For each iteration 𝑗 the pair (𝑘𝑗 , 𝛼𝑐𝑗 ) is stored as a training instance in 𝑅. Fig. 3(a) shows a training set for
𝐺 = [1∕3, 1∕3], 𝚖𝚊𝚡𝙿𝚛𝚎𝙰𝚍𝚓𝚞𝚜𝚝𝙺 = 100. Then a regression model is trained to predict 𝛼𝑐𝑟 for kTarget. This 𝛼𝑐𝑟 is now used to start
he binary search for the correct and final 𝛼𝑐𝑜𝑟𝑟. Fig. 3(b) shows the runtime difference for the model adjustment routine with and
ithout the use of regression.

.2.3. Adjusting for small 𝑘 first
We use the fact that given a value of 𝛼, the mTree calculation is not dependent on 𝑘, i.e., a mTree for 𝑘 = 20 and a mTree for

= 10 for the same 𝛼 are equal in the first ten positions. This means that we can start the adjustment from the root node and expand
he tree gradually to find the correct 𝛼𝑐𝑜𝑟𝑟, because if 𝑃fail is too high for given 𝑘, it will also be too high for any 𝑘′ > 𝑘. We can see
n Fig. 2 that 𝑃 grows very fast for small 𝑘, which makes an early adjustment of 𝛼 most efficient to save computation time.
13
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Fig. 4.

5.3. Final adjustment algorithm

Algorithm 3 shows the overall adjustment algorithm in pseudo-code, which performs the following steps:

(1) Define the necessary parameters: kTarget, kStart, maxPreAdjustK, and num_iterations
(2) Adjust 𝛼 for a mTree of size kStart to get 𝛼𝑐1 using binary search.
(3) Add pair

(

𝚔𝚂𝚝𝚊𝚛𝚝, 𝛼𝑐1
)

to a regression training set 𝑅.

(4) Increase 𝚔𝚂𝚝𝚊𝚛𝚝 by 𝚜𝚝𝚎𝚙𝚜𝚒𝚣𝚎 = 𝚖𝚊𝚡𝙿𝚛𝚎𝙰𝚍𝚓𝚞𝚜𝚝𝙺

𝚗𝚞𝚖_𝚒𝚝𝚎𝚛𝚊𝚝𝚒𝚘𝚗𝚜
(5) Compute a mTree with parameters 𝚔𝚃𝚊𝚛𝚐𝚎𝚝, 𝑝𝐺 , 𝛼𝑐1 and adjust 𝛼𝑐1 .
(6) Name result 𝛼𝑐2 and add pair

(

𝚔𝚂𝚝𝚊𝚛𝚝, 𝛼𝑐2
)

to 𝑅.

(7) Repeat steps (4)–(6) until 𝚔𝚂𝚝𝚊𝚛𝚝 == 𝚖𝚊𝚡𝙿𝚛𝚎𝙰𝚍𝚓𝚞𝚜𝚝𝙺.
(8) Train a regression model with training data 𝑅 to predict 𝛼𝑐𝑟 for 𝚔𝚃𝚊𝚛𝚐𝚎𝚝.
(9) Use binary search (Algorithm 5) to find 𝛼𝑐𝑜𝑟𝑟 for parameters 𝑘, 𝑝𝐺 , 𝛼𝑐𝑟 .

5.4. Further optimizations

In addition to the optimizations during mTree calculation which we presented in Section 5.2, our implementation caches already
computed mTrees and their components to never do the same computation twice. We remark that a mTree has to be computed only
once for a particular combination of 𝑘, 𝑝𝐺 , 𝛼.

5.4.1. MCDF cache
Table 3 shows that the highest computational cost arises from computing the multinomial cumulative distribution function 𝐹 .

In the worst case Algorithm 2 computes it |𝐺| + 1 times for each group 𝑔 in 𝑚𝑔(𝑖) and each position 𝑖 ≤ 𝑘. However, the same
calculation may be done many times: As an example consider the (fictive) mTree nodes (3, [2, 1]) and (3, [1, 2]) at position 𝑘 = 3. To
compute the successors of node (3, [2, 1]) we call Algorithm 2 with arguments (4, [2, 1]), (4, [3, 1]) and (4, [2, 2]). We store the results
of these calculation in a map that we call MCDF cache with the algorithm arguments (𝑘 and the minimum protected candidates of
each group) as key and the corresponding mcdf as value. Next we compute the successors of node (3, [1, 2]) and call Algorithm 2
with arguments (4, [1, 2]), (4, [2, 2]) and (4, [1, 3]). We see that we would compute the MCDF for (4, [2, 2]) twice, but instead we can
now read it from the MCDF cache. Note that the MCDF computation is only depends on 𝑝𝐺 and not on 𝑎𝑙𝑝ℎ𝑎. We can therefore
persist the MCDF cache on disk for a particular vector 𝑝𝐺 and load it for any mTree calculation with the same 𝑝𝐺 in the future.

5.4.2. Stored mTrees
During the computation of an adjusted mTree with parameters 𝑘, 𝑝𝐺 , 𝛼 we calculate many temporary mTrees (first the unadjusted

ones, then the ones for the regression algorithm, then the ones for the binary search steps). We persist all of the temporary mTrees
plus the final tree in files for later usage. The filenames contain the tree parameters, whether or not it is adjusted, and its probability
to fail a fair ranking 𝑃fail. If any of these trees is needed at a later point in time it can be loaded from disc instead of being recomputed,
be it as input for multinomial FA*IR or as temporary tree during a new adjusted mTree computation.
14
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5.5. Complexity analysis

This section presents time and space complexity analyses for all algorithms from this section. Table 3 shows the asymptotic costs
or each algorithm without any pre-computed data (i.e. no mTree exists and the MCDF cache is empty). The complexity analysis
or FA*IR is done in Section 6.2, but Table 3 already contains the summary, such that it shows time and space complexity for all
lgorithms in this paper.

.5.1. InverseMultinomialCDF complexity
The complexity of the multinomial CDF is dependent on the current position 𝑖 (also understood as number of trials), |𝐺| the

umber of protected groups, and 𝑚𝐺,𝑖 the vector of minimum required protected candidates for each group at position 𝑖 (also
umber of successes). We will write (MCDF(𝑖, 𝑝𝐺 , 𝛼)) as the asymptotic complexity of this function. In the library we used for our
mplementation, the time complexity to calculate the multinomial CDF at position 𝑖 is in (MCDF(𝑖, 𝑝𝐺 , 𝛼)) = (𝑖|𝐺|). Thus, the
ost expensive position to calculate the multinomial CDF for is 𝑘. For the overall time complexity of InverseMultinomialCDF we get
(|𝐺|) ⋅(MCDF(𝑘, 𝑝, 𝛼)) with |𝐺| being the number of protected groups. The space complexity is (|𝐺|

2) because we store |𝐺| nodes,
ith each node being an array of length |𝐺|.

.5.2. ComputeMTree complexity
Algorithm ComputeMTree constructs an mTree of depth 𝑘. There may be up to |𝐺| possible children for each node in the tree

esulting in |𝐺|

𝑘−1 + 1 nodes, leading to a time complexity of (|𝐺|

𝑘) ⋅ (InverseMultinomialCDF). We store |𝐺|

𝑘−1 + 1 nodes with
rrays of length |𝐺|, leading to space complexity of (|𝐺|

𝑘).

.5.3. MultinomialAlphaAdjustment complexity
Also, in the multinomial case we adjust 𝛼 to 𝛼𝑐 with a binary search heuristic. However there is no discrete measure for mTrees

s was in case of the mTable mass. Therefore, the complexity of the binary search depends on the tolerance 𝜖 set beforehand as a
topping criteria. As we are searching on the interval [0, 𝛼[ the resulting number of possible mTrees is 𝛼

𝜖 . Thus the binary search
needs (log 𝛼

𝜖 ) time because we calculate one mTree and its failure probability for each step. The failure probability is computed
experimentally by creating 10.000 rankings and testing them against the current mTree. This process needs (10.000 ⋅ 𝑘) to create
he rankings plus (𝑘) to test each of them. Hence the overall time complexity becomes (log 𝛼

𝜖 ) ⋅ ((𝑘
2) + (ComputeMTree)). The

pace complexity is in (|𝐺|

𝑘) for storing three mTrees and their failure probability.

.5.4. RegressionAdjustment complexity
Algorithm RegressionAdjustment has the same asymptotic complexity as MultinomialAlphaAdjustment. However, a significant

eduction in computation time compared can be achieved when combining the two, instead of using MultinomialAlphaAdjustment
nly (see Fig. 4, green vs. orange line).

Algorithm 3: Algorithm RegressionAdjustment estimates the corrected significance level 𝛼𝑐𝑜𝑟𝑟 such that the mTree 𝑚(𝛼𝑐𝑜𝑟𝑟 , 𝑘, 𝑝𝐺) has the probability of
rejecting a fair ranking 𝛼

input : kStart – depth of the mTree to start with; 𝑘 – the length of the ranking; 𝑝𝐺 – the desired proportions of the protected groups;
𝛼 – the desired significance level; maxPreAdjustK the maximum depth of the mTrees that are used as training data;
num_iterations – the number of steps between kStart and maxPreAdjustK

output : 𝛼𝑐𝑜𝑟𝑟 – the adjusted significance
1 𝑅 ← {}; 𝛼new ← 𝛼
// divide the interval [kStart,maxPreAdjustK] into num_iterations parts

2 stepsize ← max( maxPreAdjustK
num_iterations , 1)

3 for 𝑖 ← 0 to num_iterations do
// adjust 𝛼new for the current kStart

4 𝛼new ← MultinomialBinarySearchAdjustment(𝛼new,kStart, 𝑝𝐺)
// add the pair (kStart, 𝛼new) to the training data 𝑅

5 𝑅.put(kStart, 𝛼new)
6 if kStart + stepsize ≤ maxPreAdjustK then
7 kStart ← kStart + stepsize
8 end
9 else
10 break
11 end
12 end
13 coeffs ← 𝑅.train() // returns the vector of predicted coefficients for the curve over 𝑅
14 𝛼𝑐𝑟 ← coeffs[0] + coeffs[1] ∗ 𝑘 + coeffs[2] ∗ 𝑘2

15 𝛼𝑐𝑜𝑟𝑟 ← MultinomialBinarySearchAdjustment(𝛼𝑐𝑟 , 𝑘, 𝑝𝐺)
16 return 𝛼𝑐𝑜𝑟𝑟
15
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Table 3
Time complexity for all algorithms without pre-computed results.

Algorithm Time complexity Space complexity

InverseMultinomialCDF (|𝐺|) ⋅ (MCDF(𝑘, 𝑝, 𝛼)) (|𝐺|

2)
ComputeMTree (|𝐺|

𝑘) ⋅ (InverseMultinomialCDF) (|𝐺|

𝑘)
MultinomialAlphaAdjustment (log 𝛼

𝜖
) ⋅ ((𝑘2) + (ComputeMTree)) (|𝐺|

𝑘)
RegressionAdjustment (log 𝛼

𝜖
) ⋅ ((𝑘2) + (ComputeMTree)) (|𝐺|

𝑘)
FA*IR (𝑛 log 𝑛) + (MultinomialAlphaAdjustment) + (𝑘) (|𝐺|

𝑘 + 𝑛 + 𝑘)

5.6. Exact solution for the binomial case

In this section we described how to tackle the challenges of the inverse multinomial cumulative distribution function in the
orm of mTrees. However, the special case of two protected groups (the binomial case), which is extensively described by Zehlike
t al. (2017), opens up a variety of more efficient and exact solutions. We developed an algorithm to compute the exact failure
robability of a binomial mTree (mTable) and utilize it in a more efficient binary search for the correct significance level (Zehlike,
ühr & Castillo, 2020b). The implementation can be found in our GitHub repository.3

6. The multinomial FA*IR algorithm

In this section we present the multinomial FA*IR algorithm (Section 6.1) and determine its complexity (Section 6.2).

Algorithm 4: Algorithm FA*IR finds a ranking that maximizes utility subject to in-group monotonicity and ranked group fairness constraints. Checks for
special cases (e.g., insufficient candidates of a class) are not included for clarity.

input : 𝑘 ∈ [𝑛], the size of the list to return; ∀ 𝑐 ∈ [𝑛]: 𝑞𝑐 , the qualifications for candidate 𝑐, and 𝑔𝑐 an indicator that is > 0 iff candidate
𝑐 is protected; 𝑝𝐺 with ∀𝑝𝑔 ∈ (0, 1), the vector of minimum proportions for each group of protected elements; 𝛼𝑐𝑜𝑟𝑟 ∈ (0, 1), the
adjusted significance for each fair representation test.

output : fair ranking 𝜏∗ satisfying the ranked group fairness condition (Def. ??).
1 𝑃0, 𝑃1,…𝑃

|𝐺|

← empty priority queues with bounded capacity 𝑘
2 for 𝑐 ← 1 to 𝑛 do
3 insert 𝑐 with value 𝑞𝑐 in priority queue 𝑃𝑔𝑐
4 end
5 mtree(𝑖) ← ComputeMTree(𝑘, 𝑝𝐺 , 𝛼𝑐𝑜𝑟𝑟)
6 (𝑡0, 𝑡1,… , 𝑡

|𝐺|

) ← (0,… , 0)
7 𝑖 ← 0
8 while 𝑖 < 𝑘 do
9 noCandidateAdded = True

// get next node in tree path
10 𝑚𝐺,𝑖 = [𝑚1(𝑖),… , 𝑚

|𝐺|

(𝑖)] ← findNextNode(mtree, i)
// find which group needs a new candidate

11 for g = 1; g ≤ |G|; g++ do
12 if 𝑡𝑔 < 𝑚𝑔(𝑖) then

// add a protected candidate
13 𝑡𝑔 ← 𝑡𝑔 + 1
14 𝜏∗[𝑖] ← pop(𝑃𝑔)
15 noCandidateAdded = False
16 end
17 end
18 if noCandidateAdded then

// no protected candidate needed: add the best available
19 𝑃𝑔 ← findBestCandidateQueue()
20 𝜏∗[𝑖] ← pop(𝑃𝑔)
21 𝑡𝑔 ← 𝑡𝑔 + 1
22 end
23 end
24 return 𝜏∗

6.1. Algorithm description

Algorithm 4 presents Multinomial FA*IR, our solution to the Fair Top-𝑘 Ranking problem for multiple protected groups. The input
of multinomial FA*IR is the target size 𝑘 of the ranking to be produced, the scores or qualifications 𝑞𝑐 , indicator variables 𝑔𝑐 marking
protected candidates, the minimum target probabilities 𝑝𝐺, and the test significance after adjustment 𝛼𝑐𝑜𝑟𝑟.

3 https://github.com/MilkaLichtblau/Multinomial_FA-IR.
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The algorithm works as follows. In the initialization, qualifications 𝑞𝑐 are used to create one ranked list of up to 𝑘 candidates
or each of the protected groups (𝑃𝑔) and for the non-protected group (𝑃0). At Line 5, the algorithm creates a ranked group fairness
ree (mTree) similar to the one shown on Fig. 3, indicating the minimum number of protected candidates needed at every position.
hen, the algorithm greedily merges the per-group rankings, making sure to satisfy the minimum number of protected elements
equired at each position. If we require a protected candidate from group 𝑔, the algorithm picks the highest ranked element in 𝑃𝑔
Lines 12–16); otherwise, it picks the best candidate from 𝑃0 ∪ 𝑃1 ∪⋯ ∪ 𝑃

|𝐺|

(Lines 18–22).
We observe that the choice of the group from which the element at position 𝑖 should be drawn, i.e., the node selected at level 𝑖,

epends on the path chosen along the mtree. In case there are multiple possibilities that satisfy ranked group fairness (as we saw
n the example of Fig. 3 at level 𝑘 = 6), the algorithm selects the branch that has the higher probability (larger 𝐹 ), breaking ties at
andom. Thus, the algorithm returns the most-likely child 𝑚𝐺,𝑖 for a given parent (Line 10).

.2. Algorithm complexity

Assuming a computational cost of (𝑛 log 𝑛) for creating the sorted lists of candidates, FA*IR ranks exactly 𝑘 items using an
djusted mTree of height 𝑘. We need to run MultinomialAlphaAdjustment once and then follow one path through the mTree up to
evel 𝑘, leading to (𝑛 log 𝑛) + (MultinomialAlphaAdjustment) + (𝑘). Note however, that if we used parameters (𝑘, 𝑝𝐺 , 𝛼) at any
oint in the past, we can obtain a previously calculated tree from disc. In this case FA*IR has a complexity of (𝑛 log 𝑛) + (𝑘).
he space complexity is (𝑛) for the candidates we want to rank, plus (𝑘) for the ranking itself, in summary (𝑛+ 𝑘) (plus that of
ultinomialAlphaAdjustment, if we have to calculate the mTree first, then leading to (|𝐺|

𝑘 + 𝑛+ 𝑘)). The complexity is summarized
n Table 3.

.3. Scalability and mTree reuse

In this section, we describe how FA*IR can be used in practice despite the high computational costs of the mTree calculation.

.3.1. Storing and loading mTrees
Once computed, a mTree can be used either to test or to create fair rankings according to Definition 3.3. The mTree itself is

ndependent of the data tested or ranked and thus is reusable for all rankings of length 𝑚 ≤ 𝑘 with required proportions 𝑝𝐺 and
ignificance 𝛼. Since testing and ranking with mTrees is efficient, but mTree creation is not, it is important to store already computed
Trees and never compute a mTree twice. Our implementation4 provides the infrastructure for loading and storing mTrees for all

teps of our algorithm. We also provide the pre-computed set of mTrees from our experiments.

.3.2. Reusing mtrees
As mentioned above, a mTree of depth 𝑘 can be used to create and test rankings of every length up to and including 𝑘. Thus,

or given 𝛼, 𝑝𝐺 only the largest mTree has to be stored. Furthermore, all mTrees calculated during the binary search in Algorithm
MultinomialAlphaAdjustment can be reused too, if only the parameter 𝛼 changes. More specifically, MultinomialAlphaAdjustment

omputes many mTrees which are persisted. If we want to later compute a mTree for the same 𝑝𝐺 but with a different 𝛼, many of
he binary search steps (computed mTrees) will be repeated and the respective trees can be loaded from disc. In summary, the first
alculation of a large mTree for many protected groups is expensive, but has to be done only once. After that, adjustments of 𝑘 and
are fast through recycling of already computed mTrees and MCDFs (see also Section 5.4). The only case in which mTrees cannot

e reused easily is if 𝑝𝐺 changes. However, in many cases 𝑝𝐺 is determined by law, or alternatively by policies or guidelines that
hange in a time frame of years. For instance, the International Labour Organization’s research shows that, among the countries
hat seek to increase the participation of people with disabilities in employment, most set a fixed quota between 1% and 10%;
ome countries also set an intersectional quota for people with disabilities (International Labor Organization, 2019). The European
nion has goals of 40% of participation for women in several areas, including company boards, but also slates of candidates for
lected positions.5 Under those circumstances, 𝑝𝐺 do not change as often as other elements, such as the value of 𝑘 used to display
nformation to users.

.4. Partial ordering of solutions

When there is a single protected group, top-𝑘 rankings that have a given utility form a total ordering with respect to group
airness, and top-𝑘 rankings that have a given ranked group fairness form a total ordering with respect to utility. This allowed
s to prove that FA*IR for a single protected group finds the optimal solution w.r.t. selection and ordering utility (Zehlike et al.,
017). The proof comes from the observation that decreases in utility that maintain ranked group fairness can only occur when a
igh-scoring non-protected candidate is ranked below a low-scoring protected one. When multiple groups are present there is no
otal ordering as some rankings cannot be compared. It may happen that a high-scoring candidate from a better-performing protected
roup is ranked below a low-scoring candidate from a low-performing protected group. This means that ordering inversions can no
onger happen only w.r.t. the non-protected group, but also among the protected groups. As the ranked group fairness criterion for

4 https://github.com/MilkaLichtblau/Multinomial_FA-IR.
5 https://www.theguardian.com/world/2020/mar/05/eu-revives-plans-for-mandatory-quotas-of-women-on-company-boards.
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Table 4
Datasets and experimental settings. The ad-hoc score for COMPAS was calculated by a weighted summation of recidivism risk, number of prior arrests and
violent recidivism risk.

Dataset 𝑛 𝑘 Qualification
criterion

Protected groups Protected %

D1 COMPAS Angwin et al. (2016) 6173 1500 ad-hoc score People of color (PoC) 65.9%

D2 COMPAS Angwin et al. (2016) 6173 500 ad-hoc score 25 yr. < x < 45 yr. 57.2%
<25 yr. 21.8%

D3 COMPAS Angwin et al. (2016) 6173 300 ad-hoc score PoC female, <25 yr. 2.8%
White female, < 25 yr. 1.2%
PoC male, <25 yr. 13.4%

D4 German credit Lichman (2013) 1000 50 Credit rating Female, non-prot. age 21.7%
Male, oldest 10% 6.3%
Male, youngest 10% 4.4%
Female, oldest 10% 3.2%
Female, youngest 10% 6.1%

D5 LSAT Wightman and Ramsey (1998) 21 K 300 LSAT score White, female 35.3%
PoC, female 8.4%
PoC, male 7.6%

multiple groups can be expressed as a tree-structure and any path satisfies the constraint, we have multiple choices of which path
to choose to satisfy the same ranked group fairness. Hence, multiple solutions (rankings) are equivalent.

The way in which we decided to choose among these equivalent rankings is in line with the probabilistic nature of the design of
FA*IR. We decided to pick the path that is ‘‘most likely’’, i.e., that has the highest MCDF value. An alternative implementation could
elect the highest utility path, picking the candidate with the highest qualifications when multiple choices exist. This would avoid
aving to rank a protected candidate with lower utility above a protected candidate with a higher utility from another protected
roup. However, that would require to assume that measures of qualification are comparable across groups of candidates. This
ould be a strong assumption due to different manifestations of bias in score distributions seen in practice. Scores have been even
roven to be biased against protected groups, as is the case with the COMPAS scores (Angwin et al., 2016) that we use in the
xperiments of Section 7, but this bias manifests differently across groups (as an example see Fig. 5(c)). Let us consider an example
o clarify this point. Suppose that we had two protected groups, namely white female and black female candidates, and all other
andidates were non-protected. Suppose that the degree of bias in the scores for black females is substantially higher than for white
emales, i.e., black females obtain lower scores for the same performance as white females. This is a plausible scenario due to
he intersectional discrimination which black females face. In this case, choosing among equivalent solutions, the mTree path that
aximizes utility would result in unfairly preferring white females over black females. Instead, choosing the most likely path follows
probabilistic design, and only requires that scores are comparable within groups, but not across.

. Experiments

In this section, we evaluate the multinomial FA*IR algorithm. We present the datasets we used in Section 7.1, metrics and
omparison with baselines in Section 7.2, and results in Section 7.3.

.1. Datasets

We used multiple datasets in our experiments, each dataset represents a set of people with certain demographic attributes, and
ncludes a ‘‘score’’ attribute. Table 4 presents some general characteristics of each dataset. Dataset D1 corresponds to the same
xperimental setup as in our previous work (Zehlike et al., 2017), but instead of using the original algorithm FA*IR, we run the
inomial experiment with the multinomial extension proposed in Section 3. We perform tests with various values of 𝑘 < 𝑛 in each
ataset. Additionally, we tested different definitions of what would constitute a protected group within each dataset, for experimental
urposes. However, we must note that in a real application there is usually a protected group that is clearly defined by voluntary
greements or by law, and that group historically and currently experiences a disadvantage. Similarly, the minimum proportion can
lways be provided by regulation or voluntary commitments; in the absence of this minimum proportion one can use the fraction
f people who are members of that group within the entire population. An experiment consists of generating a ranking from the
et of candidates using multinomial FA*IR and then comparing it with baseline rankings according to the metrics introduced in
he next section. We use the three publicly-available datasets: COMPAS (Angwin et al., 2016), German Credit (Lichman, 2013) and
SAC (Wightman & Ramsey, 1998).
OMPAS is a criminal recidivism risk assessment instrument that predicts the probability of a convict to recidivate within the two
ears after the sentence. It is based on a set of over a hundred items or questions, and currently it is used by several jurisdictions
n the US. COMPAS has been accused of racial discrimination by having a larger false positive rate for African Americans (Angwin
t al., 2016). In our experiment, we test a scenario in which we want to create a fair ranking of the top-𝑘 people who are least likely
18
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Fig. 5. Distribution of COMPAS scores in different experimental settings. The first three figures show distributions separately by each of the three protected
categories. The fourth figure shows the distribution for dataset D3.

as a weighted summation of the columns ‘‘recidivism, violent recidivism’’ and ‘‘prior arrests’’ from the original dataset. To break
ties, we added normally distributed random noise with 𝜇 = 0, 𝜎 = 0.00001 to the score of each candidate. Our protected groups are
formed by different combination of the attributes ‘‘race, age’’ and ‘‘sex’’, where race is either ‘‘white’’ or ‘‘person of color’’ (PoC),
age is either ‘‘younger than 25’’, ‘‘between 25 and 45’’ or ‘‘older than 45’’, and sex is either ‘‘male’’ or ‘‘female’’. We observe in
Fig. 5(d) that PoC 5(b), as well as males 5 are given a larger recidivism score than other groups. However we see in Fig. 5(c) that
the protected attribute ‘‘age’’ has the strongest impact on recidivism risk. Apparently COMPAS tends to give larger risk scores to
younger people. We therefore consider white, female and older than 45 as the non-protected categories for our experiments.

In dataset D1 we consider people of color as the protected group and conduct experiments with two different minimum proportion
vectors. The first one sets the 𝑝-values to match the protected group proportion in the dataset 𝑝stat = [0.66] which relates to group
fairness as statistical parity; the second one sets all minimum proportions to the same value 𝑝eq = [0.5].

In dataset D2 we consider people aged 25–45 and younger than 25 as protected and the vectors 𝑝𝐺 are 𝑝stat = [0.573, 0.218] and
𝑝eq = [0.333, 0.333].

In dataset D3 we divided the candidates into 12 different groups that we constructed from the Cartesian product of all three
protected categories ‘‘age’’, ‘‘race’’, and ‘‘sex’’. Then we calculated the average group exposure for each group and considered as
protected the three groups that were placed lowest in the colorblind ranking. These are young female persons of color, young white
females and young male PoC. Interestingly, despite the fact that females have higher scores on average, two of the three groups
with lowest exposure values are female (Fig. 5(d)). We set the vectors 𝑝𝐺 to 𝑝stat = [0.028, 0.012, 0.134] and 𝑝eq = [0.25, 0.25, 0.25].
German Credit is a dataset based on ratings generated by the German agency Schufa, and is also known as the Statlog German
Credit Dataset. The score given by Schufa is based on age, gender, marital status, and other features of each applicant, and is widely
19
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used in Germany as a credit rating score for operations such as renting an apartment or applying for a loan. The dataset provides
a credit-worthiness score that we use as ‘‘qualification’’, and corresponds to a weighted sum of credit duration, credit amount, and
employment length. As protected attributes we use the sex and age of a candidate: females and whether or not they belong to the
group of the 100 youngest or oldest persons respectively form the protected groups, because these tend to be given lower scores.
We set the vectors 𝑝𝐺 to 𝑝stat = [0.217, 0.063, 0.044, 0.032, 0.061] and 𝑝eq = [0.166, 0.166, 0.166, 0.166, 0.166].
LSAT is a dataset collected by Wightman and Ramsey (1998) to study whether the admission metrics to law schools in the US have
a disparate impact on students of color. The qualification attribute consists of scores in the US Law School Admission Test (LSAT).
The protected features are a person’s sex and whether or not they belong to the group of people of color (PoC). Women and PoC
score on average lower than men and Whites in this test, which is why we regard white men as non-protected and the other groups
as protected. We set the vectors 𝑝𝐺 to 𝑝stat = [0.353, 0.084, 0.076] and 𝑝eq = [0.25, 0.25, 0.25].

7.2. Baseline methods and metrics

The baseline methods for comparison that we use are the following:
Baseline 1: Group-unaware or ‘‘color-blind’’ ranking. This method merely order the candidates by decreasing scores/qualifications
(see Section 3.1) and therefore maximizes selection and ordering utility. We evaluate all methods relative to the metrics achieved
by the colorblind ranking, i.e., we report utility loss and fairness gain of the methods w.r.t. the colorblind ranking.
Baseline 2: Continuous Fairness Algorithm (CFA𝜃). This is a post-processing method introduced by Zehlike, Hacker, et al. (2020),
and as explained in Section 2.2, to the best of our knowledge this is the only utility-based method in the literature that does not
assume that utilities can be compared across groups. It aligns the score distributions of the protected candidates with the Wasserstein-
barycenter of all group distributions. To achieve this the algorithm finds a new distribution of scores for each group, the ‘‘fair
representation’’, by interpolating between the barycenter and the group distribution, subject to a given fairness parameter 𝜃. This
fair representation corresponds to the idea to rank groups separately and then subsequently pick the best candidates from each
group to create the result ranking. Note that setting 𝜃 = 1 to its maximum corresponds to setting the minimum proportions in 𝑝𝐺 to
the dataset proportions of each group. This means that with CFA𝜃 we cannot achieve an exposure gain that would require minimum
proportions beyond statistical parity. Hence this method is comparable to our method only if all values in 𝑝𝐺 are less or equal to
statistical parity. In our experiments we therefore only compare FA*IR with 𝑝stat to CFA𝜃 with 𝜃 = 1, as higher 𝑝-values are not
comparable.
Baseline 3: Categorical sampling or ‘‘dice roll’’. We adapt the Bernoulli process of Yang and Stoyanovich (2016) to a multinomial
setting, in which more than one protected group is present. This corresponds to sequentially rolling a |𝐺|-sided dice for each of the
ranking positions 𝑖 = 1, 2,… , 𝑘, placing at ranking position 𝑖 the best available candidate from the group whose side is showing
(with each candidate appearing at most once in the ranking). Each side of the dice represents one group 𝑔 ∈ 𝐺 and shows with
probability 𝑝𝑔 . We note that this procedure, if repeated many times, will approximate the results of FA*IR, and we report mean and
standard deviation of the metrics for 10,000 rankings created through the dice roll procedure. The difference is that our method is
deterministic and therefore guarantees a certain share of visibility for each group for each created ranking.
Baseline 4: Binomial FA*IR. We additionally report experimental results using the binomial version of FA*IR (Zehlike et al., 2017;
Zehlike, Sühr, Castillo, & Kitanovski, 2020). Because this version of FA*IR accepts only one value 𝑝 ∈ R, we aggregated all protected
groups into one. The evaluation however, is shown for each group separately to depict the differences between the binomial and
the multinomial version of FA*IR. The resulting values for 𝑝 are 𝑝 =

∑

𝑝eq which is the sum of the entries of 𝑝𝐺, where all groups
have the same minimum proportion. In the second setting, 𝑝 is calculated as 𝑝 =

∑

𝑝stat which is the sum of the entries of 𝑝𝐺, where
all groups have minimum proportions matching their respective dataset shares.
Utility (Performance Measure). We report the loss in ranked utility after score normalization, in which all 𝑞𝑖 are normalized to be
within [0, 1]. We also report the maximum rank drop, i.e., the number of positions lost by the candidate that realizes the maximum
ordering utility loss.
NDCG (Performance Measure). We report a normalized weighted summation (Normalized Discounted Cumulative Gain — NDCG)
of the scores of the elements in the ranking, ∑𝑘

𝑖=1 𝑤𝑖𝑞(𝜏𝑖), in which the weights are chosen to have a logarithmic discount in the
position: 𝑤𝑖 =

1
log2(𝑖+1)

. This is a standard measure to evaluate search rankings (Järvelin & Kekäläinen, 2002). This is normalized so
hat the maximum value is 1.0.
endall’s Tau (Performance Measure). We report the similarity of the fair candidate orderings w.r.t. the colorblind ranking in

erms of Kendall’s 𝜏 correlation coefficient. A value close to 1 indicates strong similarity between the two rankings (with 1 meaning
erfect agreement), a value close to −1 indicates strong dissimilarity (with -1 meaning perfectly reversed ordering), and a value of
indicates there is no correlation between the two rankings.
xposure (Fairness Measure). We use a measure of average group exposure, which we define as the average position bias that
group is exposed to. In rankings, their exposure to the user is critical for ranked candidates to benefit from the system and if
group of candidates is systematically ranked low, it can be considered as biased (Friedman & Nissenbaum, 1996). We model

osition bias 𝑣 by means of a logarithmic progression of the form 𝑣(𝑘) = 1
log2(𝑖+1)

. Thus the first position has a bias 𝑣(1) = 1, which
then decreases logarithmically. Higher position bias translates into more exposure and hence more visibility. We show that large
increases in average group exposure can be achieved with relatively small losses in ordering utility and NDCG.
20
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Table 5
Experimental results, showing changes in the average group exposure and ranking utility in terms of NDCG. Exposure is presented per group while the loss of
NDCG is calculated for the entire ranking. The protected groups are in the same order as in Table 4. For exposure gain we report numbers with an asterisk, if
a group was not among the top-𝑘 in the colorblind ranking, but is now. These numbers constitute the absolute exposure value a group receives after re-ranking.

e report mean and standard deviation of all metrics for the dice roll baseline. Note however, that these are just result statistics which do not relate to a
pecific ranking. Comparable results are grouped together.
Experiment Method Exposure gain per prot. group Exposure gain

non-prot. group
Total NDCG loss Kendall’s Tau

D1 — COMPAS, mult. FA*IR 𝑝eq 0.25 −0.25 0.0000 0.99
k = 1500, dice roll 𝑝eq −0.45 0.45 0.0055 0.98
race (1 prot.) dice roll 𝑝eq mean/std −1.74/2.32 1.74/2.32 0.0002/0.0002 0.97/0.01

binom. FA*IR 𝑝 =
∑

𝑝eq 0.00 0.00 0.0000 1.00

mult. FA*IR 𝑝stat 19.77 −19.77 0.0040 0.82
dice roll 𝑝stat 28.47 −28.47 0.0070 0.77
dice roll 𝑝stat mean/std 25.73/2.22 −25.73/2.22 0.0057/0.0009 0.78/0.02
CFA𝜃 28.16 −28.16 0.0050 0.66
binom. FA*IR 𝑝 =

∑

𝑝stat 18.75 −18.75 0.0037 0.83

D2 — COMPAS, mult. FA*IR 𝑝eq [−7.34, 20.87∗] −13.53 0.0580 0.55
k=500, dice roll 𝑝eq [−5.07, 21.72∗] −16.64 0.0585 0.51
age (2 prot.) dice roll 𝑝eq mean /std [−6.67∕1.62, 23.5∗∕1.63] −16.83/1.62 0.0655/0.0054 0.49/0.03

binom. FA*IR 𝑝 =
∑

𝑝eq [12.55, 0.00∗] −12.55 0.0004 0.76

mult. FA*IR 𝑝stat [7.95, 14.11∗] −22.06 0.0354 0.51
CFA𝜃 [24.33, 15.91∗] −38.48 0.0380 0.37
dice roll 𝑝stat [8.83, 15.68∗] −24.52 0.0396 0.47
dice roll 𝑝stat mean/std [10.23/1.71, 15.38∗/1.42] −25.61/1.39 0.0387/0.0042 0.48/0.03
binom. FA*IR 𝑝 =

∑

𝑝stat [21.62, 0.00∗] −21.62 0.0011 0.74

D3 — COMPAS, mult. FA*IR 𝑝eq [10.30∗ , 10.18∗ , 10.25∗] −30.72 0.1808 0.38
k=300, dice roll 𝑝eq [11.60∗ , 11.81∗ , 11.81∗] −35.21 0.2083 0.29
3 worst off (3 prot.) dice roll 𝑝eq mean [11.85∗ , 11.34∗ , 11.84∗] −35.03 0.2088 0.33

dice roll 𝑝eq std [1.31, 0.86, 1.30] 1.29 0.0094 0.05
binom. FA*IR 𝑝 =

∑

𝑝eq [6.42∗ , 2.22∗ , 22.77∗] −31.40 0.1535 0.61

mult. FA*IR 𝑝stat [0.84∗ , 0.41∗ , 4.08∗] −5.33 0.0180 0.81
CFA𝜃 [0.93∗ , 0.24∗ , 6.74∗] −7.92 0.0236 −0.12
dice roll 𝑝stat [2.03∗ , 0.59∗ , 7.01∗] −9.73 0.0353 0.69
dice roll 𝑝stat mean [1.33∗ , 0.57∗ , 6.34∗] −8.24 0.0292 0.71
dice roll 𝑝stat std [0.49, 0.33, 1.02] 1.15 0.0046 0.04
binom. FA*IR 𝑝 =

∑

𝑝stat [1.11∗ , 0.63∗ , 3.82∗] −5.56 0.0187 0.80

D4 — German cred., mult. FA*IR 𝑝eq [0.08, 0.50, 1.49, 1.26, 1.12] −4.46 0.1685 0.51
k=50, dice roll 𝑝eq [−1.09,−0.13, 2.76, 1.28, 1.75] −4.58 0.2315 0.36
sex & age (5 prot.) dice roll 𝑝eq mean [−0.31, 0.45, 1.00, 1.82, 1.74] −4.70 0.2265 0.47

dice roll 𝑝eq std [0.77, 0.78, 0.77, 0.77, 0.77] 0.76 0.0449 0.08
binom. FA*IR 𝑝 =

∑

𝑝eq [2.41, 0.40, 0.00, 0.36, 0.25] −3.42 0.0619 0.83

mult. FA*IR 𝑝stat [0.01, 0.23, 0.38, 0.20, 0.01] −0.83 0.0185 0.84
CFA𝜃 [0.34,−0.93,−0.66,−0.03, 0.28] 1.00 0.0426 0.74
dice roll 𝑝stat [0.89,−1.24,−0.38,−0.33, 0.26] 0.80 0.0560 0.66
dice roll 𝑝stat mean [0.37,−0.89,−0.55, 0.05, 0.38] 0.64 0.0675 0.65
dice roll 𝑝stat std [0.86, 0.51, 0.43, 0.35, 0.50] 1.02 0.0209 0.65
binom. FA*IR 𝑝 =

∑

𝑝stat [0.00, 0.00, 0.00, 0.00, 0.00] 0.00 0.0000 1.00

D5 — LSAT, mult. FA*IR 𝑝eq [−0.32, 10.71, 10.96] −21.35 0.0207 0.08
k=300, dice roll 𝑝eq [−6.50, 9.19, 14.69] −17.47 0.0263 0.07
sex & race (3 prot.) dice roll 𝑝eq mean [−5.03, 10.61, 10.69] −16.27 0.0211 0.06

dice roll 𝑝eq std [1.31, 1.30, 1.30] 1.31 0.0021 0.07
binom. FA*IR 𝑝 =

∑

𝑝eq [12.94, 1.56, 1.20] −15.71 0.0048 0.14

mult. FA*IR 𝑝stat [4.00, 4.70, 4.89] −13.58 0.0053 0.09
CFA𝜃 [−0.74, 1.27, 4.64] −5.18 0.0009 −0.03
dice roll 𝑝stat [−0.16, 3.36, 2.24] −5.44 0.0028 0.23
dice roll 𝑝stat mean [−0.25, 2.71, 2.43] −4.89 0.0023 0.14
dice roll 𝑝stat std [1.44, 0.83, 0.80] 1.51 0.0007 0.10
binom. FA*IR 𝑝 =

∑

𝑝stat [5.35, 0.54, 0.44] −6.33 0.0007 0.31

7.3. Results

Tables 5 and 6 summarize the results. We report on the result for FA*IR using 𝑝𝐺 in two different settings, namely as a statistical
arity vector i.e. the 𝑝-values for each group correspond to their respective proportions in the dataset (𝑝stat), and as a vector with
ll 𝑝-values being equal (𝑝eq). We report experimental results for the dice rolling baseline using same probability vectors 𝑝𝐺 as for
A*IR. The actual values for 𝑝 are given in the dataset descriptions in Section 7.1. Also remember that results of CFA𝜃 are only
21
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Table 6
Experimental results, changes of individual utility loss respect to colorblind results. All measures are presented per group. Groups are in the same order as in
Table 4, and the first value is always for the non-protected group. We report mean and standard deviation of all metrics for the dice roll baseline. Note however,
that these are just result statistics which do not relate to a specific ranking. Comparable results are grouped together.

Experiment Method Ordering utility loss Rank drop Selection utility loss

D1 — COMPAS, mult. FA*IR 𝑝eq [0.0066, 0] [17, 0] [0, 0]
k = 1500, dice roll 𝑝eq [0.0066, 0.0066] [60, 30] [0, 0.0066]
race (1 prot.) dice roll 𝑝eq mean/std [0.0061∕0.0061, 0.0135∕0.0089] [32.19∕19.38, 42.15∕26.21] [0.0002∕0.0014, 0.0118∕0.0095]

binom. FA*IR 𝑝 =
∑

𝑝eq [0, 0] [0, 0] [0, 0]

mult. FA*IR 𝑝stat [0.0702, 0] [387, 0] [0.0621, 0]
CFA𝜃 [0.0687, 0] [579, 297] [0.0636, 0]
dice roll 𝑝stat [0.0833, 0] [524, 0] [0.0833, 0]
dice roll 𝑝stat mean/std [0.0772∕0.0056, 0∕0] [477.35∕36.78, 0.45∕1.10] [0.0736∕0.0078, 0∕0]
binom. FA*IR 𝑝 =

∑

𝑝stat [0.0636, 0] [373, 0] [0.0621, 0]

D2 — COMPAS, mult. FA*IR 𝑝eq [0.23, 0, 23, 0.00] [182, 116, 0] [0.23, 0.23, 0.00]
k=500, dice roll 𝑝eq [0.23, 0.23, 0.00] [214, 77, 0] [0.23, 0.23, 0.00]
age (2 prot.) dice roll 𝑝eq mean/std [0.24∕0.01, 0.24∕0.01, 0∕0] [214.5∕17.0, 103.4∕20.9, 0∕0] [0.24∕0.01, 0.24∕0.01, 0∕0]

binom. FA*IR 𝑝 =
∑

𝑝eq [0.01, 0, 0] [180, 0, 0] [0.01, 0, 0]

mult. FA*IR 𝑝stat [0.21, 0.21, 0.00] [287, 0, 0] [0.21, 0.21, 0.00]
CFA𝜃 [0.19, 0.18, 0.00] [159, 282, 0] [0.19, 0.17, 0.00]
dice roll 𝑝stat [0.22, 0.22, 0.00] [310, 0, 0] [0.22, 0.22, 0.00]
dice roll 𝑝stat mean/std [0.21∕0.01, 0.21∕0.01, 0∕0] [323.4∕16.2, 1.4∕1.9, 0∕0] [0.22∕0.01, 0.21∕0.01, 0∕0]
binom. FA*IR 𝑝 =

∑

𝑝stat [0.01, 0, 0] [283, 0, 0] [0.01, 0, 0]

D3 — COMPAS, mult. FA*IR 𝑝eq [0.60, 0.26, 0.00, 0.37] [206, 0, 0, 0] [0.60, 0.26, 0.00, 0.37]
k=300, dice roll 𝑝eq [0.63, 0.37, 0.00, 0.49] [209, 0, 0, 0] [0.71, 0.37, 0.00, 0.49]
3 worst off (3 prot.) dice roll 𝑝eq mean [0.67, 0.33, 0.00, 0.44] [218.5, 0, 0, 0] [0.67, 0.32, 0.00, 0.45]

dice roll 𝑝eq std [0.08, 0.08, 0.01, 0.08] [7.9, 0, 0, 0] [0.07, 0.08, 0.00, 0.07]
binom. FA*IR 𝑝 =

∑

𝑝eq [0.28, 0, 0, 0] [208, 0, 0, 0] [0.28, 0, 0, 0]

mult. FA*IR 𝑝stat [0.17, 0.03, 0.00, 0.02] [38, 0, 0, 0] [0.17, 0.01, 0.01, 0.00]
CFA𝜃 [0.15, 0.01, 0.00, 0.00] [268, 0, 0, 0] [0.15, 0.00, 0.00, 0.00]
dice roll 𝑝stat [0.20, 0.001, 0.006, 0.02] [62, 0, 0, 0] [0.20, 0.01, 0.03, 0.00]
dice roll 𝑝stat mean [0.20, 0.03, 0.02, 0.04] [52.0, 0, 0, 0] [0.20, 0.02, 0.02, 0.00]
dice roll 𝑝stat std [0.01, 0.02, 0.01, 0.03] [6.5, 0, 0, 0] [0.01, 0.02, 0.01, 0.01]
binom. FA*IR 𝑝 =

∑

𝑝stat [0.17, 0, 0, 0] [39, 0, 0, 0] [0.17, 0, 0, 0]

D4 — German cred., mult. FA*IR 𝑝eq [3.57, 2.70, 3.42, 0.55, 1.23, 1.76] [28, 4, 6, 1, 0, 0] [3.05, 1.82, 1.34, 0.00, 0.18, 0.33]
k=50, dice roll 𝑝eq [3.65, 5.07, 4.19, 1.05, 1.23, 2.14] [22, 17, 9, 0, 0, 0] [3.13, 2.27, 1.46, 0.00, 0.25, 0.23]
sex & age (5 prot.) dice roll 𝑝eq mean [3.32, 3.00, 3.00, 2.65, 1.20, 1.14] [26.2, 7.9, 11.8, 10.5, 1.7, 0.1] [3.13, 1.99, 1.38, 0.12, 0.20, 0.31]

dice roll 𝑝eq std [0.36, 0.85, 0.76, 0.95, 0.90, 0.68] [5.3, 6.7, 9.3, 8.8, 3.9, 0.8] [0.25, 0.43, 0.51, 0.38, 0.30, 0.38]
binom. FA*IR 𝑝 =

∑

𝑝eq [1.53, 0, 0, 0, 0, 0] [25, 0, 0, 0, 0, 0] [1.37, 0, 0, 0, 0, 0]

mult. FA*IR 𝑝stat [1.84, 1.56, 0.45, 0.00, 0.33, 1.28] [5, 3, 1, 0, 0, 5] [1.89, 1.56, 1.23, 0.00, 1.18, 1.54]
CFA𝜃 [0.50, 0.91, 2.07, 1.46, 0.72, 0.00] [2, 1, 32, 14, 2, 0] [0.34, 0.00, 1.93, 2.20, 0.00, 0.00]
dice roll 𝑝stat [0.92, 0.54, 1.76, 2.55, 0.00, 0.29] [1, 0, 15, 38, 0, 0] [0.96, 0.56, 2.74, 0.00, 2.92, 0.20]
dice roll 𝑝stat mean [1.23, 1.59, 2.15, 2.03, 1.11, 0.46] [3.7, 4.6, 24.7, 23.1, 10.5, 1.8] [0.85, 0.49, 1.77, 1.71, 0.75, 0.34]
dice roll 𝑝stat std [0.53, 0.81, 0.81, 0.96, 0.95, 0.56] [3.6, 4.8, 11.9, 14.0, 12.7, 4.3] [0.47, 0.49, 1.15, 1.38, 1.11, 0.51]
binom. FA*IR 𝑝 =

∑

𝑝stat [0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0]

D5 — LSAT, mult. FA*IR 𝑝eq [4, 4, 1, 0] [220, 10, 0, 0] [4, 3, 0, 0]
k=300, dice roll 𝑝eq [5, 5, 2, 0] [194, 81, 0, 0] [5, 5, 1, 0]
sex & race (3 prot.) dice roll 𝑝eq mean [4.2, 4.2, 1.4, 0.3] [180.7, 69.8, 0, 0] [4.2, 4.2, 0.3, 0.02]

dice roll 𝑝eq std [0.4, 0.4, 0.5, 0.5] [10.5, 16.7, 0, 0] [0.4, 0.4, 0.5, 0.1]
binom. FA*IR 𝑝 =

∑

𝑝eq [1, 0, 0, 0] [157, 0, 0, 0] [1, 0, 0, 0]

mult. FA*IR 𝑝stat [2, 2, 1, 0] [136, 13, 0, 0] [2, 1, 0, 0]
CFA𝜃 [1, 1, 1, 0] [122, 26, 0, 0] [1, 0, 0, 0]
dice roll 𝑝stat [2, 2, 1, 0] [75, 12, 0, 0] [2, 1, 0, 0]
dice roll 𝑝stat mean [2.0, 1.9, 0.8, 0.4] [64.2, 16.1, 0.3, 1.1] [2.0, 1.2, 0.5, 0.04]
dice roll 𝑝stat std [0.4, 0.5, 0.5, 0.5] [15.3, 11.0, 2.5, 5.7] [0.4, 0.6, 0.6, 0.2]
binom. FA*IR 𝑝 =

∑

𝑝stat [1, 0, 0, 0] [113, 0, 0, 0] [1, 0, 0, 0]

comparable to a FA*IR 𝑝stat setting. We therefore group those results together that allow for a meaningful comparison. With the 𝑝eq
setting, we illustrate the flexibility of our approach compared to CFA𝜃, which can achieve statistical parity at maximum.

First, we observe that, for FA*IR 𝑝stat and CFA𝜃, in general changes in NDCG with respect to the color-blind ranking are minor.
This can be explained as the utility is dominated by the top positions, which usually do not change dramatically. However, we see
that FA*IR outperforms CFA𝜃 significantly in terms of Kendall’s tau, which means that the rankings constructed by CFA𝜃 have much
more ordering inversions w.r.t. the color-blind ranking than those constructed by FA*IR.

Second we see that in experiments D1 and D5 FA*IR with 𝑝stat and the baseline CFA𝜃 seem to perform more or less equally well
22

at first glance. While the former yields better numbers in terms of utility, with the latter the protected groups gain higher exposure.
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Nonetheless, we found a very important drawback in the results of CFA𝜃 in experiment D2: Zehlike, Hacker, et al. (2020) does not
guarantee in-group monotonicity, which we observed in our experiments. Consider Table 6 where we observe a maximum rank
drop for the non-protected group of 159 for CFA𝜃, which at first glance is less than FA*IR with 𝑝stat (287). However, we found
the following problems when closely investigating the result: the candidate that experienced the drop in 159 ranks was the only
non-protected candidate left in the top-500 after applying CFA𝜃, and their original ranking position was 341 (now 500). This means
that the originally best candidate from the non-protected group (rank 3 in 𝑐𝑏|𝑘) was ranked out of the top-500 by CFA𝜃, hence the
in-group ordering is not preserved. We suspect that this is because the method cannot handle ties well. If lots of candidates have
very similar original scores, the fair representation scores may have large ties in which candidates are ordered randomly and not
w.r.t. their original ordering. In such a setting, FA*IR has an important advantage: it guarantees in-group monotonicity, because
candidates are separated into group rankings which are sorted by decreasing original qualifications. No matter which group has to
e picked at the current position, the respective candidate will always be the best available from that group. This means that while
ery similar scores appear to be problematic for CFA𝜃, they are the best-scenario for FA*IR, because ranked-group fairness can be
nsured without losing any relevance at all (NDCG stays unaffected). This problem also explains the large differences between the
ethods in terms of Kendall’s Tau.

Third we observe a formerly known weakness of CFA𝜃 manifesting in experiment D4: it cannot handle datasets with very small
roups or groups that show low variance. It increases the exposure of the non-protected group while decreasing it for the oldest
ales, and youngest males and females. In contrast, FA*IR 𝑝stat can handle very small groups, and gives them sufficient exposure

hat is in line with the minimum proportions 𝑝𝐺. For experiment D4 we observe an interesting advantage of FA*IR: the youngest
nd oldest males experience a high rank drop (31 and 22) with CFA𝜃 compared to FA*IR 𝑝stat, even though they belong to the
rotected groups. This is because they receive exposure values higher than average in the 𝑐𝑏|𝑘, i.e. these two groups have the best
cores. CFA𝜃 moves all score distributions towards the barycenter and thus, removes the advantage that the protected groups have
n this dataset. FA*IR, in contrast, ranks candidates based on their scores, as soon as the ranked group fairness conditions are met
or each group. As such, a protected group can only lose exposure for another protected group, but never for the non-protected one.

When considering the categorical sampling or ‘‘dice rolling’’ baseline, we see our expectations of non-consistent behavior
onfirmed. This can be explained by the involved randomness of the dice rolling procedure. We observe that in experiments D2
nd D3 FA*IR 𝑝eq and dice roll 𝑝eq yield very similar results. However in experiments D4 and D5 FA*IR 𝑝stat and dice roll 𝑝stat yield
ery different results, even though the underlying stochastic process of the two methods is the same. In contrast to a dice rolling
rocess, FA*IR constructs fair rankings in a deterministic way and therefore always guarantees a minimum representation for each
rotected group.

omparison of Binomial FA*IR and Multinomial FA*IR. Tables 5 and 6 reveal the importance of considering multiple protected
roups and thus using the multinomial version of FA*IR instead of the binomial version. Consider D3 — COMPAS, where binomial
A*IR achieves higher Kendall’s Tau and less total NDCG loss. However, when we look at the exposure gain per group, we can see
hat this is due to less improvements of protected group 1 and 2 compared to the multinomial version of FA*IR. As we explained
n the introductory example, binomial FA*IR will order all candidates from the artificially created protected group by decreasing
ualifications and thus rank less candidates of a real protected group to higher positions, if they show low overall scores. This effect
an lead to no improvement for certain protected groups at all, as in D2 — COMPAS for group 2, and D4 — German credit for group
. D4 — German credit reveals another weakness of binomial FA*IR compared to multinomial FA*IR: For 𝑝 =

∑

𝑝stat the colorblind
anking is already ‘‘binomial’’-fair, while the multinomial version of FA*IR improves visibility for all protected groups according
he respective minimum proportions.

Having said that, D1 — COMPAS reveals a strength of the binomial FA*IR implementation: though we would not expect to
ee any difference between multinomial FA*IR and binomial FA*IR if only one protected group is present, we see from the results
hat the colorblind ranking is judged as already fair by binomial FA*IR, but not by multinomial FA*IR. As described in Section 5,
he significance adjustment of the multinomial method has variance in its precision. We may therefore observe a slight difference
etween the analytical 𝛼 calculated by binomial FA*IR, and the experimental 𝛼 calculated by multinomial FA*IR. This has no impact
n the fair ranking for small 𝑝 and 𝑘. In D1 with 𝑘 = 1500 the small difference in 𝛼 can lead to slightly different result rankings.
hus we recommend to use the binomial version of FA*IR if only one protected group exists, as it guarantees the best possible
ignificance adjustment (see Zehlike, Sühr, et al. (2020b) for details).

In summary, while the binomial version of FA*IR is computationally preferable, it cannot handle cases where discriminatory
atterns manifest differently across protected groups, as we explained in the introduction.

wide range of possibilities to set 𝑝𝐺. An important advantage of FA*IR is, that it allows to create rankings for user-defined values
of 𝑝 and in particular for values beyond statistical parity, something that cannot be done directly with CFA𝜃 (Zehlike, Hacker, et al.
(2020) allows at maximum statistical parity in the result ranking when setting 𝜃 = 1, i.e., to the maximum value).

Fig. 6(d) shows results when varying 𝑝1 and 𝑝2 in dataset D2: COMPAS, the protected groups are people of age 25–45 (𝑝1) and
people under 25 years (𝑝2). In Fig. 6 we see that the non-protected group loses exposure under all settings, as expected. At the
same time however NDCG loss is minor and under many settings not increasing beyond a statistical significance level of 0.05%
(Fig. 6(d)). Comparing Figs. 6(b) and 6(c) we see that in general, if one protected group scores significantly better in the colorblind
ranking (group ‘‘25–45’’ in Fig. 5(c)) than another one (group ‘‘younger 25’’ in Fig. 5(c)), the first may be ranked down to make
room for the second. Fig. 6(b) shows that the middle-aged group in the COMPAS dataset loses exposure to the young group unless
23
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Fig. 6. Normalized exposure gain/loss and NDCG loss w.r.t. the colorblind ranking in experiment D2 (COMPAS with age as protected category) for different
values of 𝑝1 and 𝑝2 (𝑘 = 200, 𝛼 = 0.1). 𝑝1 relates to group ‘‘age 25–45’’, 𝑝2 relates to group ‘‘age < 25’’. Blue fields in Fig. 6–6(c) indicate that this group lost
exposure w.r.t. the colorblind ranking, red fields indicate exposure gain. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

𝑝1 is set high enough. However even if 𝑝1 is set low it still ensures that candidates from the middle-aged group show in the ranking,
thus always losing less exposure than the non-protected group (compare Fig. 6 and 6(b)). Note that this experiment is an extreme
case, where no candidates from group ‘‘age < 25’’ where ranked in the top-200 in 𝑐𝑏|𝑘, which explains why this group never loses
exposure under any setting for 𝑝1 and 𝑝2 (see Fig. 6(c)).

This experiment shows that FA*IR allows a wide range of positive actions, for instance, granting reintegration programs to people
with promising COMPAS ratings, with a preference towards younger offenders. In this case, Fig. 6(d) shows that we can double the
proportion of young people in the top-𝑘 ranking (e.g. from 0% in the original up to 40% in the fair ranking) without introducing
a large drop for the other protected group loss: in the colorblind ranking they received exposure equivalent to 0.4 > 𝑝1 > 0.5, so
setting 𝑝1 = 𝑝2 = 0.4 only causes an exposure drop of 5.8%. At the same time the NDCG loss is just 5.6% and never exceeds 15%,
even when favoring young people with 𝑝2 = 0.8.

8. Conclusions

In this paper we presented the extension of FA*IR to multiple groups, where we guarantee ranked group fairness, without
introducing a large utility loss. Especially when groups largely have the same utility score in the top positions (as is the case in the
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COMPAS experiments) no ranking utility at all is lost in terms of NDCG or individual fairness. In this case FA*IR only benefits the
protected groups without skewing the ranking result. If a protected group already receives advantageous exposure in the colorblind
ranking and the ranked group fairness condition is already met via the ranking scores of the candidates, FA*IR preserves this. A
protected candidate can only lose exposure due to a protected candidate from another group being ranked up, but not due to a
non-protected one. Additionally, the user can control the degree of fairness that is obtained in the result by setting 𝑝𝐺 to a value
that is appropriate for the situation at hand. This lets them transparently control the trade-off between fairness and utility, instead
of having a less intuitive fairness parameter 𝜃 that operates on the barycenter of group distributions. By reporting the largest utility
loss and rank drop that an individual receives, we explicitly expressed trade-offs from our group fairness criterion to individual
fairness as defined by Dwork et al. (2012).

Future work. An important challenge is the algorithmic complexity of calculating the mTree for a particular configuration of 𝑝𝐺
and 𝛼. Though we already implemented improvements to reduce complexity, calculating an adjusted mTree of length 𝑘 = 100
with six protected groups takes several weeks. Of course, this mTree has to be calculated only once and can then be persistent
and shared among users of FA*IR, however when a situation demands a new configuration these calculation times are currently
unavoidable. A significant speed-up could be achieved by programming a customized MCDF-function which can store the results
of repetitive computation steps. This is however very memory-intensive and the algorithm then needs to run on large computer
clusters. Moreover, one could provide a script that fills the MCDF Cache with various configurations of 𝑝𝐺 and 𝛼. Future work
could also investigate other routes of optimizing the creation of mTrees. One field of action could be the parallelization of mTree
calculations during significance adjustment. Furthermore, a tailored multinomial CDF function which reuses recurring computation
steps might boost the mTree construction significantly. This calculation can continuously run as a separate process on a server which
then provides the obtained caches to users who want to compute new mTrees.

One of the main challenges for fair ranking algorithms in general is that there is not yet much empirical evidence that re-
ordering items actually helps to overcome the bias in click-probability across groups. Recent research (Sühr, Hilgard, & Lakkaraju,
2020), however, suggests that guarantees for a minimum representation of underrepresented groups yield to higher selection rates
in different hiring contexts, but does not mitigate user biases completely. For example, if a user prefers male candidates for a
moving assistance task over female candidates, ranking female candidates higher will not mitigate users’ biases completely. Thus,
a method such as FA*IR may be able to increase the click probability for protected groups by setting the values for 𝑝𝐺 higher than
the desired click probability. For example, it might be effective to set the minimum proportion for the protected group women
in the context of hiring for moving assistance to 60% in order to achieve a click probability of 50% for this group. Nonetheless
the study also shows that user biases are complex and hard to mitigate through ranking algorithms alone. For example, users in
their study relied heavily on the displayed features, suggesting that showing or hiding certain features may impact user decisions
significantly. Further research has to be conducted to study the effect on users of re-ordering items in a ranking and to understand
the best means to overcome these strong prejudices against minority groups in certain domains. This is an empirical question that
needs to be addressed through user studies; approaches based on simulating clicks using pre-existing user preferences, such as the
one used by Abdollahpouri, Mansoury, Burke, Mobasher, and Malthouse (2021), may not uncover the actual interplay between the
displayed ranking and latent user preferences.

Additionally, further experimental research using synthetic data could allow us to test with a wider range of differences across
groups, larger than the one that real datasets exhibit. This can help us better understand the trade-offs between individual losses
and increased group fairness. Our experiments show that, while decreases in NDCG are often negligible, the rank drop for an
(unlucky) individual candidate from the non-protected group can still be large. An interesting next step for our method would
be to use individual rank drops as input for a second fairness-enhancing method, that could try to optimize for individual fairness,
while maintaining the ordering of groups that is required by a given mTree. Finally, robustness tests to measure the sensitivity of
the rankings to noise in the qualification/score inputs could be helpful to determine to what extent they may affect our fairness
objectives.

Reproducibility. Code and data that can be used to reproduce the experiments on this paper is available: https://github.com/
MilkaLichtblau/Multinomial_FA-IR.
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A

Appendix

Algorithm 5: Algorithm MultinomialAlphaAdjustment calculates the corrected significance level 𝛼𝑐 for multiple protected groups, such that the mTree
𝑚(𝛼𝑐 , 𝑘, 𝑝𝐺) has the probability of rejecting a fair ranking 𝛼

input : 𝑘, the size of the ranking to produce; 𝑝𝐺, the vector of expected proportions of protected elements; 𝛼, the desired significance
level, 𝜖 the tolerance for variance in the experimental fail probability calculation.

output : 𝛼𝑐𝑜𝑟𝑟 the adjusted significance level, m_adjusted the adjusted mTree
// initialize all needed variables

1 aMin ← 0; aMax ← 𝛼 ; aMid ← (aMin + aMax)
2

2 m_min ← computeMTree(k,𝑝𝐺,aMin) m_max ← computeMTree(k,𝑝𝐺,aMax) m_mid ← computeMTree(k,𝑝𝐺,aMid)
3 while True do
4 if m_mid.getFailProb() < 𝛼 then
5 aMin ← aMid
6 m_min ← computeMTree(k,𝑝𝐺,aMin)
7 aMid ← aMin+aMax

2
8 m_mid ← computeMTree(k,𝑝𝐺,aMid)
9 end
10 if m_mid.getFailProb() > 𝛼 then
11 aMax ← aMid
12 m_max ← computeMTree(k,𝑝𝐺,aMax)
13 aMid ← aMin+aMax

2
14 m_mid ← computeMTree(k,𝑝𝐺,aMid)
15 end

// compute all differences between fail probability and 𝛼
16 midDiff ← |m_mid.getFailProb() − 𝛼|
17 maxDiff ← |m_max.getFailProb() − 𝛼|
18 minDiff ← |m_min.getFailProb() − 𝛼|

// case where midDiff is the smallest difference from desired significance
19 if midDiff ≤ 𝜖 AND midDiff ≤ maxDiff AND midDiff ≤ minDiff then
20 return aMid, m_mid
21 end

// case where minDiff is the smallest difference from desired significance
22 if minDiff ≤ 𝜖 AND minDiff ≤ maxDiff AND minDiff ≤ midDiff then
23 return aMin, m_min
24 end

// case where maxDiff is the smallest difference from desired significance
25 if maxDiff ≤ 𝜖 AND maxDiff ≤ minDiff AND maxDiff ≤ midDiff then
26 return aMax, m_max
27 end
28 end
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