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Abstract
Matching algorithms are used routinely to match donors to recipients for solid organs
transplantation, for the assignment of medical residents to hospitals, record linkage in
databases, scheduling jobs on machines, network switching, online advertising, and
image recognition, among others. Although many optimal solutions may exist to a
given matching problem, when the elements that shall or not be included in a solu-
tion correspond to individuals, it becomes of paramount importance that the solution
is selected fairly. In this paper we study individual fairness in matching problems.
Given that many maximummatchings may exist, each one satisfying a different set of
individuals, the only way to guarantee fairness is through randomization. Hence we
introduce the distributional maxmin fairness framework which provides, for any given
input instance, the strongest guarantee possible simultaneously for all individuals in
terms of satisfaction probability (the probability of being matched in the solution).
Specifically, a probability distribution over feasible solutions is maxmin-fair if it is
not possible to improve the satisfaction probability of any individual without decreas-
ing it for some other individual which is no better off. Our main contribution is a
polynomial-time algorithm building on techniques from minimum cuts, and edge-
coloring algorithms for regular bipartite graphs, and transversal theory. In the special
case of bipartite matching, our algorithm runs in O((|V |2 + |E ||V |2/3) · (log |V |)2)
expected time. An experimental evaluation of our fair-matching algorithm shows its
ability to scale to graphs with tens of millions of vertices and hundreds of millions
of edges, taking only a few minutes on a simple architecture. To the best of our
knowledge, this yields the first large-scale implementation of the egalitarian mecha-
nism of Bogomolnaia and Moulin (Econometrica 72(1):257–279, 2004). Our analysis
confirms that our method provides stronger satisfaction probability guarantees than
non-trivial baselines.
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1 Introduction

Decision-making tools relying on data and quantitative measures have become perva-
sive in application domains such as education and employment, finance, search and
recommendation, policy making, and criminal justice. Awareness and concern about
the risks of unfair automated decisions is quickly rising, as it has been argued that
decisions informed by data analysis could have inadvertent discriminatory effects due
to potential bias existing in the data or encoded in automated decisions. Several reports
(Big data 2014, 2016) call for algorithms that are fair by design and identify poorly
designed matching systems as one of the main flaws of algorithmic decision-making.
The way to tackle the ensuing ethical and societal issues has garnered the attention
of the research community (Dwork 2017). However, despite the fact that matching
mechanisms lie at the basis of many automated decision systems, the bulk of the
research in the area of algorithmic bias and fairness has mainly focused on avoiding
discrimination against a sensitive attribute (i.e., a protected social group) in supervised
machine learning (Kearns 2017).

Our work departs from this literature in three main directions: (1) we focus on
individual fairness (as opposed to group-level fairness); (2) we focus on bias stem-
ming from the algorithm design itself, rather than the bias existing in the input data;
(3) instead of supervised learning we focus on matching problems, where the solu-
tion may not be unique and individuals correspond to elements to be included in the
solution.

In this setting, the satisfaction (utility) function of each individual is based on
whether the individual has been selected or not for inclusion. At the very least, two
individuals satisfying all relevant criteria equally well (e.g., having the same skill
set) should have, in principle, the same expected utility; moreover, individuals having
a wider or more unique skill set (covering relevant criteria that others can’t cover),
should reasonably be rewarded with higher expected utility. This is often not the case
as algorithms may be biased by design: bias may stem from something as petty as the
order in which the algorithm chooses to process the list of candidates in its main loop
(e.g., by irrelevant attributes such as alphabetical order or application date), or details
about the internal workings of the algorithm. The prototypical example of a “biased by
design” algorithm (in a rather extreme way) arises in the context of stable matching (a
different problem from the one considered in this paper): the Gale–Shapley algorithm
(Gale and Shapley 1962) produces a solution which is always the best for every man
and the worst for every woman, among all feasible solutions, despite the existence of
another solution which lies provably “in the middle” for every man and woman (Teo
and Sethuraman 1998).

Algorithmic bias and randomization Consider a job-search setting where we have a
certain number of positions and applicants. Assume that each applicant has a binary
fitting for each of the positions (either she is fit for the job or not) and a binary
satisfaction function (either she is selected or not). This can be modeled as a matching
problem in a bipartite graph. Unless amatching covering simultaneously all applicants
exists, some of them will have to be left out. An unselected applicant could notice that
there are other matchings (even maximum-size matchings) satisfying her. However,
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Fair-by-design matching 1293

any deterministic algorithm is programmed to pick a specific one which may not
include her: she might rightfully deem this unfair.

Unlike the Gale–Shapley algorithm, whose bias can be simply characterized by a
theorem, for the problems we consider in this paper it may be hard to tell in advance
which particular individuals a given algorithm favours. However, the fact that the bias
is not easy to pinpoint does not mean it does not exist, just that we do not know what
it is.

Since no single candidate solution satisfying all individuals at the same time can
exist in general, we turn our attention to randomized algorithms, which make random
choices to pick from among several valid solutions.

In our job-search example, imagine there is a single open position and n applicants
fit for it. Intuitively, all applicants are “equally qualified” in this case and the fairest
solution would choose one of them uniformly at random, giving each applicant a
guaranteed satisfaction (matching) probability of 1/n. However, as the graph between
applicants and jobs grows more complex, it becomes unclear how to proceed, or what
properties one should demand of a fair distribution of solutions. Our next example
illustrates why requiring exactly the same satisfaction probability for all individuals
would not make for a good definition.

Example 1 (Satisfaction probability) Consider the problem of finding a matching on
the bipartite graph of Fig. 1 between people (on the left) and jobs (on the right). Let
U = {a0, a1, a2, a3} and let S denote the set of all possible matchings. An individual
u ∈ U is satisfied by a solution S ∈ S iff it is matched in S (i.e., she is selected for
the job). Consider the distribution D assigning probability 1

3 to each of the follow-
ing solutions: M1 = {(a0, b0), (a1, b1), (a2, b2)}, M2 = {(a0, b0), (a1, b1), (a3, b2)},
M3 = {(a2, b2), (a3, b1)} and zero probability to all the other matchings.

The satisfaction probability of each individual under distribution D is exactly the
same, namely 2

3 . While D might naively look “fair”, notice that the job b0 is left
unassigned in M3, despite the existence of a fitting candidate occasionally left unem-
ployed (a0). This artificially restricts the satisfaction probability of a0. Observe that,
for any matching covering a subset T ⊆ {a1, a2, a3}, there is another matching cover-
ing T ∪ {a0}. So a0 can always be satisfied without impacting anyone else’s chances,

Fig. 1 An example bipartite
graph between people (on the
left) and jobs (on the right)
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1294 D. García-Soriano, F. Bonchi

hence any reasonable solution should match a0 with probability 1. Other applicants
will have lower satisfaction probability though (as nomatching can satisfy all of a1, a2
and a3 at the same time).

The insight from Example 1 leads us to the key definition of our work. Our aim
is to provide, on any given input instance, the strongest guarantee possible for all
individuals, in terms of satisfaction probability. We thus introduce the distributional
maxmin fairness framework. Informally, a distribution over matchings ismaxmin-fair
if it is impossible to improve the satisfaction probability of any individual without
decreasing it for some other individual which is no better off (see Sect. 2 for a formal
definition).

Example 2 (Maxmin-fair distribution) Consider Example 1 again. A distribution
assigning non-zero probability to a solution not covering a0 (such as M3) can-
not be maxmin-fair, as otherwise one can increase the satisfaction probability of
a0 without detriment to anyone else. On the other hand, notice that {a1, a2, a3}
have only two neighbors {b1, b2}, making it impossible to guarantee satisfaction
probability ≥ 2

3 for a1, a2 and a3 at the same time. This graph has four maxi-
mum matchings: M1 and M2 from Example 1, M4 = {(a0, b0), (a1, b2), (a3, b1)},
and M5 = {(a0, b0), (a2, b2), (a3, b1)}. The distribution F1 choosing from among
M1, M2, M4 and M5 with probability 1

3 ,
1
6 ,

1
6 ,

1
3 , respectively, is maxmin-fair. The sat-

isfaction probabilities of a0, a1, a2 and a3 are then 1, 2
3 ,

2
3 ,

2
3 . Any attempt to match,

say, a1 with probability > 2
3 will necessarily result in satisfaction probability < 2

3
for a2 or a3. Another maxmin-fair distribution is, e.g., the distribution F2 choosing
uniformly at random from among M1, M2 and M5.

Overview of our contributions The contributions of this paper can be summarized as
follows:

– We introduce and characterize the distributional maxmin-fairness framework pro-
viding, on any given problem instance, the strongest guarantee possible for all
individuals, in terms of satisfaction probability (Sect. 2). While in this paper, for
sake of simplicity of presentation, we focus on matching problems, our definition
applies to a wider variety of problems (such as those listed in Example 5).

– In Sect. 3, we show that when the structure of valid solutions forms a matroid
(which is the case for matchings), maxmin-fairness minimizes the largest inequal-
ity gap in satisfaction probabilities between all pairs of individuals, among all
Pareto-efficient distributions (Theorem 2). We also observe that for such problems
the “price of fairness” is zero: maxmin fairness is attainable at no cost in solution
size.

– We give a characterization of the “degree of fairness” attainable in any bipartite
matching instance (Corollary 2) and any matroid problem instance (Theorem 15),
generalizing the classical marriage theorem due to Hall (1935).

– We apply our framework to matching problems in bipartite graphs (Sects. 4 and
5), leading to our main contribution: an exact algorithm for maxmin-fair bipartite
matching with running time O((|V |2 + |E ||V |2/3) · (log |V |)2) (Theorem 7). We
also obtain a polynomial time maxmin-fair algorithm for matching in general
graphs by a reduction to the aforementioned bipartite case (Theorem 12).
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Fair-by-design matching 1295

– We discuss how to achieve full transparency for real-world deployment of our
framework (Sect. 7). The discussion leads to the problem of producing a maxmin-
fair distribution with small support, for which we offer an approach making small
modifications to our algorithm.

– Our experiments (Sect. 8) show that our algorithm performs faster in practice than
its theoretical running time and scales to graphswith tens ofmillions of vertices and
hundreds of millions of edges, taking only a few minutes on a simple architecture.
Our analysis confirms that our method provides stronger satisfaction probability
guarantees than non-trivial baselines.

2 Problem definition

In this section we provide the key definition of our distributional maxmin-fairness
framework, considering a very general search problem instance I = (U ,S) defined
over a finite set of individuals U and where S �= ∅ denotes the set of feasible solutions
for the problem instance I. (For example, instance I could represent a bipartite graph
between jobs and a set U of applicants, and S the set of all matchings.) We assume
that for every solution S ∈ S, each individual u ∈ U is either fully satisfied or fully
dissatisfied, and this is the only property of the solution we are concerned with. Thus,
for the sake of simplicity, we will identify each solution in S with the subset of users
satisfied by it, so S ⊆ 2U . Note that S is defined implicitly by the structure of the
problem, and not explicitly encoded in the input.

Given I, our problem is to return an element of S while providing a fairness guar-
antee to all individuals in U . Since in general no single candidate solution satisfying
all u ∈ U at the same time exists (U /∈ S), we seek a randomized algorithm A that,
for any given problem instance I, always halts and selects one solution A(I) from
S. Thus A induces a probability distribution D over S: PrD[S] = Pr[A(I) = S] for
each S ∈ S. The satisfaction probability of each individual u ∈ U under D is defined
by D[u] = PrS∼D[u ∈ S].

Based on the insight from Example 1, we next provide the key definition of our
work. Informally, a distribution over solutions is maxmin-fair if it is impossible to
improve the satisfaction probability of any individual without decreasing it for some
other individual which is no better off.

Definition 1 (Maxmin-fairness) A distribution F over S ismaxmin-fair for U if for
all distributions D over S and all u ∈ U ,

D[u] > F[u] 	⇒ ∃v ∈ U | D[v] < F[v] ≤ F[u]. (1)

Similarly, a randomized algorithm is maxmin-fair if it induces a maxmin-fair dis-
tribution.

Finding amaxmin-fair distribution involves solving a continuous optimizationprob-
lem over (infinitely many) distributions over the set S of valid solutions (which is
commonly exponential in size). The challenge we face is thus how to design an effi-
cient randomized algorithm inducing a maxmin-fair distribution.
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Table 1 Summary of notation

Symbol Meaning

G = (V , E) Undirected, unweighted graph with vertex set V and edge set E

U Set of users; U ⊆ V for matchings

S ⊆ 2U Collection of feasible solutions (possible subsets of satisfied users)

ΓG (A) Set of neighbours of A ⊆ V in G

V = L∪̇R Bipartition of the vertex set V of a bipartite graph

ρ(A) (For graphs) size of the largest matchable subset of A ⊆ V

ρ : 2L → N (For matroids) rank function of a matroid with ground set L

D Distribution of subsets of S
D[v] Satisfaction probability of user u under distribution D

D↑ Vector of satisfaction probabilities of D in increasing order

D↓ Vector of satisfaction probabilities of D in decreasing order

� Lexicographical order of vectors

π(G) Minimum satisfaction probability of a maxmin-fair distribution for G

Π(G) Maximum satisfaction probability of a maxmin-fair distribution for G

xuv Probability of u being matched to v in a fixed maxmin-fair distribution

B1, . . . , Bk Fair decomposition of L into blocks

(F(X))X∼D Distribution of random variable F(X) when X is drawn from D

G|A Subgraph of G induced by A ∪ Γ (A)

M |A Restriction of matroid M to the set A

G/A Subgraph of G induced by (L ∪ R)\(A ∪ Γ (A))

M/A Contraction of matroid M to the set A

Problem 1 For a given search problem, design a randomized algorithm A which
always terminates and such that, for each instance I = (U ,S), the distribution of
A(I) is maxmin-fair for U over S.

While our definition applies to a wider variety of search problems, in this paper, for
sake of simplicity of presentation, we solve Problem 1 in the case where the search
problem is a matching problem in a graph. Let us specify what the sets U of users and
S of solutions are in this case (Table 1 below summarizes the notation used throughout
the paper).

Let G = (V , E) be an unweighted simple graph. A matching in G is a set of
vertex-disjoint edges of G. A maximum matching is a matching of largest size. The
matching M covers a vertex v ∈ V if v is incident to some edge in M . A set S ⊆ V is
matchable if there is a matching of G covering all of S. For S ⊆ V , define ρG(S) as
the size of the largest matchable subset of S; then ρG(V ) is the size of the maximum
matching of G. Denote by ΓG(S) the set of neighbours of S in G. We will drop the G
subscript when no confusion may arise.

In the fair matching problem, the input is a graph G = (V , E) and a set U ⊆ V
of users. Following our assumption of binary satisfaction, user u ∈ U is satisfied by a
matching M if u is covered by M . The set S of valid solutions is the set of matchable
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subsets of U . The set S is not part of the input given to the algorithm, but implicitly
defined by G and U .

While the results provided in Sect. 3 hold for fair-matching on a general graph,
the algorithms developed in Sects. 4 and 5 are for the interesting special case of
one-sided fair bipartite matching problem, i.e., where G is bipartite (with bipartition
V = L ∪̇ R) and the set of users is given by U = L . By solving the one-sided fair
bipartite matching problem, we also obtain a polynomial time maxmin-fair algorithm
for matching in general graphs by means of a reduction to the bipartite case (see
Theorem 12).

3 Fairness and social inequality

In this section we present several properties of maxmin-fair distributions. These are
of independent interest as they provide alternative definitions of maxmin-fairness
(Theorems 1 and 2) which are arguably just as natural as Definition 1; moreover, the
latter offers insights into the inequality distribution properties of maxmin-fairness.
Some results are only stated here; their proofs may be found in “Appendix A”.

3.1 Basic properties of maxmin-fair distributions

An important preliminary observation is that maxmin-fair distributions are unique as
far as satisfaction probabilities go, even though several ways may exist to achieve the
optimal satisfaction probabilities.

Lemma 1 Let F and D be two maxmin-fair distributions. Then F[u] = D[u] for all
u ∈ U .
Example 3 In Example 2 we gave two maxmin-fair distributions, F1 and F2, which
are obtained by combining maximum matchings in different ways, but both satisfy
F1[a0] = F2[a0] = 1 and F1[x] = F2[x] = 2

3 for x ∈ {a1, a2, a3}.
Given a distribution D over S, write D ↑ = (λ1, . . . , λn) for the vector of

satisfaction probabilities (D[u])u∈U sorted in increasing order. Let � denote the lex-
icographical order of vectors: (v1, . . . , vn) � (w1, . . . , wn) iff there is some index
i ∈ [n] such that v j = w j for all j < i and vi > wi (the relations �,≺ and � are
defined similarly). The following holds.

Theorem 1 A distribution F is maxmin-fair if and only if F ↑ � D ↑ for all distri-
butions D over S.
In other words, a maxmin-fair distribution maximizes the smallest satisfaction prob-
ability; subject to that, it maximizes the second-smallest satisfaction probability, and
so on.

Example 4 In Examples 1 and 2 we have F1 ↑ = F2 ↑ = (1, 2
3 ,

2
3 ,

2
3 ) � D ↑ =

( 23 ,
2
3 ,

2
3 ,

2
3 ). As D ↑ is not lexicographically maximal, it cannot be maxmin-fair;

whereas F1 ↑ can be shown to be lexicographicallymaximal, and hence F1 ismaxmin-
fair.

123
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An important observation is that a maxmin-fair distribution always exists for any
search problem instance with a feasible solution:

Corollary 1 Given a search problem instance I = (U ,S), a maxmin-fair distribution
always exists.

Proof The probability vectors defining distributions overS form a non-empty compact
set, and the mapping from such vectors to their corresponding sorted satisfaction
vectors is continuous, so the claim follows from Weirstrass theorem. ��

3.2 Matroid problems

Theorem 1 above provides a definition of maxmin-fairness alternative to Definition 1.
At the end of this section (Theorem 2) we provide a second alternative definition
characterizing the inequality properties of the distribution of satisfaction probabilities,
i.e., the differences between the satisfaction of the least and most satisfied individuals.
It turns out that for a large class of problems, this difference is minimized in amaxmin-
fair distribution, making themaxmin-fair distribution themost equitable. However this
does not hold in general for all search problems.

To be able to state the class of problems for which Theorem 2 holds, we need
to review the concept of matroids. Many search and optimization problems can be
formulated in terms of matroids; they also provide a convenient framework to state
and simplify the proofs of some of our results.

Definition 2 (Matroid problem) Let L be a finite set. A matroid with ground set L is a
non-empty collection M of subsets of L satisfying the following two properties: (1) if
A ∈ M and B ⊆ A, then B ∈ M ; (2) for any X ⊆ L , all maximal subsets of X (with
respect to set inclusion) belonging to M have the same size.

A search problem is a matroid problem if for any instance I = (U ,S), the set S
is a matroid. The elements of a matroid M are called independent sets. The maximal
elements of M are called bases. All bases have the same size. The rank function of M
is ρM (S) = max{|X | | X ⊆ S, X ∈ M}.
Example 5 The following are matroids [see Lawler (1976)]:

– The collection of sets of matchable vertices in a graph (Lovász and Plummer
2009). This well-known result follows from a theorem of Berge (1957) that we
may extend any matchable set of vertices to a matchable set of maximum size. By
contrast, the collections of sets of edges forming a matching is not a matroid.

– The collection of sets of vertices in a directed graph for which edge-disjoint paths
from another single specified vertex exist.

– The collection of linearly independent sets of vectors over a finite vector space.
– The collection of forests (acyclic sets of edges) in a graph.

The search problems corresponding to finding any of the above are matroid problems.

Notice that any set X appearing with non-zero probability in a maxmin-fair dis-
tribution must be maximum in size; otherwise, by property (2) in Definition 2, X is
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not maximal so we could replace X with some strict superset Y � X , which can only
increase the satisfaction probability of every u ∈ L . It is in this sense that the “price
of fairness” is zero for matroid problems: the support of a maxmin-fair distribution
consists only of solutions of maximum size, so it is never necessary to trade fairness
for solution size. In particular this holds for matching problems as well.

3.3 Minmax-fairness

By definition, maxmin-fair distributions give the highest possible satisfaction proba-
bilities to the worst-off individuals. To investigate the inequality properties of these,
we introduce a dual notion of minmax-fair distributions, which by contrast give the
lowest possible satisfaction probabilities to the best-off individuals. It turns out that for
matroid problems both notions coincide, provided that we exclude Pareto-inefficient
distributions.

Definition 3 (Pareto efficiency) A distribution E is (ex-ante) Pareto-efficient if there
is no distribution D such that D[u] ≥ E[u] for all u ∈ U and D[u] > E[u] for at least
one u ∈ U .

The notion of Pareto-efficiency expresses the impossibility of improving the sat-
isfaction probability of some user without detriment to anyone else. Clearly any
maxmin-fair distribution is Pareto-efficient, hence any solution in its support is maxi-
mal (with regard to set inclusion).

The notion of minmax-fairness outlined above requires that no user satisfaction can
be decreased without increasing that of another user which is no worse off, or losing
Pareto-efficiency.

Definition 4 A Pareto-efficient distribution F over S is minmax-Pareto (or minmax
fair) for U if for all Pareto-efficient distributions D over S and all u ∈ U , it holds that

D[u] < F[u] 	⇒ ∃v ∈ U | D[v] > F[v] ≥ F[u].

Requiring Pareto-efficiency is redundant formaxmin-fairness, but crucial forminmax-
Pareto efficiency; without it, the definition would be met by a distribution of solutions
satisfying nobody (for example, a solution which always returns the empty matching).

In “Appendix A” we present analogues to Lemma 1 and Theorem 1 (Lemma 7 and
Theorem 14) for minmax-fairness.

3.4 Inequality properties

The main result of this section, Theorem 2 is that, for matroid problems, the notions
of minmax fairness and maxmin fairness coincide; intuitively, any excess satisfaction
probability for the best-off user can be taken away from him and redistributed to
others. This also implies that the maxmin-fair solution minimizes the largest gap in
satisfaction probabilities; among those, it minimizes the second-largest gap, etc.
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Definition 5 The sorted inequality vector of a distribution D over S, written D↓
�=, is

the vector of all pairwise differences in the satisfaction probabilities of the elements
of U under D, sorted in decreasing order.

Theorem 2 For matroid problems, the following are equivalent: (1) D is maxmin-fair;
(2) D isminmax-Pareto; (3) D is Pareto-efficient and D↓

�= � E↓
�= for all Pareto-efficient

distributions E over S.
The proof may be found in “Appendix A”.

Note that this result does not hold in general for non-matroid problems; the follow-
ing shows a counterexample.

Example 6 Consider the problem instance where the set of individuals is U =
{0, 1, 2, 3} and the set of feasible solutions is S = {{0, 1}, {1, 3}, {0, 2, 3}}. Here
elements 1 and 2 never appear together in a solution, so the minimum satisfaction
probability cannot exceed 1

2 . In order to achieve 1
2 we need to choose {0, 2, 3} with

probability exactly 1
2 ; this fixes the satisfaction probabilities of 2 and 1 to 1

2 , and to
maximize the second-smallest probability we need to pick {0, 1} and {1, 3}with proba-
bility 1

4 each. This is the maxmin-fair distribution D1 and its maximum inequality is 1
4 .

However, a similar argument shows that the minmax-fair distribution D2 is different:
it uses each element of S with probability 1

3 and has maximum inequality 1
3 .

Note that in this case one may verify that D1 still minimizes maximum inequality,
but by considering the complements of each element of S, one can give a similar
example where the maxmin-fair distribution does not minimize inequality.

4 A polynomial-time algorithm for maxmin-fair matching

In this section we present our main contribution: a polynomial-time algorithm for
maxmin-fairmatching.Wepresent our algorithm for theone-sided fair bipartitematch-
ing problem. This is the special case of fair matching where:

– G is bipartite (with bipartition V = L ∪̇ R),
– the set of users is U = L ,
– there is a maximum matching covers all the right-side vertices but not all the
left-side vertices (i.e., ρ(L) = |R| < |L|),

– there are no degree-0 vertices (which can always be removed).

This setting corresponds to the job-search setting that we use in our examples through-
out the paper. We will see later (Sect. 5.2) that the general fair matching problem in
non-bipartite graphs, with arbitrary user sets U ⊆ V and with no further restrictions,
can be reduced to this special case in polynomial time. Before presenting the building
blocks of our algorithm in full detail, we provide an overview of our techniques. Some
results are only stated here; their proofs may be found in “Appendix B”.

4.1 Overview of our techniques

We next provide an overview of how we obtain our main result: an efficient algorithm
for maxmin-fair bipartite matching.
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(1) The first ingredient (Sect. 4.2) is a characterization of the fairness parameter, i.e.,
the maximum satisfaction probability which can be guaranteed for every user.
By using Hall’s theorem we prove (Corollary 2) that the fairness parameter is
determined by a “blocking” set of vertices with the smallest neighborhood-to-
size ratio. Unfortunately, the proof does not lead to an efficient algorithm to find
this set.

(2) Thus we proceed to write down a linear program for a fractional variant of the
problem (Sect. 4.3). Inspired by a technique developed by Charikar (2000) for
the densest-subgraph problem, we show (Lemma 3) that any fractional solution
can be leveraged to find a blocking set of vertices. The neighbors of the blocking
set cannot be matched to any vertex outside the blocking set in any maxmin-
fair distribution. We use this fact to argue inductively (Theorem 5) the existence
of a “fair decomposition” of the set of left vertices with the following property:
vertices on higher levels can be allowed larger satisfaction probabilities, regardless
of which edges are used to match the vertices on lower levels.

(3) Having computed the assignment probabilities xuv (the probability of each pair
of vertices being matched) of some maxmin-fair distribution within each block
in the decomposition, we can turn each of them into an actual distribution of
matchings by finding the Birkhoff–von Neumann decomposition of a doubly-
stochastic matrix. Then we combine them into a single distribution.

(4) To obtain our faster algorithm (which also returns the exact optimal solution),
we avoid the use of linear programming and instead present a technique to find
several blocks in parallel with a single min-cut computation (Sect. 5). We show
that a logarithmic number of minimum cut computations suffice to obtain the fair
decomposition in full. Thenwe argue that given the decomposition and satisfaction
probabilities, the required distribution of matchings can be found by coloring the
edges of an appropriately constructed regular bipartite graph, for which task we
leverage the fast algorithm of Goel et al. (2013).

4.2 Fairness parameter

We next ask the following important question: what is the minimum satisfaction prob-
ability π(G) of a maxmin-fair distribution for G? Hall’s marriage theorem gives a
necessary and sufficient condition for the existence of a matching covering the whole
of L , which is equivalent to having π(G) = 1.

Theorem 3 (Hall 1935) In a bipartite graph with bipartition (L, R), the set L is
matchable if and only if |Γ (S)| ≥ |S| for all S ⊆ L.

We show a generalization of Hall’s theorem which will prove useful to characterize
the fairness parameter in bipartite matching.

Theorem 4 Let {αv | v ∈ L} be reals in [0, 1]. A necessary and sufficient condition
for the existence of a distribution D of matchings of G such that D[v] ≥ αv for all
v ∈ L is

for all S ⊆ L, |Γ (S)| ≥
∑

v∈S
αv. (2)
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Proof Necessity is clear because no matching can cover more than |Γ (S)| elements
of any set S, but the expected number of elements of S covered by D is

∑
v∈S D[v] =∑

v∈S αv by linearity of expectation.
For sufficiency, we may assume that all the αv are rational because (2) is a finite

set of inequalities with integral coefficients, so the maximizer of
∑

v βv subject to
|Γ (S)| ≥ ∑

v∈S βv and βv ≥ αv will have βv ∈ Q. Let M be a suitable common
denominator, so that αu = βu = nu/M where M ≥ nu ∈ N. Construct a graph G ′
with

– nu replicas u(1), . . . , u(nu) of each u ∈ L;
– M replicas v(1), . . . , v(m) of each v ∈ R;
– V (G ′) = L ′ ∪ R′, where L ′ = {u(i) | u ∈ L, i ≤ nu} and R′ = {v(i) | v ∈ R, i ≤

M}.
– E(G ′) = {(u(i), v( j)) | (u, v) ∈ E(G), i ≤ nu, j ≤ M}.

This graph is bipartite with bipartition (L ′, R′). Notice that vertices with αv = 0 have
no replica in G ′.

Consider (in G) the sets Ak = {u ∈ L | nu ≥ k} for k = 1, 2, . . . , M . Given k and
a set S ⊆ Ak let S(k) = {u(k) | u ∈ S}. If A1 = ∅ the theorem is trivial. Otherwise, let
H1 denote the subgraph of G ′ induced by A(1)

1 ∪ R′. Any subset of A′
1 in H1 is of the

form S(1), for some S ⊆ A1. Using (2) we obtain

|ΓH1(S
(1))| = M · |ΓG(S)| ≥

∑

u∈S
nu ≥ |S(1)|,

because nu ≥ 1 for u ∈ A1 ⊇ S. By Hall’s Theorem, there is a matching X1 in H1

covering A(1)
1 .

If A2 �= ∅, let H2 denote the subgraph of G ′\V (X1) induced by A(2)
2 ∪ R′. As we

removed the edges of the matching X1, the number of neighbours in G ′ of any set
S ⊆ A2 has decreased by at most |S|, so for any S ⊆ A2 he have

|ΓH2(S
(2))| ≥ M · |ΓG(S)| − |S| ≥

∑

u∈S
(nu − 1) ≥ |S(1)|,

because nu ≥ 2 for u ∈ A2 ⊇ S. Hence there is a matching X2 in H2 covering A(2)
2 .

Proceeding similarly, we obtain a set of vertex-disjoint matchings in G ′ such that their
union is a matching X ′ in G ′ covering L ′. By restricting X ′ to each replica of R in
R′, we can decompose X ′ into M matchings X1, . . . , XM , each of them inducing a
matching in G. Furthermore, each u ∈ L is covered in exactly nu of these, since X ′
covers L ′. Thus the uniform distribution over X1, . . . , XM yields coverage probability
nu/M = αu for each u ∈ L . ��

The proof gives a maxmin-fair distribution which is uniform over a multiset of M

matchings, but M may be fairly large, as large as 2	(
√|U |) in some instances.
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Corollary 2 The minimum satisfaction probability in a maxmin-fair distribution for
the one-sided bipartite matching problem is

π(G) = min

{ |Γ (S)|
|S| | ∅ �= S ⊆ L

}
.

Proof Fix a parameter λ ∈ [0, 1]. By Theorem 4, a distribution with satisfaction
probability at least λ for all L exists if and only if Γ (S) ≥ λ|S| for all S ⊆ V . ��

In “Appendix B” we prove a dual result for the maximum satisfaction probability:

Corollary 3 The maximum satisfaction probability in a maxmin-fair distribution for
the one-sided bipartite matching problem is

Π(G) = max

{ |Γ (L)| − |Γ (S)|
|L\S| | S � L

}
.

4.3 A compact LP formulation for the fairness parameter

Below we write a linear program for computing π(G).

minimize
∑

v∈R yv
s.t. yv − yu ≥ 0 ∀(u, v) ∈ E ⊆ L × R∑

u∈L yu = 1 ∀u ∈ L
yu, yv ≥ 0 ∀u ∈ L, v ∈ R

(3)

Any set S ⊆ L can be represented by a feasible solution to this LP by setting
yx = 1

|S| for all x ∈ S ∪ Γ (S).

Lemma 2 For any non-empty set S ⊆ L, there is a feasible solution to LP (3) with
value |Γ (S)|

|S| .

Proof Define yx = 1
|S| for all x ∈ S ∪ Γ (S) and yx = 0 elsewhere. Then

∑
u∈L yu =

∑
u∈S 1

|S| = 1 and for every edge (u, v) ∈ L × R we have either yu = 0 (in which
case yv ≥ 0 = yu) or yu = 1/|S|; the latter implies u ∈ S and v ∈ Γ (S), so
yv = 1/|S| = yu . This proves feasibility. Finally,

∑
v∈R yv = ∑

v∈Γ (S)
1
|S| = |Γ (S)|

|S| .
��

The following shows how to round an optimal solution LP (3) to obtain a set S of
vertices such that |Γ (S)|/|S| equals the optimal value. A similar technique has been
used by Charikar (2000) for the densest subgraph LP.

Lemma 3 Let {yw}w∈L∪R be an optimal solution to (3). Then the set S = {v ∈ L |
yv > 0} �= ∅ satisfies |Γ (S)|

|S| = ∑
v∈r yv .

Proof Write λ = ∑
v∈R yv . For any r ∈ (0, 1), define S(r) = {u ∈ L | yu ≥ r} and

T (r) = {v ∈ R | yv ≥ r}. We show that T (r) = |Γ (S(r))| and |T (r)|/|S(r)| = λ
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for every r ∈ (0, 1). To see this, observe that for any v ∈ R, yv ≥ maxu∈Γ −1(v) yu .
In fact in any optimal solution equality must hold: yv = maxu∈Γ −1(v) yu for all v ∈
R; otherwise we may decrease some yv and hence the objective function without
sacrificing feasibility. Consequently,

v ∈ T (r) ⇔ yv ≥ r ⇔ max
u∈Γ −1(v)

yu ≥ r ⇔

⇔ ∃u ∈ Γ −1(v) such that yu ≥ r ⇔ v ∈ Γ (S(r)).

Recall from Lemma 2 that we can construct a solution to LP (3) from any non-empty
set. Since λ is the optimal value of LP (3), for any r for which S(r) �= ∅ we have
|T (r)|/|S(r)| ≥ λ, i.e., 0 ≤ |T (r)| − λ|S(r)|. The latter also holds if S(r) = ∅. On
the other hand, if we pick r uniformly at random from (0, 1), we have

Er [|S(r)|] =
∑

u

Pr
r
[u ∈ S(r)] =

∑

u

Pr
r
[r ≤ yu] =

∑

u

yu = 1,

Er [|T (r)|] =
∑

v

Pr
r
[v ∈ T (r)] =

∑

v

Pr
r
[r ≤ yv] =

∑

v

yv = λ,

so 0 ≤ Er [|T (r)| − λ|S(r)|] = Er [|T (r)|] − λ · Er [|S(r)|] = λ − λ · 1 = 0, which
implies that T (r) − λ · S(r) = 0 almost surely when r is uniform in (0, 1). Observe
that T (r)/S(r) is piecewise-constant in its domain (all distinct possibilities are given
by taking t = yw for some w ∈ L ∪ R). Moreover, for any r ∈ (0, 1) there is
some interval I of non-zero length such that for all r ′ ∈ I , then S(r) = S(r ′) and
T (r) = T (r ′). Thus, any event that is a measurable function of S(r) and T (r) and
holds with probability 1 when r ∼ U (0, 1) must actually hold for every r ∈ (0, 1) as
well.

Thus, |T (r)| = λ|S(r)| for all r ∈ (0, 1). In particular if we pick r0 = minu∈L yv ,
then S(r0) = {v ∈ L | yv > 0} satisfies ∑

v∈S(r0) yv = 1, hence is non-empty, and by
the above we have |Γ (S(r0))| − λ · |S(r0)| = 0, as desired. ��

In combination with Corollary 2, these two lemmas yield an effective method of
computing π(G):

Corollary 4 In the one-sided fair bipartite matching problem, the fairness parameter
π(G) is equal to the optimum value of the LP in (3).

4.4 Fair decompositions

The next ingredient towards an efficient algorithm is to find a decomposition of L
according to different levels of satisfaction probability in the maxmin-fair distribution.
In Fig. 2, the set of left vertices with smallest neighbor-to-size ratio is the set B1 =
{a5, a4}, with Γ (B1) = {b3}. By Corollary 2, the fairness parameter of the graph in
the picture is 1

2 . But in order to actually match a5 and a4 with probability 1
2 , b3 must

be matched to one of the two every single time. Hence the edge (a3, b3) can never
be used to in a maxmin–maxmin-fair solution. After removing B1 and Γ (B1) from
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Fig. 2 A bipartite graph with
blocks B1 = {a5, a4},
B2 = {a3, a2, a1} and
B3 = {a0} and fairly isolated
sets S1 = B1, S2 = B1 ∪ B2
and S3 = B1 ∪ B2 ∪ B3

the graph, the next set of left vertices with smallest neighbor-to-size ratio is the set
B2 = {a1, a2, a3} and again we find that edge (a0, b1) cannot be used. The last set we
find in this way is B3 = {a0}.

We refer to B1, B2, B3 as the blocks of the fair decomposition; and to the increasing
sequence of sets S1 = B1, S2 = B1 ∪ B2 and S3 = B1 ∪ B2 ∪ B3 as the fairly isolated
sets. This motivates the following definitions.

For A ⊆ L , denote by G|A the subgraph of G induced by A ∪ Γ (A), and by G/A
the subgraph of G induced by (L ∪ R)\(A ∪ Γ (A)). Intuitively, G|A represents the
subproblem where only the elements of A are important, and G/A represents the
subproblem of G|A where the use of neighbours of A is disallowed. For any subgraph
H of G, let π(H) (resp., Π(H)) be the minimum (resp., maximum) satisfaction
probability of an element of V (H) ∩ L in a maxmin-fair distribution. The nonempty
set X ⊆ L is fairly isolated if Π(G|X) < π(G/X) or X = L . This means that every
u /∈ X has guaranteed satisfaction larger than the largest maxmin-fair satisfaction
inside X , even if we remove all possibly conflicting edges from X to Γ (X).

Finding fairly isolated sets enables a “divide and conquer” strategy to findmaxmin-
fair distributions, since it turns out that matchings used inside X have no bearing on
the satisfactions needed for users in L\X . For example, if we can determine that the
set B1 ∪ B2 is fairly isolated, then we can work independently on B1 ∪ B2 and B3 and
combine the distributions found.

With this in mind, we are ready to state our fair decomposition theorem, proved in
“Appendix B”:

Theorem 5 The fairly isolated sets form a chain S1 ⊆ S2 . . . ⊆ Sk−1 ⊆ Sk = L.
Define S0 = ∅ for convenience and let Bi = Si\Si−1 for i > 0. The following hold
for all i = 1, . . . , k:
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(a) Bi is the maximal set X ⊆ L\Si minimizing |Γ (X∪Si )|−|Γ (Si )||X | .

(b) If i < k, Bi is the maximal set X ⊆ Si+1 maximizing
|Γ (Si+1)|−|Γ (Si+1\X)|

|X | .
(c) The satisfaction probability of every v ∈ Bi in any maxmin-fair distribution is

λi = |Γ (Bi )\Γ (Si−1)|
|Bi | , and any w ∈ Γ (Bi )\Γ (Si−1) is matched to some u ∈ Bi

with probability 1.

We call B1, . . . , Bk the blocks in the fair decomposition of G.

4.5 Description of the basic algorithm

Theorem 5 and Lemma 3 suggest a line of attack to solve the one-sided fair bipartite
matching problem, outlined in Algorithm 1 below. First, find the blocks B1, . . . , Bk

in a fair decomposition. Second, find a maxmin-fair distribution1 Di for each block
Bi , using only edges that do not “cross to neighbors of lower blocks” (i.e., no edge is
allowed from u ∈ Bi to v ∈ Γ (Bj ) where j < i). Finally, combine the distributions
into a single maxmin-fair distribution D, and draw a matching from it. Both our
algorithms follow this general outline; they differ on how to perform steps 1 and 2.
(We will discuss later (Sect. 7) an alternative implementation of step 3 which leads to
distributions over a smaller number of matchings.)

Next we give the details of our first algorithm (Algorithm 2).

Algorithm 1:Outline of our polynomial-time algorithms for maxmin-fair match-
ing

Input: Bipartite graph G = (V , E) with bipartition V = L ∪̇ R and with |ρ(L)| = R
Output: A maximum matching in G drawn from a maxmin-fair distribution

1 Function MaxminFairMatching(G, L, R)
/* Step 1: find a fair decomposition */

2 B1, . . . , Bk = FairDecomposition(G, L, R)

/* Step 2: obtain a fair decomposition for each block */
3 for i = 1, . . . , k do
4 Ri = Γ (Bi )\

⋃
j<i Γ (B j )

5 Gi = subgraph of G induced by Bi and Ri
6 Di = SingleBlockDistribution(Gi , Bi , Ri)

/* Step 3: combine the distributions and pick a matching */
7 for i = 1, . . . , k do
8 Mi = draw a matching from Di

9 return
⋃k

i=1 Mi

Step 1: Finding a fair decomposition We will find the blocks in a bottom-up manner.
To find the first block, observe the following:

1 Each of these distributions can be represented by a list of pairs (probabili t y,matching), with the
probabilities being non-negative and summing up to 1. For our second algorithm a simpler representation is
possible: the distribution of matchings Di within each block (but not for the whole graph) is uniform over
some small multiset of matchings.
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Lemma 4 The maximal set minimizing |Γ (X)|/|X | is the union of all non-empty sets
X minimizing |Γ (X)|/|X |.
Proof It suffices to show that if X ,Y are non-empty sets minimizing |Γ (X)|/|X |,
then X ∪Y also minimizes |Γ (X)|/|X |. Indeed, suppose |Γ (Y )|

|Y | = |Γ (X)|
|X | � λ. By the

submodularity of the cardinality of the neighborhood function of a graph,

|Γ (X ∪ Y )| + |Γ (X ∩ Y )| ≤ |Γ (X)| + |Γ (Y )| = λ(|X | + |Y |).

Notice that |Γ (X ∪ Y )| ≥ λ|X ∪ Y | and |Γ (X ∩ Y )| ≥ λ|X ∩ Y | by definition. If any
of these two inequalities were strict we would have the contradiction

|Γ (X ∪ Y )| + |Γ (X ∩ Y )| > λ(|X ∪ Y | + |X ∩ Y |) = λ(|X | + |Y |).

Hence the inequalities are not strict, and |Γ (X ∪ Y )| = λ|X ∪ Y |. ��
Along with Theorem 5, this observation suggests the following method, described

in the FairDecompositionmethod of Algorithm 2. By solving the LP in (3) and using
Lemma 3, we obtain a set X minimizing |Γ (S)|/|S|. Remove X from the graph G and
repeat (if G is non-empty); let Y be the new set obtained. If Γ (Y )/|Y | = Γ (X)/|X |,
then replace X with X ′ = X ∪ Y and repeat the process of finding a minimizer
Y via LP (3); this strictly increases the size of X . Eventually we will obtain a Y
satisfying |Γ (Y )|/|Y | > Γ (X)/|X |, at which point we know that X is the maximal
set minimizing Γ (S)/|S|, i.e., the first non-trivial block B1 is X . Now remove B1 and
Γ (B1) from G and repeat (if applicable) to obtain B2, . . . , Bk .
Step 2: Obtaining a fair distribution for each block The idea of this step is first to
calculate the assignment probabilities xuv for all u ∈ L, v ∈ R, i.e., the probability
that u is matched to v in some fixed maxmin-fair distribution F . As of yet these
probabilities are unknown (and, unlike satisfaction probabilities, they need not be the
same for all maxmin-fair distributions). However, we do know some conditions that
they must satisfy because we know (from Theorem 5) the satisfaction probabilities of
the left vertices in F , and all the right vertices need to be matched with probability 1
under our assumption that ρ(L) = |R|. These conditions may be expressed as linear
constraints in xuv , so we will find suitable values for xuv via a linear program. Finally
we can turn these values into an actual distribution of matchings via the Birkhoff–von
Neumann decomposition. Details follow.

Consider the graph Hi = G/
⋃

j≤i B j obtained by removing all lower blocks
and their neighbors. To simplify notation, rename L ∩ V (Hi ) and R ∩ V (Hi ) to L
and R. We have |R| ≤ |L| and λ = |R|/|L| ≤ 1. First we calculate the (as of yet
unknown) probabilities xi j (i ∈ L, j ∈ R) that each edge (i, j) is saturated (i.e., i is
matched to j) in some fixed maxmin-fair distribution. Clearly

∑
j xi j = λ for each

i and
∑

i xi j = 1 for each j . Let us add a set Z of |L| − |R| fictitious vertices to
R and extend the domain of definition of xi j so as to satisfy xi j = 1/|L| for each
i ∈ L, j ∈ Z . We obtain a bipartite graph G ′ with |L| vertices on each side; let Γ ′
denote its neighborhood function. Then

∑
v∈Γ ′(u) xuv = 1 ∀u ∈ L,

∑
u∈Γ ′(v) xuv =

1 ∀v ∈ R ∪ Z , and xuv ≥ 0 ∀u ∈ L, v ∈ R ∪ Z . We can find a solution xuv to these
inequalities by solving a linear program.
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Algorithm 2: First polynomial-time algorithm for maxmin-fair matching

Input: Bipartite graph G = (V , E) with bipartition V = L ∪̇ R

1 Function SmallestRatioSet(G, L, R)
2 Solve LP (3) for the subgraph of G induced by L and R
3 S = {v ∈ L | yv > 0}
4 λ = ∑

v∈R yv
5 return S, λ

6 Function FairDecomposition(G, L, R)
7 k = 0
8 L ′, R′ = L, R
9 while L ′ �= ∅ do

10 X , λ′ = SmallestRatioSet(G, L ′, R′)
11 L ′ = L ′\X
12 if k = 0 or λ′ �= λ then

/* Create new block, possibly incomplete */
13 k = k + 1
14 Bk , λ = X , λ′
15 R′ = R′\ΓG (Bk ) /* Remove neighbors of the previous block */
16 else

/* Merge with an existing block */
17 Bk = Bk ∪ X
18 return B1, . . . , Bk

19 Function SingleBlockDistribution(G, L, R)
20 F = a set of |L| − |R| new right vertices
21 N = {(i, j) | i ∈ L, j ∈ F}
22 Add the new vertices F and new edges N to G to form G′

/* LP to find assignment probabilities */
23 Find non-negative values xuv such that

∑
j∈ΓG′ (i) xi j = 1 for all j ∈ L ∪ R.

/* Birkhoff-von Neumann decomposition */
24 Find a distribution D of matchings using edge (u, v) with probability xuv .
25 Remove from each matching in D the incident to F
26 return D

By the following consequence of Birkhoff–von Neumann theorem on doubly
stochastic matrices (Birkhoff 1946) the quantities xuv thus obtained represent the
edge saturation probabilities of an actual distribution of matchings in G ′:

Lemma 5 Let {xuv}(u,v)∈E be non-negative numbers s.t.
∑

v∈R xuv ≤ 1 ∀u ∈ L
and

∑
u∈L xuv ≤ 1 ∀v ∈ R. Then a distribution over |E | + 1 matchings such that

PrM∈M[(u, v) ∈ M] = xuv exists and may be found in polynomial time.

We thus obtain a distribution D of matchings in G ′ in which each edge (u, v) is used
with probability xuv . If we pick each matching with its probability in D and remove
from it the edges incident to the ”fictitious“ elements in Z , we obtain a distribution
of matchings where each element i of L is matched with probability 1−∑

j∈Z xi j =
1− (|Z |/|L|) = 1− (|L| − |R|)/|L| = λ, as desired.
Step 3: Combining the distributions The last step requires combining the distributions
D1, . . . , Dk , each defined for a block Bi , into a single maxmin-fair distribution for
G. The simplest way is to draw (M1, . . . , Mk) from the product distribution D1 ×
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D2 . . .× Dk and return M1 ∪ M2 . . . ∪ Mk . (This is an easily samplable maxmin-fair
distribution with potentially large support.)

Putting all together, we obtain the following.

Theorem 6 Algorithm 2 is a polynomial-time algorithm for the one-sided maxmin-fair
matching problem.

5 Amore efficient algorithm

The algorithm from Sect. 4 requires solving polynomially many LP subproblems. It
was presented to showcase the main steps required, to introduce the fair decomposi-
tions, and to establish the existence of a polynomial-time algorithm. In this section we
analyze a more efficient algorithm. It also follows each of the three steps outlined in
Algorithm 1, but differs from Algorithm 2 in two key respects:

– For step 1, it finds fairly separated sets in arbitrary order, rather than bottom-up.
These sets can be found by maximum flow computations in a certain graph, and a
single flow computation can be used to findmany new blocks in the decomposition
simultaneously.

– For step 2, it uses a fast edge-coloring algorithm on a carefully constructed regu-
lar bipartite graph, allowing us to bypass the (comparatively slow) Birkhoff–von
Neumann decomposition [for which the best known algorithm from Goel et al.
(2013)] runs in ω(|V ||E |) time).

We present pseudocode for the improved algorithm (Algorithm 3) at the end of this
section. We establish the following:

Theorem 7 Algorithm 3 solves the maxmin-fair one-sided bipartite matching problem
in O((|V |2 + |E ||V |2/3) · (log |V |)2) expected time.

5.1 Improved step 1: finding a fair decomposition

Suppose we wish to separate L into vertices with satisfaction probability < λ and
vertices with satisfaction probability ≥ λ, for some parameter λ ∈ (0, 1). To this end,
construct the graph G(λ) by adding to G a source vertex s connected to every u ∈ L
with an edge of capacity λ, and a sink vertex t connected to every v ∈ R with an edge
of capacity 1; all other edges have infinite capacity.

Lemma 6 Let κ be the value of a minimum s − t cut in G(λ). Then exactly one of the
following cases holds: (a) κ = λ|L| and π(G) ≥ λ; or (b) κ < λ|L| and there is a
fairly-isolated subset X � L such that Π(G|X) < λ. We can determine which case
occurs, and obtain X in case (b), with a min-cut computation on G(λ).

Recall that π(G) (resp., Π(G)) represents the minimum (resp., maximum) satis-
faction probabilities in a maxmin-fair distribution for G. In either of the two cases
contemplated by Lemma 6 we have “made progress” by solving a min-cut problem
on G(λ); either (a) we showed that achieving minimum satisfaction probability λ is
possible, or (b) found a fair separation (and a reason why it is not possible).
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Proof Consider a minimum-value s − t cut in G(λ). Because the capacities of the
edges from s are no larger than any other capacity, there is always a cut C with no
larger value containing no edges from L to R. C only contains edges from s to some
subset AL ⊆ L and from some subset AR ∈ R to t ; its value is λ|AL | + |AR |.

Let AL = L\AL and AR = R\AR . Because C is an s, t-cut, there are no edges
in G (or in G(λ)) between AL and AR , so Γ (AL) ⊆ AR . As C is a minimum cut,
we must in fact have Γ (AL) = AR (or else cutting some edges from AR to t is
unnecessary). The value ofC is λ|AL |+ |AR|. Furthermore, for any X ⊆ AL wemust
have |Γ (X)\Γ (AL)| ≥ λ|X |, for otherwise there would be a cut of smaller value

λ|AL\X | + |Γ (AL ∪ X)| = (λ|AL | + |AR |) − λ|X | + |Γ (X)\AR |.

So the fairness parameter π(G/AL) is at least λ. If AL = ∅, this is π(G) and we are
in case (a) of the Lemma.

If AL �= ∅, let C = C(λ) be the minimum cut with minimum |AL |. Then AL is
unique and may be determined in linear time by picking the vertices reachable from s
in the residual network of amaximum (pre)flow (Picard andQueyranne 1980). For any
Y ⊆ AL , we must have |Γ (AL)| − |Γ (AL\Y )| < λ|Y |, otherwise another cut C ′ of
at most the same same value but with |A′

L | < |AL | would exist. Hence Π(G|AL
) < λ

by Corollary 3 which, along with the previously derived inequality π(G/AL) ≥ λ,
states that AL is a fairly separated set, and we are in case (b). ��

The parametric flow algorithm of Gallo et al. (1989) can find the cuts C(λ) in the
proof of Lemma 6 simultaneously for all λ (in the sense of giving a cut for all possible
|L|−1 “breakpoints” for λ). Its running time is asymptotically the same time as that of
a single maximum-flow computation via the push-relabel algorithm of Goldberg and
Tarjan (1988). However, this technique does not extend to all max-flow algorithms,
and Goldberg and Tarjan (1988) is suboptimal for the graphs G(λ). A better idea is
the following (see Algorithm 3).

Start with λ = 1 and keep halving λ as long as case (a) holds in Lemma 6. The
first time that (b) occurs we have found a fairly separated set X . At this point we can
find recursively the blocks in the fair decompositions of G|X and G/X . The crucial
insight is that we can find both in a single recursive call: G|X and G/X are disjoint, so
min-cuts for (G|X)(λ1) and (G/X)(λ2) are easily obtained from min-cuts for a single

graph G(λ1, λ2; X , X) containing a disjoint copy of each (except that we still keep a
single source s and a single sink t).

An iterative implementation of this idea maintainins the following invariant:

(a) we keep a partition of L into t ≤ k subsets T1, . . . , Tt ;
(b) each Ti is the union of consecutive blocks in the decomposition (in other words,

it is the difference between two fairly isolated sets);
(c) we have computed lower and upper bounds λi and μi for the maxmin-fair prob-

abilities of vertices in Ti , i.e., [π(Ti ),Π(Ti )] ⊆ [λi , μi );
(d) these bounds satisfy μi − λi = 2− j at iteration j ≥ 0.

Initially, t = 1, T1 = L , λ1 = 0, μ1 = 1 (valid by the assumption ρ(L) < |L|),
and j = 0. Construct the graph G(λ′1, . . . , λ′t ; T1, . . . , Tt ) where the edge capacities
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from s to each u ∈ Ti are λ′i = (λi + μi )/2, and edges from u ∈ Ti to v ∈ Γ (Tj )

where j �= i are deleted. With a min-cut computation in G(λ′1, . . . , λ′t ; T1, . . . , Tt )
we reduce the range of parameter bounds within Ti by half for each i , and possibly
split Ti into two (increasing t) if we found a new fairly separated set. After the min-cut
computation, obtaining the new partition of L , the new upper bounds, and removing
the edges from lower blocks to higher ones takes linear time.

After O(log |L|) iterations (each performing a min-cut and a linear-time update),
we have μi − λi < 1/|L|2 for all i , at which point we have determined the full
decomposition (because each maxmin-fair satisfaction probability is of the form a/b
where a ≤ b, 1 ≤ b ≤ |L|). The running time of the max-flow algorithm of Goldberg
and Rao (1998) for bipartite networks with rational capacities with denominators
bounded by a polynomial in |V | is O(min(|E |3/2, |E ||V |2/3) · log |V |). We obtain:

Theorem 8 The fair decomposition of a graph G = (V , E) for the one-sided
fair bipartite matching problem can be found in time O(min(|E |3/2, |E ||V |2/3) ·
(log |V |)2).

5.2 Improved step 2: obtaining a fair distribution for each block

Here we describe the procedure in Algorithm 3 to find fair distributions once the fair
decomposition has been computed. As before, suppose thatG itself has a single block,
so Γ (L) = λ|R|. Let g = gcd(|L|, |R|) and l = |L|/g, r = |R|/g.

Let G(λ) be as in Lemma 6. By the max-flow/min-cut theorem, there is a flow
in G(λ) of value λ|L| = |R|. Since the incoming edges to any u ∈ L from s have
capacity λ, the flow from s to v must be precisely λ. Let xuv be the flow between
u ∈ L and v ∈ R. Then

∑
u∈L xuv = λ = l

r and
∑

v∈R xuv = 1, so we found the
edge saturation probabilities {xuv} of a maxmin-fair distribution.

Consider now the subgraphG ′ ofG containing only those edges for which xuv > 0.
By Lemma 5, the same edge probabilities xuv warrant the existence of a distribution
of matchings in G ′ with satisfaction probability λ.

By the integral flow theorem (Lawler 1976), each xuv may be assumed to be a
multiple of 1/r , because all capacities in G ′ are multiples of 1/r ; in fact any standard
maximum-flow algorithm returns such a solution. Now consider the (r , l)-biregular
multigraph P obtained by putting nuv = xuv · r parallel edges between u ∈ L and
v ∈ R. As in step 2 of Sect. 4.5, we add to the right side of P a set Z of |L\R| vertices.
Joining the i th vertex of L with the j th vertex of Z whenever i ≡ j mod g, we obtain
from P a graph P ′ which is bipartite and l-regular.

Any bipartite graph ofmaximumdegree l is l-edge-colorable so that no two adjacent
edges share a color by Kőnig’s theorem [see Lovász and Plummer (2009)]. Each color
class is a matching, so there are l matchings in P ′ covering each u ∈ L exactly l times
in total. Cole et al. (2001) give an algorithm to color regular bipartite graphs in time
O(m log r) = O(m log |Γ (L)|), where m is the number of edges of P ′; in our case
m = O(l · |E(G)|). Goel et al. (2013) give a randomized algorithm to color l-regular
bipartite graphs in expected time O(ln2 log2(n)), where n is the number of vertices
of P ′; in our case n = O(|L|) and we can use the crude bound l ≤ |L|, so it runs
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1312 D. García-Soriano, F. Bonchi

Algorithm 3: Improved (faster) polynomial-time algorithm for maxmin-fair
matching

Input: Bipartite graph G = (V , E) with bipartition V = L ∪̇ R

1 Function FairDecomposition(G, L, R)
2 t = 1 /* number of sets */
3

4 T1 = L
5 λ1, μ1 = 0, 1

6 while μ1 − λ1 ≥ 1
|L|2 do

7 Construct the graph G′ = G
( λ1+μ1

2 , . . . ,
λt+μt

2 ; T1, . . . , Tt
)
as in the discussion preceding

Theorem 8
8 Run a max flow algorithm on G′
9 X = set of vertices reachable from s in the residual flow

10 p = t
11 for i = 1, . . . , p do
12 Xi = X ∩ Ti
13 if Xi �= ∅ then

/* Separation found; split Ti into two */

14 Tt+1, λt+1, μt+1 = Ti\Xi ,
λi+μi

2 , μi

15 Ti , λi , μi = Xi , λi ,
λi+μi

2
16 Remove from G the edges between Tt+1 and Γ (Ti )
17 t = t + 1
18 else

/* Separation not found; update lower bound on π(Ti ) */

19 λi = λi+μi
2

20 return T1, . . . , Tt

21 Function SingleBlockDistribution(G, L, R)
22 g = gcd(|L|, |R|)
23 l = |L|/g
24 r = |R|/g
25 Construct the graph H = G(λ) as in Lemma 6
26 Find a maximum flow in H ; let xuv denote the flow between x ∈ L and v ∈ R

27 Construct a multigraph P with xuv · r edges between each pair (u, v) ∈ L × R
28 F = a set of |L| − |R| new right vertices
29 Add to the right side of P the vertices in F
30 N = {(i, j) | i ∈ L, j ∈ F, i ≡ j (mod r)}
31 Add the edges in N to P

32 C1, . . . ,Cl = color classes in an l-coloring of the edges of P
33 Remove from C1, . . . ,Cl the edges incident to F
34 D = the uniform distribution over C1, . . . ,Cl
35 return D

in O(|L|2 log2(|L|)). If we remove the “fictitious” vertices in Z from each of these
matchings, we are left with a multiset of l matchings inG covering each u ∈ L exactly
r times. The uniform distribution over them is thus maxmin-fair for G.

Now consider the case that the decomposition of G has several blocks B1, . . . , Bk .
The values xiuv for all blocks i can be computed from a single maximum-flow com-
putation in G(λ1, . . . , λk; B1, . . . , Bk) if we know the blocks and each satisfaction
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probability λi . Then each corresponding coloring can be found in time O(n2i log
2(ni ));

summing these running times and noticing that
∑

i n
2
i ≤ |L|2, we deduce:

Theorem 9 Given the fair decomposition, amaxmin-fair distribution for all blocks in it
can be found in O(|V |2 ·(log |V |)2) expected time and O(|V ||E | log |V |) deterministic
time after a max-flow computation.

Putting all together yields Theorem 7.

6 Generalization to non-bipartite graphs

Recall that so far we have concerned ourselves with the one-sided fair bipartite match-
ing problem, i.e., the special case of fair matchingwhereG is bipartite (with bipartition
V = L ∪̇ R) and the set of users is U = L .

Notably, this special case can encode any other matching problem, and moreover
we can make the simplifying assumption that L is matchable and larger than R. To
show this, we make use of the following result from transversal theory.

Theorem 10 (Edmonds and Fulkerson 1965) For any graph G there exists a bipartite
graph H with bipartition (LH , RH ) such that LH = V (G) and the collection of
matchable subsets of V (G) in G equals the collection of matchable subsets of LH

in H.

This is normally stated as “any matching matroid is transversal”. The construction
of H in Theorem 10 can be carried out in polynomial time [see Triesch (1992) for
a simple proof]. Hence the case of non-bipartite G can be reduced to the one-sided
bipartite case. A similar remark applies to general user sets U ⊆ V , as we can remove
from LH the elements of V \U , which has no effect on the collection of matchable
subsets of U in H .

We make the additional simplifying assumption that R is matchable. If not, find an
arbitrary maximum matching of G and remove from R all unmatched vertices. Let R′
denote the remaining vertices.

Theorem 11 (Dulmage and Mendelsohn 1958) If both A ⊆ L and B ⊆ R are match-
able in a bipartite graph G with bipartition (L, R), then A ∪ B is also matchable in
G.

It follows that for each distribution of matchings of G there is another distribution
with the same coverage (satisfaction) probabilities for L and covering only elements
of L ∪ R′. Note that the coverage probability of each v ∈ R′ in this distribution is
1. The case where ρ(L) = |R| is easily handled separately (any maximum matching
algorithm is maxmin-fair in this case), yielding the following (see “Appendix B” for
details):

Theorem 12 The fair matching problem on arbitrary graphs with arbitrary user sets
U ⊆ V can be reduced in polynomial time to the one-sided fair bipartite matching
problem on graphs where ρ(L) = |R| < |L|.
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Proof Let A be a maxmin-fair algorithm for one-sided bipartite matching problem
described. Given a graph G and a user set U , we
(1) construct H as in Theorem 10;
(2) remove from LH the elements of V (G)\U ;
(3) find an arbitrary maximum matching M and remove from RH the elements not

covered by M , using any polynomial-time maximum matching algorithm.
(4) find a fair one-sided bipartite matching by either (a) usingA on the resulting graph

if |M | < |LH | or (b) returning M if |M | = |LH |;
(5) given the solution S found at the previous step, return a matching in G covering

the same vertices as S using an explicit algorithm for Berge’s theorem (Edmonds
1965).

[Step (5) is technically redundant as we identify solutions with sets of matchable users,
but is included for clarity.]

It is plain to see that the resulting distribution ismaxmin-fair for the general problem
if and only ifA is maxmin-fair for the one-sided problem. All steps run in polynomial
time, possibly excluding the call to A itself. ��

Combining Theorems 7 and 12, we obtain the following.

Theorem 13 The maxmin-fair matching problem on general unweighted graphs is
solvable in polynomial time.

7 On transparency and practical deployment

Even a provably fair algorithm might still be perceived by the average user as a black-
box outputting an arbitrary solution. For the sake of transparency and accountability,
it can be interesting to publish all the solutions in a maxmin-fair distribution (along
with their respective probabilities). Once a complete fair distribution is published,
convincing any user u of fair treatment amounts to:

(1) letting u verify independently the fairness guarantees of the distribution (for this
it is also possible to output a short certificate, based on the fair decomposition, of
the fact that no higher probability for u is possible in a maxmin-fair distribution);
and

(2) picking one of the published solutions at random, via any fair and transparent lot-
tery mechanism or coin-tossing protocol (this is the only stage where randomness
plays a role, as the distribution of matchings itself can be found deterministically).

One difficulty is the potentially large support size of the maxmin-fair distribu-
tion, which could prevent publication. An interesting question is if we can produce a
maxmin-fair distribution with small support. It turns out that for matchings, |L| − 1
solutions always suffice; although the actual number can be substantially smaller in
practice (as shown in Sect. 8).

Let us discuss how to modify our algorithm so as to find a maxmin-fair distribution
F using at most |L| + 1 − k matchings, where k is the number of non-trivial blocks
in Theorem 5. (This could replace step 3 of Algorithm 1.) When k = 1, the technique
from step 2 of Algorithm 3 gives a multiset of l ≤ |L| matchings.
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Consider the case k = 2, which implies our claim for larger k by induction. Suppose
D (resp., D′) chooses matching Mi , i ∈ [r ] on B1 (resp., N j , j ∈ [t] on B2) with
probability pi (resp., q j ). (Here B1∩B2 = ∅.) A simple greedy algorithm can construct
a distribution Z of matchings in B1 ∪ B2 such that D[u] = Z [u] for u ∈ B1 and
D′[u] = Z [u] for u ∈ B2 with at most r + t − 1 matchings, as follows.

Keep indices i ∈ [r ], j ∈ [t] and let S denote a set of (probability, matching)
pairs, which will define the desired distribution at the end. At the outset S = ∅
and i = j = 1; at each iteration we add to S the new pair (δ, Mi ∪ N j ) where
δ = min(pi , q j ). We decrement pi and q j by δ and increment i (resp., j) if pi (resp,
q j ) vanishes. The process terminates when i and j reach the end of their range, at
which point |S| = r + t − 1 and all probabilities in S sum up to 1.

We note, however, that this proceduremay produce somematchingswith very small
probabilities, so the precision needed to specify amaxmin-fair distribution exactly will
grow.

8 Experimental evaluation

We evaluate the practical performance of our fair matching algorithm by measuring
its running time and its ability to scale to large graphs, and analyzing the distribution
of maxmin-fair satisfaction probabilities and how they compare with those from two
baselines. We also describe the features of the fair decompositions obtained.

ReproducibilityOur code is available at https://github.com/elhipercubo/maxmin_fair_
bipartite_matching.git. It implements the improved algorithm from Sect. 5, with some
implementation choices described below. It was compiled with g++ using -O3 opti-
mizations and run on a dual-core Intel i7-7560U CPU (2.40GHz) with 16Gb RAM.

Datasets We used publicly-available bipartite graphs of various types, sizes and
domains: all the graphs are already bipartite at the source repository, so that no pre-
processing was needed. Table 2 reports their main characteristics.

Methods tested We compare the following four methods to output maximum match-
ings:

(UF) Unfair A standard maximum matching algorithm using maximum flows, opti-
mized for runtime using the techniques from Cherkassky and Goldberg (2004).
We use it for runtime comparisons only, because such a deterministic mecha-
nism is inherently unfair as argued in Sect. 1.

(MF) Maxmin fair Our mechanism, using the improved algorithm from Sect. 5.
(PS) Probabilistic serial [From Bogomolnaia and Moulin (2001)]: the goal here is

to find a set of edge flows from L to R which can be converted into a matching
distribution by using the Birkhoff–von Neumann decomposition.
PS attempts to find a fair flow via a greedy algorithm, as follows: each user
u ∈ L sends flow at the same fixed rate, sharing this rate equally among her
neighbours. When the outgoing flow of u ∈ L (or the ingoing flow of v ∈ R)
reaches 1, remove u (or v). Repeat while there are edges remaining.
Unlike MF, this mechanism is not Pareto-efficient (i.e., it does not necessarily
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Table 2 Datasets used: code, number of left and right nodes (|L|, |R|), number of edges (|E |), maximum
matching size (ρ). Available at: http://konect.uni-koblenz.de/networks/

Dataset (code) |L| |R| |E | ρ

actor-movie (AM) 127,823 383,640 1,470,404 114,762

pics-ti (Vui) 82,035 495,402 2,298,816 67,608

citeulike-ti (Cti) 153,277 731,769 2,411,819 120,125

bibsonomy-2ti (Bti) 204,673 767,477 2,555,080 152,757

wiki-en-cat (WC) 1,853,493 182,947 3,795,796 179,546

movielens (M3) 69,878 10,677 10,000,054 10,544

flickr (FG) 395,979 103,631 8,545,307 96,866

dblp-author (Pa) 1,425,813 4,000,150 8,649,016 1,425,803

discogs-aff (Di) 1,754,823 270,771 14,414,659 248,796

edit-dewiki (de) 425,842 3,195,148 57,323,775 355,045

livejournal (LG) 3,201,203 7,489,073 112,307,385 2,171,971

trackers (WT) 27,665,730 12,756,244 140,613,762 4,006,867

orkut (OG) 2,783,196 8,730,857 327,037,487 1,980,077

return maximum matchings), but like MF, a single run of the mechanism can
be used to output all satisfaction probabilities.

(RP) Random priority [See Bogomolnaia and Moulin (2001)]: it finds a matchable
set of vertices as follows: Let S = ∅. Process all users in random order, adding
user u to S if S ∪ {u} is matchable. Return a matching covering the final set S.
Like MF, this mechanism is Pareto-efficient, but unlike MF, a single run of the
mechanism only outputs a singlematching and hence cannot be used to compute
all satisfaction probabilities.

The latter twomethods arose fromwork in economics in a different setting: randomized
assignments on full bipartite graphs with ordinal preferences, i.e., where every u ∈ L
has a full ranking of all possible partners v ∈ R, and the goal is to design mechanisms
which are ordinally efficient. (By contrast, in our setting the graph is not complete
but there are no ordinal preferences: each user considers all of its neighbours equally
desirable.) However they can be naturally applied in our context as well.

ImplementationWe used the improved algorithm from Sect. 5. For max flow computa-
tionswe chose the highest-label push-relabel algorithmofGoldberg andTarjan (1988),
which performs best with the gap heuristic from Cherkassky and Goldberg (1997). We
follow the techniques from Cherkassky and Goldberg (2004): efficient gap detection
is done via bucket lists of active nodes at each level (Cherkassky and Goldberg 1997),
andwe arrange edges from/to the same vertex consecutively to take advantage of cache
locality. We avoid floating-point computations by using exact integral multipliers.

For reasons of simplicity and/or practical efficiency, our implementation departs
from the pseudocode in Algorithm 3 in the points below. None of these changes affect
correctness.
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Table 3 Characteristics of fair
decompositions: number of
blocks (k), edges used (e1),
number of matchings in the fair
distribution (M)

Dataset k e1 M

AM 194 143,425 13,762

Vui 72 84,003 1,068

Cti 151 157,744 2,726

B 179 212,667 4,119

WC 1468 1,883,431 350,518

M3 245 92,841 52,332

FG 924 435,612 109,242

Pa 2 1,425,813 2

Di 1117 1,784,259 305,104

de 163 432,472 5,596

LG 1480 3,314,628 302,410

WT 3612 27,842,321 16,548,387

OG 2266 3,041,112 224,738

– In FairDecomposition (line 8), only a pre-flow algorithm [the first phase of
Goldberg and Tarjan (1988)] is run. This always suffices to find min-cuts (not
max-flows) and thus fairly separated sets, and can halve the runtime.

– In FairDecomposition (line 7), instead of setting λ′i = (λi +μi )/2 when build-
ing the graph G(λ′1, . . . , λ′t ; T1, . . . , Tt ), we set it to |Γ (Ti )|/|Ti |. That is, our
implementation guesses optimistically that Ti is actually a single block in the
decomposition, with the pre flow computation used to verify that guess or split
the block in two. This also allows us to change the terminating condition (line 6)
and stop earlier: rather than stopping when λi and μi are very close, which may
occur long after the full decomposition has been found, we stop when no block is
split. This new choice for λ′i may invalidate our theoretical bound on the number
of flow computations required, but it makes the code much faster in practice.

– In SingleBlockDistribution (lines 27–32), we do not always build P because
P may be quite large for some blocks with a small number of right vertices (where
r � l), due to the fictitious edges added. Rather, we first attempt to find l disjoint
matchings of size r sequentially (in arbitrary order) without including fictitious
vertices/edges. This often succeeds and, when it does, gives a correct coloring.
When this fails, we build P and proceed to find the coloring as described.

– In SingleBlockDistribution (line 32), we do not use Goel et al’s edge coloring
algorithm on P . Rather, we find l matchings of size l one by one. This simplifies
the implementation, but may impact performance and the runtime bound.

8.1 Fair decompositions: characteristics

Table 3 shows the number of blocks k in the fair decomposition (for informative
purposes), the number of distinct edges e1 used in a maxmin-fair distribution F , and
the number of matchings M in the support of F . As we anticipated in Sect. 7 the
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number of matchings needed for a fair distribution (M) is in practice much smaller
than |L|. Another observation is that e1 exceeds |L| only slightly. This is a measure
of the storage needed to publish a summary containing the fair decomposition, the
satisfaction probabilities, and the probability of each edge being used in the matching,
which can be verified independently. (Publishing an explicit list of M matchings of
size ρ explicitly would take much more space as many of these matchings share many
edges.)

8.2 Running time

In Table 4 we present runtimes of all four methods for the datasets considered. Dashes
indicate times above 1h. We report user times; the real times are within 2% of these
in all cases except for OG, where the memory needs for graph and data structures
exceeded the RAM available (16Gb), causing excessive disk swapping.

As MF has two clearly differentiated parts, we analyze two different runtimes:

– Time to compute the satisfaction probabilities of each user, and the probability of
using each edge in the maxmin-fair distribution (step 1, finding the fair decompo-
sition), reported in column MF1;

– Total time, including all of the above plus the time to find an edge coloring for
each block and the list of matchings for each block (step 2), reported in column
MF. (The time to draw a matching given this list, step 3, is negligible.)

No clear pattern emerges as to which of these two phases is faster in practice. As can
be observed, in some instances (Vui, Cti, B, Di, de, LG, OG) the time is dominated by
the first phase, wheres in others (AM, M3 and WT) the total time is much larger than

Table 4 Running time (in
seconds) of UF, MF, PS and RP

Dataset UF MF1 MF PS1 RP

AM 0.34 1.812 9.309 832 11.27

Vui 0.38 1.206 1.251 717 0.39

Cti 0.42 1.731 1.820 1443 0.59

B 0.47 2.152 2.293 1764 0.74

WC 1.68 17.57 23.036 – 68.17

M3 1.08 11.12 319.13 485 72.18

FG 1.16 15.17 25.80 – 688.21

Pa 2.99 5.96 6.908 – 3.20

Di 3.10 23.37 24.714 – 67.83

de 6.99 21.67 22.007 – 52.84

LG 26.05 103.59 108.311 – –

WT 51.92 444.71 2270.81 – –

OG 98.20 370.76 381.524 – –

The 1 subscript refers to the time to compute assignment probabilities
in the solutionwithout converting them into a distribution ofmatchings
(onlymeaningful forMF and PS). Dashes indicate running times above
1h
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the time for phase 1 only; in the latter cases the exact requirement of maxmin-fairness
forces the algorithm to need a large number of matchings for some blocks, increasing
the time for step 2. It seems likely that a more relaxed requirement of approximate
fairness could lead to vast improvements in the runtime of step 2.

Similarly, for PS we differentiate between the time to compute the probability of
each edge being used (column PS1), and the total time including the former plus
the time to find a distribution of matchings which agrees with those probabilities.
However, this last step is much slower in the case of PS because in this case we need to
use the full Birkhoff–von Neumann decomposition, instead of exploiting the degree
regularity conditions of the blocks to find edge colorings as we do for MF. Because
existing implementations of the Birkhoff–von Neumann decomposition do not scale
even for the smaller graphs tested, we decided to omit the second phase of PS (which
is not required to analyze its fairness properties).

As is to be expected, the unfair algorithm UF is the fastest. As for the others, the
only one which can be run to completion within 1h in all datasets is ours (MF). Its
runtime is usually a handful of seconds except for the very large graphs, where it is in
the order of minutes (37min at most, attained for the graphWT). We can see that PS is
the most computationally expensive, as many iterations of its main loop are required
to reach convergence, and each iteration takes linear time. Finally, the runtime of RP is
generally comparable to that of MF on small and medium-size graphs, outperforming
it on many of the smaller graphs, but RP becomes slower for larger graphs; despite
the additional complexity of MF, the priority mechanism of RP precludes the use of
the push-relabel max-flow algorithms, and also limits the number of simultaneous
augmenting paths which can be found during a single graph search in augmenting-
path algorithms. Notice that these are runtimes for a single run; if the satisfaction
probabilities need to be computed then it becomes necessary to run RP a large number
of times, slowing it down considerably. (This is not the case for MF or PS.)

8.3 Satisfaction probability comparison

Next we analyze the satisfaction probabilities produced by maxmin-fair matchings
(MF) and compare with the probabilistic serial and random-priority mechanisms. Note
that the exact determination of the satisfaction probabilities of RP is computationally
infeasible. To approximate them,we runRP a total of T = 1000 timeswith independent
uniformly randompermutations. (Note, however, that this does not give a good estimate
of probabilities below 1/T .)

For this comparison we focus on the smaller graphs, due to the limited scalability of
PS (which needs a large number of iterations in its main loop, each taking linear time)
and RP (which needs to be run T times to approximate the satisfaction probabilities).

Finally, Table 5 reports the distribution of satisfaction probabilities: minimumvalue
(λmin), quantiles, percentage of users with satisfaction 1 (per1), and Nash welfare
(N0), the geometric mean of utilities (satisfaction probabilities in our setting). Nash
welfare is a standard measure of fairness when allocating divisible resources (Cara-
giannis et al. 2016). As in Brânzei et al. (2017), we also study the generalization of
Nash welfare using power means (for a parameter p ∈ R):
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Table 5 Distribution of maxmin-fair satisfaction probabilities

Dataset λmin λ25% λ50% λ75% per1 N0

AM 0.156 1 1 1 76.18 0.860

Vui 0.0208 0.5 1 1 69.16 0.743

Cti 0.01 0.5 1 1 65.42 0.670

B 0.0128 0.5 1 1 58.63 0.630

WC 5.52e−4 0.0149 0.0417 0.1 2.17 0.0366

M3 0.0298 0.0833 0.137 0.1798 0.49 0.121

FG 0.001012 0.116 0.2 0.254 6.04 0.161

Pa 0.5 1 1 1 99.9999 0.99999

Di 0.000025 0.0135 0.0588 0.167 4.28 0.0377

de 0.00334 0.667 1 1 74 0.718

LG 1.83e−4 0.2 1 1 59.43 0.326

WT 4.38e−7 4e−6 1.26e−4 0.0294 10.89 0.000366

OG 0.00453 0.333 1 1 56.2 0.583

N0(D) =
(

∏

u∈U
D[u]

)1/|U |
, (4)

Np(D) =
(∑

u∈U D[u]p
|U |

)1/p

. (5)

When p = 1, Np(D) is the mean satisfaction probability, which equals ρ/|L| for any
Pareto-efficient mechanism. Taking the limit in (5) as p → 0 one obtains (4) (Hardy
et al. 1952), justifying the notation N0 for (standard) Nash welfare. Taking the limit
as p → −∞ yields minu∈U D[u], which by definition is maximized by MF.

Table 6 shows these metrics for the three mechanisms tested, on those graphs where
PS terminated in 8h. Notice that N1(MF) = N1(RP) > N1(PS), confirming that MF
and RP are Pareto-efficient but PS is not. The generalized welfares for p < 1 are
computed exactly for MF and PS, but estimated from the empirical probabilities after
T samples for RP. (For p = 0 we replace each empirical probability q bymax(q, 1/T )

so that the estimate is non-zero.) MF comes out on top for all (generalized) Nash
welfares in all instances, in accordance with a result of Bogomolnaia and Moulin
(2004). Interestingly, N0(RP) is typically within 1% of N0(MF) (as both solutions
result in a large proportion of users with high satisfaction), but for smaller p the gap
can widen to as much as 22% for p = −5, in accordance with the fact that MF was
designed to provide better guarantees to low-satisfaction users.

Table 7 shows the expected fraction of satisfied users among the bottom t% using
each method, for t = 1, 5, 10, and 20. Again, our method always gives the highest
values, the gap with the second best being as high as 50% in some instances where
t = 1.

Table 8 reports the variance of the logarithms of satisfaction probabilities over
uniformly random users, as a measure of inequality. (Taking logarithms penalizes
wildly varying ratios of satisfaction probabilities.) We see that MF, which minimizes
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Table 6 Generalized Nash
welfare of MF, PS and RP.
Larger is better

Dataset AM Vui Cti B M3

N1(MF) 0.898 0.824 0.784 0.746 0.151

N1(PS) 0.796 0.775 0.739 0.702 0.147

N1(RP) 0.898 0.824 0.784 0.746 0.151

N0(MF) 0.860 0.743 0.670 0.630 0.121

N0(PS) 0.695 0.684 0.618 0.580 0.0824

N0(RP) 0.855 0.739 0.667 0.622 0.117

N−1(MF) 0.797 0.585 0.470 0.445 0.0927

N−1(PS) 0.524 0.522 0.419 0.395 0.0452

N−1(RP) 0.780 0.579 0.460 0.430 0.0868

N−2(MF) 0.699 0.339 0.232 0.244 0.0720

N−2(PS) 0.335 0.300 0.210 0.214 0.0285

N−2(RP) 0.659 0.332 0.228 0.230 0.0650

N−5(MF) 0.409 0.0822 0.0431 0.0573 0.0486

N−5(PS) 0.100 0.0767 0.0429 0.025 0.0165

N−5(RP) 0.333 0.0793 0.0429 0.0553 0.0397

Table 7 Fraction of satisfied users among the bottom t%

Dataset AM Vui Cti B M3

MF, t = 1 0.189 0.0610 0.0481 0.0459 0.0298

PS, t = 1 0.0640 0.0528 0.0417 0.039 0.00430

RP, t = 1 0.147 0.0518 0.0456 0.0439 0.0198

MF, t = 5 0.282 0.158 0.100 0.0970 0.0298

PS, t = 5 0.118 0.130 0.0870 0.0825 0.00605

RP, t = 5 0.256 0.144 0.0045 0.0914 0.0252

MF, t = 10 0.389 0.231 0.151 0.143 0.0338

PS, t = 10 0.167 0.192 0.128 0.123 0.00883

RP, t = 10 0.363 0.216 0.139 0.133 0.0290

MF, t = 20 0.513 0.344 0.238 0.221 0.0381

PS, t = 20 0.259 0.287 0.204 0.193 0.0157

RP, t = 20 0.506 0.326 0.229 0.212 0.0353

social inequality in the sense of Definition 5, also tends to minimize this quantity in
all datasets tested.

9 Related work

To the best of our knowledge, we are the first to study computationally efficient ran-
domizedmaxmin-fair matching algorithms, and to offer a general definition of fairness
for general search problems.
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Table 8 Inequality measure:
variance of log-satisfaction
probabilities. Smaller is better

dataset AM Vui Cti B M3

Var[log(MF)] 0.112 0.296 0.454 0.475 0.491

Var[log(PS)] 0.385 0.349 0.518 0.534 1.391

Var[log(RP)] 0.133 0.304 0.475 0.496 0.556

The work of Bogomolnaia and Moulin (2004) on random matching under dichoto-
mous preferences is closely related to ours: they define an egalitarian solution and
show that it is envy-free, strategy-proof and group-strategy-proof with respect the set
of right or left vertices. As the authors note, they do not provide an axiomatic charac-
terization of their solution; rather, their definition of egalitarian is expressed in terms
of a specific algorithm and is thus not easily generalizable to other search problems.
By contrast, our definition of distributional maxmin-fairness applies to any search
problem with non-unique solutions and, in the special case of bipartite matchings, is
equivalent to the egalitarian solution. In Bogomolnaia and Moulin (2004) two sim-
ple algorithms are proposed to find egalitarian matchings, both of them running in
exponential time; our work yields a practical polynomial-time algorithm for the prob-
lem. We found no efficient algorithms or practical implementations of the egalitarian
mechanism prior to our work.

Building on Bogomolnaia and Moulin (2004) and Roth et al. (2005) propose an
egalitarian mechanism for the exchange of donor kidneys for transplant. McElfresh
and Dickerson (2018) propose a tradeoff between fairness and a utilitarian objective
function in kidney exchange programs. Kamada and Kojima (2015) study randomized
matching mechanisms for the design of matching markets under distributional con-
straints; their setup contains full bipartite graphs equipped with complete and strict
preference relationships. Teo andSethuraman (1998) prove the existence of a “median”
deterministic solution to the stable matching problem which is fair to everyone, but
finding a polynomial-time algorithm remains an open problem. Cheng (2010) presents
a technique to approximate the median stable matching.

In the area of resource allocation problems, several works investigate the equitable
distribution of divisible resources in networks. The work of Ichimori et al. (1982)
considers aminmax-style optimization function, whereasKatoh et al. (1985) considers
allocation problems so that the maximum of profit differences is minimized; none of
these consider distributions of several solutions. Bansal and Sviridenko (2006) give
approximation algorithms for the Santa Claus problem, where a number of indivisible
presents are to be distributed among kids who have different values for different
presents, and the goal is to maximize the minimum happiness of a kid. Bertsimas et al.
(2011) introduce the price of fairness in resource allocation problems. A substantial
amount of work has also been devoted to cake-cutting algorithms and their strategic
and incentive properties: see Klamler (2010), Brams et al. (2006) and Edmonds and
Pruhs (2006) and the references therein.

Several authors have studied lexicographically optimal flows in networks (which
could be used in place of Step 1 of our algorithms): Megiddo (1977) designed an
algorithm with running time O(n5), whereas Brown (1979) proposed a polynomial-
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time algorithm requiring n max flow computations. On the other hand, the parametric
flow algorithm of Gallo et al. (1989) can be used to find fair decompositions with a
single max flow, but is not compatible with the max flow algorithm of Goldberg and
Rao (1998). None of these methods can be used to match the runtime of our algorithm
to find fair decompositions.

The bulk of the research in the area of algorithmic bias and fairness has mainly
focused on avoiding discrimination against a sensitive attribute (i.e., a protected social
group) in supervised machine learning (Dwork et al. 2012; Feldman et al. 2015;
Corbett-Davies et al. 2017. Most of this literature focuses on statistical parity, or
group-level fairness, i.e., the difference in having a positive outcome for a random
individual drawn from two different subpopulations (e.g., men and women). Feldman
et al. (2015) propose to repair attributes so as to maintain per-attribute within-group
ordering while enforcing statistical parity, so that a single decision threshold applied
to the transformed attributes would result in equal success rate among the two different
groups. Corbett-Davies et al. (2017) reformulate algorithmic fairness as constrained
optimization in the context of criminal justice: the objective is to maximize pub-
lic safety while satisfying formal fairness constraints designed to reduce disparities.
Dwork et al. (2012) provide examples showing that statistical parity alone is not
sufficient for fairness, and study a randomized solution for classifiers to guarantee
that “similar individuals are treated similarly” in an expected sense. The idea that
more qualified individuals should be chosen preferentially is present in the work of
Joseph et al. (2016), who study fairness in multi-armed bandit problems. Pedreschi
et al. (2008) introduced the related data mining problem of discovering discrimina-
tion practices in a given dataset containing past decisions; if such a dataset is used
as training set for a machine learning model, the bias detected can be fixed before
the learning phase (Kamiran and Calders 2011; Zliobaite et al. 2011). Heidari et al.
(2019) show that many existing definitions of algorithmic fairness, such as predictive
value parity and equality of odds can be viewed as instantiations of economic models
of equality of opportunity. Heidari et al. (2018) study a welfare-based measure of
fairness for risk-averse individuals, and derive an efficient mechanism for bounding
individual-level inequality.

Finally, maxmin-fairness (in a non-distributional sense) as an objective is used for
flow control in networks (Coluccia et al. 2012; Bertsekas et al. 1992). In the context
of non-discrimination, the concept dates back at least to Rawls’s theory of justice
(Rawls 1971), where a “difference principle” is advocatedwhereby social and financial
inequalities are required to be to the advantage of the worst-off. In Rawls’s distributive
justice, social measures should be designed so as to bring the greatest benefit to the
least-advantaged members of society, in order to maximize their prospects.

10 Conclusions

In this paper we study the problem of algorithmic fairness towards the elements that
may or not be included in a solution of a matching problem. This is particularly (but
not exclusively) important when these elements are humans. Towards this goal, we
propose the distributional maxmin fairness for randomized algorithms. A series of
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theoretical results characterize maxmin-fair distributions and pave the road to our
practical contribution: an exact polynomial-time algorithm for maxmin-fair bipartite
matching, which scales to graphs with millions of vertices and hundreds of millions
of edges. We also discussed methods for the transparent and accountable real-world
deployment of our framework.

Regarding future work, it would be interesting to consider notions of approximate
fairness intended to deal with optimization problems, where solutions may have dif-
ferent business value, possibly unrelated to satisfaction probabilities. The goal could
be to reach a compromise between fairness and expected business value. It would be
desirable to be able to find approximately maxmin-fair distributions more quickly than
exact maxmin-fair distributions; we leave this as an open problem. Another interesting
question is whether our methods can be extended to handle online matching/streaming
settings and/or graphs which do not fit into main memory. Finally, future work may
consider other notions of fairness for randomized algorithms for search, ranking and
other learning problems.

Appendix A: Proofs for Sect. 3: fairness and social inequality

Preliminaries In order to prove Theorem 2, we need to recall some additonal facts
about matroids [refer to Lawler (1976) for details]. The rank function ρ : 2L → N

of a matroid is monotone submodular, meaning that for all S, T ⊆ L , it holds that
0 ≤ ρ(S ∪ T ) − ρ(S) ≤ ρ(T ) − ρ(S ∩ T ). The dual matroid of M is the matroid
with ground set L given by M∗ = {L\S | S ∈ M}; clearly the dual of M∗ is M
itself. The rank function of M∗ is given by ρ∗(S) = |S| − (ρ(L) − ρ(L\S)). The
contraction of M to the set L\S is the matroid M/S with ground set L\S and rank
function ρM/S(X) = ρ(S∪ X)−ρ(S). The restriction of M to the set S is the matroid
M |S with ground set S and independent sets M |S = {I ∈ M | I ⊆ S}.

Proof of Lemma 1 Assume that the set

A = {u ∈ U | F[u] �= D[u]}

is non-empty. Let

u = argmin{min(F[u], D[u]) | u ∈ A },

where ties are broken arbitrarily. Then D[u] �= F[u]; suppose that D[u] > F[u].
Then for any v ∈ A, our choice of u implies that D[v] ≥ min(D[v], F[v]) ≥
min(D[u], F[u]) = F[u]; and for any v /∈ A, we have D[v] = F[v] by defini-
tion. In either case one of the inequalities required by condition (1) fails, so F is not
maxmin-fair. Put differently, we have shown the following implication:

F is maxmin-fair 	⇒ D[u] < F[u].
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Similarly,

D is maxmin-fair 	⇒ F[u] < D[u].

But then F and D cannot both be maxmin-fair. The only way out of this contradiction
is to conclude that A is empty.

Proof of Theorem 1 	⇒ Let F bemaxmin-fair and consider any other distribution D.
We need to show that F ↑ � D ↑ (that is, F ↑ is lexicographically largest). Define

A = {u ∈ U | F[u] �= D[u]}.

If A is empty, the claim is trivial; otherwise let

u = argmin{F[u] | u ∈ A} and B = {v ∈ U | F[v] < F[u]}.

Note that u ∈ A ⊆ B by our choice of u. If D[u] > F[u], from the maxmin-
fairness of F we infer the existence of v ∈ A ⊆ B such that D[v] < F[u]. This also
holds if D[u] < F[u] (then we can take v = u). In any case we have

min{D[v] | v /∈ B} < F[u] = min{F[v] | v /∈ B}
and D[v] = F[v] < F[u] ∀v ∈ B.

It is readily verified that this implies F ↑ � D ↑ .
⇐	 Let F be a distribution which is not maxmin-fair. We show that F is not

lexicographically largest either. Since (1) does not hold for F , there exists another
distribution D and a user u ∈ U such that

D[u] > F[u] and (D[v] < F[v] 	⇒ F[v] > F[u]) ∀v. (6)

For any ε ∈ (0, 1), let Xε denote the distribution picking F with probability 1− ε and
D with probability ε, so that

Xε[v] = F[v] + ε(D[v] − F[v]) ∀v.

Choose ε > 0 small enough so as to guarantee that

(F[v] < F[u] 	⇒ Xε[v] < Xε[u]) ∀v (7)

and

(F[v] > F[u] 	⇒ Xε[v] > Xε[u]) ∀v. (8)

For instance, any

ε < min

{ |F[u] − F[v]|
|D[v] − F[v]| + |D[u] − F[u]|

∣∣∣F[v] �= F[u]
}
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will do. We have, by (6),

(F[v] ≤ F[u] 	⇒ D[v] ≥ F[v] 	⇒ Xε[v] ≥ F[v]) ∀v (9)

and D[u] > F[u]. (10)

But (7), (8), (9) and (10) say that Xε ↑ is strictly larger than F ↑ in lexicographical
order, as we wished to show.

The following two analogues of Lemma 1 and Theorem 1 are also needed for the
proof of Theorem 2:

Lemma 7 If F and D are both minmax-Pareto, then F[u] = D[u] for all u ∈ U .
Proof Assume that the set

A = {u ∈ U | F[u] �= D[u]}

is non-empty. Let

u = argmax{max(F[u], D[u]) | u ∈ A },

where ties are broken arbitrarily. Then D[u] �= F[u]; suppose that D[u] < F[u].
Then for any v ∈ A, our choice of u implies that D[v] ≤ max(D[v], F[v]) ≤
max(D[u], F[u]) = F[u]; and for any v /∈ A, we have D[v] = F[v] by definition.
In either case one of the inequalities required by the definition of minmax-Pareto
efficiency fails. Put differently, we have shown the following implication:

F is minmax-Pareto 	⇒ D[u] > F[u].

Similarly,

D is minmax-Pareto 	⇒ F[u] > D[u].

But then F and D cannot both be minmax-Pareto. The only way out of this contradic-
tion is to conclude that A is empty. ��
Theorem 14 For matroid problems, a distribution F is minmax-Pareto if and only if
F is Pareto-efficient and F ↓ � D ↓ for all Pareto-efficient distributions D.

Proof First observe that, for matroids, a distribution is Pareto-efficient if and only if
it is supported over bases. For any distribution D of bases over a matroid M with
ground set L , consider the distribution D∗ of (L\X | X ∼ D) of bases over the
dual matroid M∗. Then we have D[u] + D∗[u] = 1 for all u ∈ L , so clearly F is
minmax-Pareto if and only if F∗ is maxmin-fair, which (by Theorem 1) occurs if and
only if F∗ is lexicographically largest for M∗, which in turn is equivalent to F being
lexicographically smallest among distributions of bases of M , as we wished to show.

��
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Our next result asserts that the only obstruction to achieving high satisfaction prob-
ability for every user is the existence of a set of users with small rank-to-size ratio.
Finding these obstruction sets will enable us to devise a divide and conquer strategy
to obtain fair distributions. For instance, in Example 1 the obstruction set is given by
the set of users {a1, a2, a3}, which force the maximum satisfaction probability to be
no larger than 2

3 .

Theorem 15 Let M be a matroid with ground set L and rank function ρ : 2L → N.
The minimum satisfaction probability in a minmax-fair distribution over M is

π(M) = min

{
ρ(X)

|X | | ∅ �= X ⊆ L

}
.

Proof Any maxmin-fair distribution is supported on the collection B of bases of M ,
since extending an independent set to a base containing it never decreases any sat-
isfaction probability. Optimizing the smallest satisfaction probability λ1 amounts to
finding a suitable distribution over B; let us denote the corresponding probabilities by
{pB}B∈B. Since the probability of v ∈ U being included is

∑
v∈B pB , maximizing

the minimum such probability is modeled by Program (11) below. It may be written
as a linear program by introducing an additional variable λ to be maximized, and
introducing the constraints

∑
B"v pB ≥ λ. Its dual is equivalent to (12).

max min
v∈U

∑

B"v

pB

s.t.
∑

B∈B
pB = 1

pB ≥ 0

(11)

min max
B∈B

∑

v∈B
zv

s.t.
∑

v∈U
zv = 1

zv ≥ 0.

(12)

Observe that maxB∈B
∑

v∈B zv is the value of a maximum-weight base of M , with
weights given by {zv}v∈U . Thus LP (12) encodes the task of finding an assignment
of weights to elements of U minimizing the maximum weight of a base. We will turn
this min–max problem into a pure minimization problem.

Edmonds (1971) showed that for any fixed assignment of non-negative weights to
the elements of M , a maximum-weight base may be found via the greedy algorithm
that examines each element in order of decreasing weight and adds it to the current
set if its addition does not violate independence. Let Π denote the set of permutations
of U = {1, 2, . . . , n}. Write
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Δ =
{
z ∈ R

U ∣∣
∑

v∈U
zv = 1, zv ≥ 0 ∀v ∈ U

}

for the probability simplex onU and letG(π) = {z ∈ Δ | zπ(1) ≥ zπ(2) ≥ · · · ≥ zπ(n)}
denote the elements of Δ which become sorted after applying permutation π ∈ Π .

Note that if z, z′ ∈ G(π), then the two bases obtained via the greedy algorithm
with vertex weights {zv} and {z′v} are the same. For each π ∈ Π , let B(π) denote the
base obtained via the greedy algorithm; Edmond’s result may then be written as

max
B∈B

∑

v∈B
zv =

∑

v∈B(π)

zv if z ∈ G(π).

By LP (12), the fairness parameter π(M) is

min
z∈Δ

max
B∈B

∑

v∈B
zv = min

π∈Π
min

z∈G(π)
max
B∈B

∑

v∈B
zv = min

π∈Π
min

z∈G(π)

∑

v∈B(π)

zv. (13)

We claim that, for each π ∈ Π and each non-empty X ⊆ U ,

min
z∈G(π)

∑

v∈X
zv = min

i∈[n]
|X ∩ π([i])|

i
, (14)

where π([i]) = {π(1), . . . , π(i)}.
This means that, if we are given advice on the permutation π which sorts an optimal

solution z to LP (12), then we can find another solution ẑ with the same value and
whose non-zero weights are evenly distributed among the top t elements of z in sorted
order, for some t ∈ [n]. For some optimal t , each of the t non-zero values of ẑi is
either 0 or 1/t . To see this assuming 14, notice that we can construct such ẑ by setting
ẑπ(i) = 1

t for 1 ≤ i ≤ t and ẑ j = 0 for j /∈ π([t]).
To see why (14) holds, define dn = zπ(n) and di = zπ(i) − zπ(i+1) ≥ 0 for

0 < i < n. Then zπ(i) = ∑
j≥i di , hence

∑

v∈X
zv =

∑

i∈[n]

⎛

⎝1[π(i) ∈ X ] ·
∑

j≥i
di

⎞

⎠ =
∑

j∈[n]
d j · |X ∩ π([ j])|.

The conditions
∑

v∈U zv = 1 and z ∈ G(π) then become
∑

i i · di = 1 and di ≥ 0.
Therefore

min
z∈G(π)

∑

v∈X
zv = min

⎧
⎨

⎩
∑

i∈[n]
di · |X ∩ π([i])|

∣∣∣
∑

i∈[n]
i · di = 1, di ≥ 0

⎫
⎬

⎭ .

The quantity in the right-hand side equals the smallest ratio (among all i) between
the coefficient of di in the objective function (|X ∩ π([i])|) and in the only equality
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constraint, proving (14). From (13) and (14) the theorem follows, because the greedy

algorithm satisfies |B(π) ∩ π([i])| = ρ(π [i]) for all i , so if S∗ = argminS⊆U
ρ(S)

|S| ,

then for any π ∈ Π we have

min
z∈G(π)

∑

v∈B(π)

zv = min
i∈[n]

|B(π) ∩ π([i])|
i

= min
i∈[n]

ρ(π([i]))
|π([i])| ≥ ρ(S∗)

|S∗| ,

and equality holds for any permutation where the elements of S∗ precede those of
U\S∗. ��
Theorem 16 Let M be a matroid with ground set L and rank function ρ : 2L → N.
The maximum satisfaction probability in a minmax-Pareto distribution over M is

Π(M) = max

{
ρ(L) − ρ(X)

|L\X | | ∅ ⊆ X � L

}
.

Proof Apply Theorem 15 to the dual matroid of M . ��
An extension of Theorem 15 allows us to compute the satisfaction probability of

every element of L .

Lemma 8 Define a sequence of sets B1, B2, . . . , Bk iteratively by:

Bi is a maximal set X ⊆ L\Si−1 minimizing
ρ(X ∪ Si−1) − ρ(Si−1)

|X | ,

where Si =
i⋃

j=1

Bj . (15)

We stop when Si = L (which will eventually occur as the sequence {Si } is strictly
increasing). Then for every i, u ∈ Bi , the satisfaction probability of u in a maxmin-
fair distribution F is λi = ρ(Bi )|Bi | .

(Maximality of each Bi is not required for the conclusion to hold, but its inclusion
guarantees uniqueness of the sets thus defined, owing to the submodularity of ρ.)

Proof We reason by induction on the number k of sets. First, observe that Theorem 15
implies F[u] ≥ λ1 for all u ∈ L . As the expected number of satisfied elements within
B1, which obviously cannot exceed ρ(B1) = λ1|B1|, is equal to

EA∼F [|A ∩ B1|] =
∑

u∈B1
F[u] ≥ λ1|B1| (16)

by linearity of expectation, the equality F[u] = λ1 must hold for all u ∈ B1. If k = 1,
this shows the result.

If k > 1, let D1 be a maxmin-fair distribution for the restriction M |B1 of M to
B1 and let D2 be a maxmin-fair distribution for the contraction M/(L\B1) of M to
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the remaining elements L\B1. Since restriction does not change the rank function
within B1, D1 satisfies D1[u] = F[u] = λ1 for all u ∈ B1. The rank function of the
contraction M/(L\B1) is ρM/B1(X) = ρ(X ∪ B1)− ρ(B1), so by applying rule (15)
iteratively we obtain the same sequence of sets B2, . . . , Bk (excluding B1), and by the
induction hypothesis D2 satisfies D2[u] = λi for all i ≥ 2, u ∈ Bi . It remains to be
shown that D2[u] = F[u] for all u /∈ B1.

Denote by [D1 ∪ D2] the distribution of (A ∪ B | A ∼ D1, B ∼ D2). This
is a distribution over independent sets of M by the following property of matroid
contractions [see Lawler (1976)]:

for any base B of M |B1,a subset I ⊆ L\B1 is independent in M/B1

if and only if I ∪ B1 is independent in M . (17)

On the other hand, for any set A in the support of a maxmin-fair distribution F , the
set A ∩ B1 must be a base of M |B1 (or else Eq. (16) would fail). Let F2 denote the
distribution (A\B1 | A ∼ F); by (17), F2 is a distribution over elements of the
contraction M/B1.

To complete the proof, observe that F ↑� [D1 ∪ D2] ↑ by Theorem 1 because
F is maxmin-fair. As F[u] = D1[u] < F[v], D[v] for u ∈ B1, v ∈ L\B1, the
fact that F ↑� [D1 ∪ D2] ↑ implies F2 ↑� D2 ↑, and the maxmin-fairness of D2
allows us to deduce that F2 ↑= D2 ↑. Hence, by Lemma 1, for all v /∈ B1 we have
F[v] = F2[v] = D2[v].

��
Similarly, we have the following for minmax-fairness.

Lemma 9 Define a sequence of sets B ′
1, . . . , B

′
k′ iteratively by:

B ′
i is a maximal set X ⊆ S′i maximizing

ρ(S′i ) − ρ(S′i\X)

|X | ,

where S′i = L\
i−1⋃

j=1

B ′
j (18)

We stop when S′k = ∅. Then for every i, u ∈ B ′
i , the satisfaction probability of u in a

minmax-Pareto distribution F is λ′i = ρ(B′
i )

|B′
i | .

Proof We argue by induction on k. First, observe that Theorem 16 implies F[u] ≤
λ′1 for all u ∈ L . The expected number of satisfied elements within B1 cannot be
below λ′1|B1| for any Pareto-efficient distribution F , otherwise we would have the
contradiction

ρ(L) = EA∼F |A| = EA∼F [|A ∩ B1|] + EA∼F [|A\B1|] < λ′1|B1| + ρ(L\B1) = ρ(L).
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On the other hand,

EA∼F [|A ∩ B1|] =
∑

u∈B1
F[u] ≤ λ′1|B1| = ρ(B1) (19)

by linearity of expectation, so the equality F[u] = λ′1 must hold for all u ∈ B1. If
k = 1, this shows the result. The rest of the proof is completely analogous to that of
Lemma 8, except that we use Theorem 14 and Lemma 7 in place of Theorem 1 and
Lemma 1. ��
Proof of Theorem 2 It suffices to prove the equivalence (1)⇔ (2). Inded, if it holds, then
a maxmin-fair distribution simultaneously maximizes the minimum satisfaction prob-
ability and minimizes the maximum satisfaction probability (among Pareto-efficient
distributions), hence it also minimizes the largest difference between two satisfaction
probabilities. An easy inductive argument (omitted) shows that the equivalence (1)⇔
(3) then follows.

To show that (1) ⇔ (2), consider the sequence B1, . . . , Bk from Lemma 8 and
the sequence B ′

1, . . . , B
′
k′ from Lemma 9. It suffices to show that they are the same

sequence in reverse: k = k′ and Bi = Bk′+1−i for all i .We proceed from top to bottom,
showing by induction that for each value of i from 1 to k, B ′

i = Bk+1−i . Consider any
Z ∈ Si+1 = Si ∪ Bi+1, which may be split into Z = X ∪Y where X ⊆ Si = ⋃

j≤i B j

and Y ∈ Bi+1. Then we have

ρ(Z) − ρ(Si ) ≥ ρ(Si ∪ Y ) − ρ(Si ) ≥ λi+1|Y |,
where the first inequality is by submodularity of ρ, and the second by construction of
Bi+1 (15). On the other hand,

ρ(Si+1) − ρ(Si ) = λi+1|Bi+1|,
hence

ρ(Si+1) − ρ(Z)

|Si+1\Z | ≤ λi+1|Bi+1| + ρ(Si ) − (λi+1|Y | + ρ(Si ))

|Bi+1\Y | = λi+1.

Notice that equality holds when Z = Si , so Si maximizes ρ(Si+1)−ρ(Z)
|Si+1\Z | over all Z ⊆

Si+1. Using (18) and the induction hypothesis, this means that B ′
k′+1−i = Bi , as we

wished to show.

Appendix B: Proofs for Sect. 4: a polynomial-time algorithm for
maxmin-fair matching

Proof of Corollary 3 From Theorem 3 it follows that, when ρ(L) = |R|, the rank
function of a bipartite matching problem is given by

ρ(S) = min
T⊆S

|Γ (T )| + |S| − |T |. (20)
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Define

α = max
S�L

|Γ (L)| − |Γ (S)|
|L\S| ; β = max

S�L

ρ(L) − ρ(S)

|L\S| .

In view of Theorem 16 and the equivalence between maxmin and minmax fairness for
matroid problems (Theorem 2), it suffices to show that α = β. Since ρ(L) = |Γ (L)|
and ρ(S) ≤ |Γ (S)| for all S, inequality α ≤ β is immediate. To show that β ≤ α, it
suffices to prove that ρ(L)−ρ(S)−α|L\S| ≤ 0 for all S ⊆ L . This follows from (20)
and the fact that α ≤ β ≤ 1:

ρ(L) − ρ(S) − α|L\S| = max
T⊆S

|Γ (L)| − |Γ (T )| − |S| + |T | − α|L\S|
≤ max

T⊆S
α|L\T | − |S\T | − α|L\S|

≤ 0.

Lemma 10 Define a sequence of sets B1, B2, . . . , Bk iteratively by:

Bi is a maximal set X ⊆ L\Si−1 minimizing
|Γ (X ∪ Si−1)| − |Γ (Si )|

|X | ,

where Si =
⋃

j<i
Bi . (21)

Stop when Sk = L. Then for every i, u ∈ Bi , the satisfaction probability of u in a
maxmin-fair distribution F is λi = |Γ (Bi )||Bi | , and any w ∈ Γ (Bi )\Γ (Si−1) is matched
to some u ∈ Bi with probability 1.

Proof Since the sequence S0, S1, . . . is strictly increasing (with respect to inclusion)
and L is finite, there exists some k such that Sk = L .

For each i = 0, . . . , k, let Hi denote the graph (G/Si−1)|L\Si−1
, i.e., the result of

removing the vertices in Si−1 and all their incident edges. For i = 1, . . . , k, we argue
by induction on i that the coverage probabilities of F outside of Si−1 coincide with
those of a maxmin-fair distribution for Hi ; and and moreover the probabilities are as
prescribed by the statement of the lemma.

The case i = 1 is trivial, so assume i > 1. By Corollary 2, there is a distribution of
matchings in Hi withminimumsatisfaction probability at leastλi ; the expected number
of covered elements from Bi is then at least λi |Bi | = |Γ (Bi )\Γ (Si−1)| = |ΓHi (Bi )|.
Hence equality must always hold, and the maxmin-fair distribution Fi for Hi has
satisfaction probability precisely λi for all u ∈ Bi . By the induction hypothesis,
F[u] = Fi [u] = λi for all u ∈ Bi . Now observe that the neighbors of Bi that
belong to Si−1 are already matched with probability 1. There are only |ΓHi (Bi )| other
neighbors, and since the expected number of covered neighbours of Bi in F is equal to
|ΓHi (Bi )|, it follows that anyw ∈ ΓHi (Bi ) is matched to some v ∈ Bi with probability
1 in F . In particular, in F no element of ΓHi (Bi ) is matched to any vertex outside
Bi with non-zero probability, so the satisfaction probabilities of F outside of Si must
coincide with those of of a maxmin-fair distribution for Hi+1. ��
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Lemma 11 For any two distinct fairly isolated sets X and Y , either X ⊆ Y or Y ⊆ X
holds.

Proof By Corollaries 2 and 3, X �= ∅ is fairly isolated if and only if X = L or

Π(G|X) = max
S�X

|Γ (X)| − |Γ (S)|
|X\S| < π(G/X) = min

T�X

|Γ (T )| − |Γ (X)|
|T \X | .

For any two sets A, B such that A � B, define d(A | B) = |Γ (A∪B)|−|Γ (B)|
|A\B| . Then we

can rewrite the definition of fair isolation (including the case X = L) as:

X is fairly isolated ⇔ d(X | S) < d(T | X) ∀ S � X , T � X .

Now assume for contradiction X and Y are fairly isolated but X\Y and Y\X are
both non-empty. Then d(X | X ∩ Y ) and d(Y | X ∩ Y ) are well defined; assume
without loss of generality that d(X | X ∩ Y ) ≤ d(Y | X ∩ Y ). Then

d(X | X ∩ Y ) ≤ d(Y | X ∩ Y ) < d(X ∪ Y | Y ),

where we used the fair isolation of Y . But this contradicts the submodularity of Γ . ��
Proof of Theorem 5 Let B ′

1, . . . , B
′
k be the sequence of sets given by Lemma 10 and

define S′i = ⋃
j≤i B ′

i , λ′i = Γ (S′i∪B′
i )−Γ (S′i )

|B′
i | and λ′0 = 0. We show that S′1, . . . , S′k

comprise all fairly isolated sets.Assuming this for themoment, notice that by definition
these sets form a chain, and the sets B ′

1, . . . , B
′
k satisfy property (a) by Lemma 10.

Part (b) follows then by applying the fair decomposition to the dual of the matching
matroid, using Corollary 3, and recalling that maxmin-fairness and minmax-Pareto
efficiency are equivalent for matroids (Theorem 2).

To see that S′1, . . . , S′k−1 are fairly isolated, notice that S
′
k = L indeed is by defini-

tion, whereas for i < k we have Π(G|S′i) = maxu∈S′i F[u] = λ′i < λ′i+1 = π(G/S′i ).
This meets the definition of fair separation from Sect. 4.4.

The fact that the fairly isolated sets form a chain is a direct consequence of
Lemma 11. Finally, assume for contradiction that some fairly isolated set X exists
other than S′1, . . . , S′k . Then S′i � X � S′i+1 for some i, 0 ≤ i < k. Then we have

λ′i+1 ≤
|Γ (X)| − |Γ (S′i )|

|X\S′i |
<

|Γ (S′i+1)| − |Γ (X)|
|S′i+1\X |

, (22)

where the first inequality is by construction of B ′
i+1 and S′i+1, and the second by the

fair isolation of X . But then

λ′i+1|S′i+1\X | + |Γ (X)| < |Γ (S′i+1)| = |Γ (S′i )| + λ′i+1|B ′
i |,

i.e.,

|Γ (X)| − |Γ (S′i )| < λ′i+1|X\S′i |,
contradicting (22).
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