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Excitation transfer through open quantum networks: Three basic mechanisms
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A variety of open quantum networks are currently under intense examination to model energy transport in
photosynthetic systems. Here, we study the coherent transfer of a quantum excitation over a network incoherently
coupled with a structured and small environment that effectively models the photosynthetic reaction center. Our
goal is to distill a few basic, possibly universal, mechanisms or effects that are featured in simple energy-transfer
models. In particular, we identify three different phenomena: the congestion effect, the asymptotic unitarity, and
the staircase effects. We begin with few-site models, in which these effects can be fully understood, and then
proceed to study more complex networks similar to those employed to model energy transfer in light-harvesting
complexes.
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I. INTRODUCTION

The transport of electronic excitations over biological
networks of chromophores is the relevant mechanism for
the light-harvesting step of photosynthesis.1–6 Recently, long-
lived quantum coherent oscillations have been observed in
ultrafast experiments carried out on several biological systems,
even at room temperature.7–12 One of the key features of these
exciton-transfer networks is their open nature, namely, that
their coupling with the protein vibrational environment is, ar-
guably, the dominant effector of transport in these systems. The
interplay of unitary dynamics and the system-bath interaction
has been predicted to be beneficial to the network functionality
at biological conditions.13–22 The competition between exciton
delocalization and environment-induced relaxation among
excitons has been studied for a long time2–4,6,7,15,18,20 (see
also the book23). Realistic numerical modeling of these open
quantum networks is, to some extent, possible and currently
actively pursued in the physical chemistry community.20,24–33

Nevertheless, the physical chemistry and quantum informa-
tion community has learned much from simple Markovian
models.14,17,26,32

In this paper, motivated by the above, we will investigate a
few simple yet illuminating models of open quantum networks
in order to identify a handful of basic mechanisms or effects
that are featured in fully analyzable toy models and that may
persist for larger, more complex quantum transport networks.
In particular, we will focus on coherently coupled qubits
subject to dissipation and dephasing and irreversibly connected
to an auxiliary quantum system. The role of the latter is to
model the reaction center of light-harvesting complexes, where
the electronic excitation is separated into an electron and a
hole and the charge-transfer stage of photosynthesis begins. Of
interest to us is the reaction center of the LH1-RC complexes
present in purple bacteria.1,2,26,34 We will adopt a Markovian
master equation of the Lindblad form to describe the overall
system dynamics. Different energies, or equivalently time
scales, will enter the definition of the Liouville superoperator
L. The interplay of these time scales controls the nontrivial
phenomenology that we explore in this paper. Finally, singling

out a few intriguing, possibly universal features of such
a phenomenological landscape is the goal of the simple
calculations presented in this paper.

In the next three sections (II, III, and IV), we will
consider different toy models consisting of few sites or
chromophores (modeled as quantum two-level systems, or
qubits), manifesting particular features, which can be fully
understood by analytical calculations. See Fig. 1 for a cartoon
picture of the various networks considered. In Sec. V, we
consider more realistic networks borrowed from models of
light-harvesting complexes. Via numerical simulations, we
show that these effects may persist in more realistic systems.

II. THE CONGESTION EFFECT

In exciton and electron transfer events, there can be
delays in energy transport due to the time scales of the
biological process. A particular element might be shut down
while transport takes place, effectively making an exciton or
electron wait until the transport is possible.35 In the following
section, we describe this phenomenon in model systems and
characterize it as the congestion effect.

In the standard modeling of incoherent (and irreversible)
transfer of excitations from one site to another, the Förster
electromagnetic coupling mechanism permits the transfer of
populations at a given rate γ . If the dynamics is described
using a Lindblad form ρ̇ = LL(ρ), where LL(X) = LXL† −
{L†L,X}/2, this can be accounted for by a jump operator
of the form L = √

γ σ− ⊗ σ+, where σ± are Pauli ladder
operators. In the actual transfer process, excitations may spread
on complicated pathways, interact with external modes, and
so on. In most cases, the detailed microscopical process that
gives rise to such a transfer term are to a large extent unknown,
and this motivates the simple phenomenological Lindbladian
given above. On the basis of the detailed balance condition, this
one-way transfer must always be accompanied by the reverse
process, which transfers excitations in the opposite direction
(see, e.g., Ref. 36). The backward transfer rate γback satisfies
approximately γback/γ ≈ e−�F/kT . Here, aiming at simplicity,
we will neglect the effect of backward process; in other words,
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FIG. 1. (Color online) Summary of the toy networks analyzed
analytically in Secs. II and III.

we will assume that the free-energy difference �F is large as
compared to the temperature.

Later on, we will model that part of light-harvesting
complexes where the exciton is finally transferred to the
reaction center via a one-way process as done elsewhere in
the literature.14,15,17,18,26,28,29,32 However, we will move from
this simple phenomenological picture by adding different
layers of complexity. More precisely, we will give the reaction
center a richer structure allowing it to accommodate for more
than one exciton and/or we will split the trapping process
in two by adding an extra, fictitious site, with the aim of
introducing another time scale in the trapping process (γ −1

b in
Fig. 1).

In this section, we explore possible congestion effects that
arise from the dependence of the transfer rate on the number
of excitations involved, in the same way traffic flow might be
inversely proportional to the number of vehicles present on
roads.

Incoherent transfer I: • γ� •. Before turning to analyze
the possible implementations and consequences of such an
effect, let us summarize the Lindblad operators for incoherent
Förster transfer among two sites L = √

γ σ−
1 σ+

2 . This process

can be pictorially visualized by the following diagram: • γ� •
(see also Fig. 1). The quantum master equation is given
simply by ρ̇ = LL(ρ). We denote by n the population operator
satisfying n|η〉 = η|η〉 with η = 0,1, and by n its possibly
time-dependent expectation value for excitations, i.e., n =
〈n〉 := tr(nρ). Since the effect of the Lindbladian is to transfer
a particle from site 1 to site 2, the total number operator
is a conserved quantity. We therefore obtain a differential
equation for the population in the following way: first note
that ṅi = tr(ni ρ̇) = tr[niLL(ρ)]. Given that n1 + n2 = ntot is
constant in time, it suffices to analyze the population of site 1,
ṅ1 = −γ n1 + γ 〈n1n2〉. Now note that, in the single-particle
sector, ntot = 1, 〈n1n2〉 = 0 (to see this, use n2

tot = ntot +
2n1n2), leading to a transport equation ṅ1 = −γ n1 that can be
readily solved for the population at sites 1, n1(t) = e−γ tn1(0),
and 2, n2(t) = n2(0) + (1 − e−γ t )n1(0). The jump operator
achieves precisely what we expected: the population in site
1 decreases exponentially at a rate γ and the population
of site 2 increases accordingly. The same result could have
been obtained by solving the (16-dimensional) differential
equation for the full density matrix. Starting at time zero with

ρ(0) = {ρi,j }, the time-evolved density matrix ρ(t) in the basis
{|11〉, |10〉, |01〉, |00〉} is⎛
⎜⎜⎝

ρ1,1 e−γ t/2ρ1,2 ρ1,3 ρ1,4

e−γ t/2ρ2,1 e−γ tρ2,2 e−γ t/2ρ2,3 e−γ t/2ρ2,4

ρ3,1 e−γ t/2ρ3,2 (1−e−γ t )ρ2,2 + ρ3,3 ρ3,4

ρ4,1 e−γ t/2ρ4,2 ρ4,3 ρ4,4

⎞
⎟⎟⎠ .

It is interesting to note, in passing, that for some entangled
initial states, the asymptotic density matrix ρ(t → ∞) is
still entangled. The process LL can not, however, create
entanglement.

Incoherent transfer II: • � �. We now allow the second
site to accommodate for more than just one exciton. Accord-
ingly, we replace the second qubit with a larger d = 2s + 1
dimensional space. One can then act on the second site with
irreducible spin s representation of SU(2) operators.

For this case, we can model a particle-conserving transfer
process with a jump operator given by L = √

γ σ−
1 S+

2 , where
S+

2 is a raising operator of the irreducible spin s representation
of SU(2). The population at site 2 is N2 = Sz

2 + s1I. Once
again, since the total particle number ntot = n1 + N2 is con-
served in a given particle sector, one has ntot(t) = ntot. We then
obtain the following differential equation for population at site
1: ṅ1 = −γ 〈n1S

−
2 S+

2 〉. By noting that S−
2 S+

2 = (N2 + 1)(2s −
N2), and employing N2 = ntot − n1, N2

2 = n2
tot − 2ntot − 1 +

2n1, and n2
1 = n1, we obtain an explicit differential equation

for n1:

ṅ1 = −γ ntot[(2s + 1) − ntot] n1,

n1 + N2 = ntot.

Excitation transfer now occurs at an effective rate, which
depends on the total population: γeff = γ ntot[(2s + 1) − ntot].
Note that 0 � ntot � 2s + 1 and, correctly, γeff(ntot = 0) =
γeff(ntot = 2s + 1) = 0, i.e., no transfer takes place when
the network is either completely empty or completely full.
The maximum transfer rate is attained when the condition
ntot = (2s + 1)/2 is satisfied. The lesson we get from this
slightly modified example is that transferring excitations to an
object with more than just two levels is likely to result in a
population-dependent transfer rate.

Interplay between coherent hopping and transfer: • J↔
• γ� • γb� •. We will further illustrate the concept above
by considering a variation on the theme. We consider a
coherent-hopping Hamiltonian on four sites of the form
H = (J/2)(σ−

1 σ+
2 + H.c.) that acts on the first two sites. The

excitations are transferred irreversibly from site 2 to site 3 via
a quantum jump operator L = √

γ σ−
2 σ+

3 and, subsequently,
from site 3 to site 4 with Lb = √

γbσ
−
3 σ+

4 . J is the coherent
coupling strength. In the following, we explore the interplay
between the two incoherent transfer rates γ and γb. Let us
focus on the population at site 3, n3(t). The effect of γb is
that of removing excitation population from site 3. However,
when γb becomes large, excitations are rapidly transferred to
site 4, inhibiting the effect of Lb [Lb(ρ) → 0]. This results
in a nontrivial nonmonotonic effect as a function of γb. This
feature can be visible only if we have at least two particles in the
network. Let us then consider the following initial (pure) state
with excitations localized at sites 1 and 2: |1,1,0,0〉. As shown
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in Fig. 3, in this case, the time evolution of the populations
takes the following form:

n1(t) = C1e
−γ t + C2e

−γ t/2 + C3(t)e−tγb

+C4e
−t(γ+ω)/2 + C5e

−t(γ−ω)/2,

n2(t) = C ′
1e

−γ t + C ′
2e

−γ t/2 + C ′
3(t)e−tγb

+C ′
4e

−t(γ+ω)/2 + C ′
5e

−t(γ−ω)/2,

n3(t) = 1 + B1(t)e−tγb + B2e
−tγ + B3e

−tγ /2

+B4e
−t(γ+ω)/2,

n4(t) = γ (1 − e−tγb ) − γb(1 − e−tγ )

γ − γb

,

where Ci, C
′
i , Bi are only functions of J, γ, γb, and C3, C

′
3, B1

are functions of time as well. Finally, ω =
√

γ 2 − 4J 2,
resulting in an imaginary eigenvalue of the Liouvillian for
2|J | > γ . This, in turn, shows up in an oscillating behavior
of the populations as a function of time. In Fig. 2, the
behavior of population 3 as a function of time and γb

is plotted for the given values of J and γ . For large
values of t , one can observe a nonmonotonic behavior as
a function of γb emphasized in the bottom panel of Fig. 2.
This behavior can be qualitatively understood as follows.
Consider the behavior of n3 as a function of γb for a large
fixed time t̃ . Since the effect of γb is that of taking away
particles from site 3, n3 first decreases when γb is increased
from zero at fixed t̃ . Anyway, if γb is further increased,
excitations are taken away at a faster rate and transferred
to site 4. This means that, at the fixed time t̃ , site 4 tends
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FIG. 2. (Color online) (a) 3D plot of the population n3 for the
case described in Sec. II, as a function of time and γb. In this model,
the initial state has two excitations at sites 1 and 2: |1,1,0,0〉. The
parameters for the model are J = 1, γ = 0.1. (b) Slices of the same
plot at different times are shown. The nonmonotonic behavior of the
population as a function of the rate γb is evident at small values
of it.
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FIG. 3. (Color online) 3D plot of n3 as a function of time and
γb. Initial state has one excitation at site 1: |1,0,0,0〉. Parameters are
J = 1, γ = 0.05.

to get full for large γb, thus inhibiting the effect of Lb.
Population n3 then increases with γb. When γb is further
increased, site 4 becomes effectively full and Lb is turned
off, the population becomes then independent of γb, and n3

saturates.
For the sake of completeness, we also consider the so-

lution with one excitation localized at site 1, i.e., |1,0,0,0〉
at time t = 0. In this case, the time dependence of the
populations is

n1(t) = e−tγ /2

ω3

[
− 2J 2ω + (γ 2 − 2J 2)ω cosh

(
tω

2

)

+ γω2 sinh

(
tω

2

) ]
,

n2(t) = 2J 2e−tγ /2

ω2

[
cosh

(
tω

2

)
− 1

]
,

n3(t) = A1e
−tγb + A2e

−tγ + A3e
−t(γ+ω)/2 + A4e

−t(γ−ω)/2,

n4(t) = 1 −
3∑

i=1

ni(t),

where Ai are time-independent functions of the parameters.
One can see in Fig. 3 that the nonmonotonic behavior of
n3 as a function of γb is, for this initial condition, absent.
As expected, since in the network there are no excitations
enough to fill the reaction center, the “congestion effect” is now
absent.

III. THE STAIRCASE EFFECT

In this section, we explore the situation where excitons are
fed into a quantum network at a given constant rate γin and are
extracted at a rate γout. This model can be justified by the fact
that some photosynthetic complexes such as purple bacteria
and green-sulfur bacteria37 live in low-light conditions. The
electron-transfer event that occurs in the reaction center is
a process that takes place in the order of picoseconds. We
therefore take the common practice of modeling the reaction
center as an incoherent trap.14

Injection-extraction:
γin� • J↔ • γout�. Here, we consider the

simplest model for the injection and extraction of an exciton.
The model corresponds to two sites coupled coherently via
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the hopping Hamiltonian H = (J/2)(σ−
1 σ+

2 + σ+
1 σ−

2 ). Aside
from the coherent evolution term, an incoherent injection of
excitons is given by a jump operator Lin = √

γinσ
+
1 , which

injects particles at a rate γin and a corresponding incoherent
extraction term Lout = √

γoutσ
−
2 .

The corresponding 16 × 16 Lindblad superoperator matrix
can be diagonalized. A complex eigenvalue with a nonzero
imaginary part gives rise to oscillating behavior in the
populations when |γin − γout| < 2|J |.

Let us first concentrate on the asymptotic state of the
evolution ρ(t → ∞). By solvingLtot(ρ) = 0, one realizes that
the asymptotic state is unique and independent of the initial
state. Although this feature is expected in natural physical
systems and follows, for instance, from the detailed balance
hypothesis, it is not necessarily satisfied in our simple toy
models (see, e.g., Sec. II).

In the standard basis {|1,1〉, |1,0〉, |0,1〉, |0,0〉}, the explicit
expression of the asymptotic state is

ρ(∞) = 1

(γin + γout)(J 2 + γinγout)

×

⎛
⎜⎜⎜⎜⎝

J 2γ 2
in

(γin+γout)
0 0 0

0 γinγout[J 2+(γin+γout)2]
(γin+γout)

iJ γinγout 0

0 −iJ γinγout
J 2γinγout

(γin+γout)
0

0 0 0 J 2γ 2
out

(γin+γout)

⎞
⎟⎟⎟⎟⎠ .

The only nonvanishing correlations are 〈σ z
1 σ z

2 〉, 〈σ z
1 〉, and

〈σ z
2 〉. Thus, this state is separable but has nonvanishing

classical correlations: 〈σ z
1 σ z

2 〉 − 〈σ z
1 〉〈σ z

2 〉 �= 0. Equivalently,
the asymptotic state is a classical mixture of states with definite
populations.

Having ρ(∞), we can compute the asymptotic populations:

n1(∞) = γin
(
J 2 + γinγout + γ 2

out

)
(γin + γout)(J 2 + γinγout)

, (1)

n2(∞) = γinJ
2

(γin + γout)(J 2 + γinγout)
. (2)

A few simple facts can be directly seen from Eqs (1) and (2).
First, for small γin, populations deviate by O(γin) from zero;
vice versa, for γout, small populations deviate by O(γout) from
one. Instead, when J is small, excitations get loaded at site 1
but take a long time to reach site 2 so that n1 = 1 − O(J 2),
n2 = O(J 2). Finally, for very large J , both populations tend
to n1 � n2 = γin/(γin + γout) + O(J−2).

Let us now turn to the dynamics and consider first the most
interesting case, namely, when the initial state is the empty
state |0,0〉. A typical result is shown in Fig. 4. An interesting
feature clearly emerges: when population n1 increases, n2

stays almost constant and vice versa. Such a feature is
particularly evident in the parametric plot. In Fig. 4(b), we
also stressed another peculiarity of this process: the time
needed to increase a given population when the other is
constant (i.e., the horizontal and vertical steps between two
red dots in Fig. 4) is always the same. We call T0 this new,
emerging, time scale. The description of the entire process
then is the following. First particles are injected at site 1 and
population at site 2 stays zero until a time T0/2. Next, for
T0/2 < t < 3/2T0, the situation is reverted and population 2
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FIG. 4. (Color online) Parameters are J = 2, γin = 0.2, and
γout = 0.3, and initial state is |0,0〉. (a) Plot of the populations as
a function of time. (b) Parametric plot with same parameters. The
red dots correspond to times given by Tn = (1/2 + n)T0, T0 = 2π/ω

(n = 1,2, . . .) and the correct frequency is ω = √
4J 2 − (γin − γout)2.

As explained in the text using general arguments, T0 = O(J −1).

increases while population 1 remains constant. The process
continues in this fashion until an asymptotic state is reached.
Given the shape of the curve in Fig. 4, we refer to this
situation as the “staircase effect.” The emerging time scale
can be given a physical interpretation considering the limit
when both injection and extraction rates are very small. In this
case, the dominant process is that dictated by the Hamiltonian
H , which represents an excitation hopping back and forth
between sites 1 and 2. The period of this oscillation is inversely
proportional to the energy-level difference �E and is therefore
of order J−1 [in math, T0 ≈ 2π/�E = O(J−1)]. It is also
clear that the populations n1(t), n2(t) must increase from zero
to reach the asymptotic values given in Eqs. (1) and (2).
The staircase effect is then an interplay between coherent
oscillations and increase of n1(t), n2(t). It is, however, a
very peculiar interplay, namely, one in which when n1(t)
grows, n2(t) stays constant and vice versa. The first part
of the curve in Fig. 4, namely, for 0 < t < T0/2, can be
understood with simple arguments. During this time window,
the population at site 1 grows, but any disturbance needs a
time T0/2 to reach the second site where, correspondingly,
the population stays zero. It would be interesting to see
whether an extension of the methods of Ref. 19 not restricted
to the zero- or one-particle sector allows us to obtain a
kinetic rate equation for the populations n1, n2 in this setting.
Such a kinetic rate equation would convey a simple classical
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FIG. 5. (Color online) Parameters are J =2, γin =0.2, γout =0.3,
and initial state is |1,0〉. (b) Parametric plot with same parameters.

description for the peculiar interplay between “oscillations”
and “growth,” which gives rise to the steplike behavior of
Fig. 4.

In general, if we substitute the two sites with an open chain
of length L, we expect (at least for small γin, γout) that T0

will be the time needed for the excitations to travel from
one side of the chain to the other, i.e., T0 ≈ L/v, where v

is the velocity of quasiparticles. Of course, this picture can be
correct only as long as a quasiparticle description applies (cf.
Sec. V C).

Let us now consider the injection-extraction dynamics with
an initial state |1,0〉, i.e., at time zero the injection site is
occupied. A typical (in the oscillating regime) scenario is
shown in Fig. 5. Starting with an initial state |0,1〉, the
situation is almost identical with n1 and n2 interchanged. In
fact, one can show that, for initial states with one definite
excitation, populations at any time satisfy the following duality
relation:

n1(γin,γout) = 1 − n2(γout,γin).

As previously explained, the asymptotic populations do not
depend on the initial populations and are still given by Eqs. (1)
and (2). The parametric plot in Fig. 5(b) shows that, with this
initial condition, the staircase effect is not present.

Three-site injection-extraction:
γin� • J↔ • J↔ • γout�. A slight

generalization of the above idea is given by a three-site chain
with injection on the first site and extraction on the third. For
simplicity, we consider a uniform chain with equal couplings
J12 = J23 = J . In this case, the asymptotic populations are

given by

n1(∞) = γin
(
J 2 + γinγout + γ 2

out

)
(γin + γout)(J 2 + γinγout)

,

n2(∞) = γin
(
J 2 + γ 2

out

)
(γin + γout)(J 2 + γinγout)

,

n3(∞) = γinJ
2

(γin + γout)(J 2 + γinγout)
.

Note that populations n1 and n3 are the same as n1, n2 in
the previous two-site case. Starting from the totally empty
state, the asymptotic state is reached in a similar manner as
in the two-site case. In particular, the parametric plot of the
injection and extraction sites [n1(t),n3(t)] displays a staircase
shape exactly as in the two-site case. As we will show in
Sec. V C, this feature survives even in a longer chain, and is
to some extent resistant to small static diagonal disorder and
dephasing.

IV. ASYMPTOTIC UNITARITY

Another effect we want to study is the possibility that a
coherent dynamics (or subdynamics) may emerge out of a
dissipative or partly incoherent dynamics. To make things more
clear, let us immediately discuss the simplest example showing
this feature.

Hopping and transfer: • J↔ • γ� •. The model consists
of three sites (qubits). On the first two sites acts a coherent
hopping of the form H = (J/2)(σ−

1 σ+
2 + σ+

1 σ−
2 ). On top of

that, particles are transferred irreversibly from site 2 to site 3
via a jump operator given by L = √

γ σ−
2 σ+

3 . It is clear that,
if a particle sits at site 3, the incoherent part of the dynamics
is not effective, that is, LL[ρ12 ⊗ |1〉〈1|] = 0. If we start with
an initial state |1,1,0〉 with sites 1 and 2 occupied and site 3
empty, for effect of the dynamics, site 3 will get populated at a
rate γ , and on the first two sites there will remain one particle
coherently hopping back and forth. By this we mean that, for
a sufficiently large time, the evolved state will be similar to
a coherent evolution: ρ(t) = etLtot [ρ] � e−itH ρ̃eitH =: ρ̃(t).
For what concerns the state ρ̃, we only know that it will
contain two particles; it can be obtained by evolving back
unitarily ρ(t), i.e.,

ρ̃ = lim
t→∞ eitH ρ(t)e−itH .

Indeed, if the dynamics becomes unitary, the above limit
is well defined. Notice that ρ̃ is nothing but the stationary
solution of the original master equation in the interaction
picture associated with H . The same reasoning can be done
for the subsystem consisting on sites 1 and 2, i.e., we can
define ρ̃1,2 by evolving back unitarily ρ1,2(t). Since H does
not act on site 3, we have ρ̃1,2 = tr3ρ̃. An explicit computation
confirms that ρ̃ = ρ̃1,2 ⊗ |1〉〈1|, i.e., in the equivalent unitary
dynamics, one particle sits at site 3. The explicit form of ρ̃1,2

in the standard basis is

ρ̃1,2 = 1

2(J 2 + γ 2)

⎛
⎜⎝

0 0 0 0
0 J 2 + 2γ 2 −iJ γ 0
0 iJ γ J 2 0
0 0 0 0

⎞
⎟⎠ .
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This state is a quantum superposition of one-particle states with
n1 = 1/2 + γ 2/2(J 2 + γ 2) and n2 = 1/2 − γ 2/2(J 2 + γ 2).

What are the possible indicators of asymptotic unitarity?
Since the purity is constant under unitary evolution, one
possibility is to look at the purity of the total system or of
some part of it. The time derivative of such a quantity will
then be close to zero for approximate unitary evolution. Since
for Lindbladian evolution the purity derivative is ∂t tr(ρ2) =
2tr[ρ(t)Ltot(ρ)], this definition has the advantage of being
numerically stable. In our toy model, we have

tr{[ρ1,2(t)]2}

= tr[ρ2] = 1 − J 2

2(J 2 + γ 2)

+ −2e−γ t [J 2 + γ 2 + γ 2 cos(J t)] + e−2γ t (3J 2 + 4γ 2)

2(J 2 + γ 2)
.

Unfortunately, the purity tends to a constant whenever the
solution tends to a constant, as happens, for instance, along the
natural process reaching the asymptotic state. In other words,
the smallness of the purity derivative is a necessary but not
sufficient condition for asymptotic unitarity.

Another possibility is to measure some distance between
the actual state and the one obtained with unitary evolution:
‖ρ(t) − ρ̃(t)‖. Once again, we might as well restrict to a
particular subsystem. Using the operator norm, the result for
our toy model is particularly simple and illuminating:

‖ρ(t) − ρ̃(t)‖ = ‖ρ1,2(t) − ρ̃1,2(t)‖ = e−γ t .

This confirms our initial intuition: the dynamics becomes
unitary at a rate γ . This approach has a very clear meaning, but
has the disadvantage of being computationally demanding as it
requires the computation of a matrix norm and the evaluation
of ρ̃(t). A simpler alternative is the following.

Consider the spectral representation of the Hamiltonian
H = ∑

n En|n〉〈n|. If the total evolution becomes similar to
a unitary evolution, the matrix elements of the density matrix
in the eigenbasis |n〉 evolve in timelike phases:

〈n|ρ(t)|m〉 � 〈n|ρ̃(t)|m〉 = e−it(En−Em)〈n|ρ̃|m〉.
In our model, the eigenbasis of the two-site Hamiltonian is
{|0,0〉, |1,1〉, |ψ±〉 = (|1,0〉 ± |0,1〉)/√2}. For instance, one
can show that

〈ψ−|ρ1,2(t)|ψ+〉 = γ

iJ + γ
[e−tγ − cos(J t) − i sin(J t)].

Pictorially, the parametric plot of the real and imaginary parts
of this matrix element folds on a circle (of radius γ /

√
J 2 + γ 2)

after a time γ −1 (see Fig. 6).
This method to mark the appearance of asymptotic unitarity,

as well as the study of the distance ‖ρ(t) − ρ̃(t)‖, has a
major advantage with respect to those based on ρ̇(t). Namely,
it allows us to discriminate between approximate unitary
evolution and the usual reach of an asymptotic state for
which ρ̇ = 0.

We would like to end this section by stressing the (almost
obvious) relation of asymptotic unitarity with the quantum-
information concept of noiseless or decoherence-free subspace
and system.38 The quantum networks considered in this paper

0.4 0.2 0.2 0.4
Re

0.4

0.2

0.2

0.4

Im

FIG. 6. (Color online) Parametric plot of real and imaginary part
of 〈ψ−|ρ1,2(t)|ψ+〉 as a function of time for the model considered in
the text. Parameters are J = 2, γ = 1.

are of hybrid type, namely, some of the intersite couplings
are coherent, i.e., hopping, and others are incoherent, i.e.,
irreversible transfer described by L. On the other hand,
the dynamics restricted to the range of the projection P :=
112 ⊗ |1〉〈1| is unitary because, as noticed in the above,
LL(PρP ) = 0. This means that the range of P is indeed
a decoherence-free subspace. Now the dynamics is such
that, for appropriate initial conditions, limt→∞ n3(t) = 1 or
equivalently limt→∞ ‖Pρ(t)P − ρ(t)‖ = 0. This means that
the asymptotic state belongs to the range of P, which in turn
implies the unitary nature of the long-time dynamics.

V. TOY MODELS FOR PHOTOSYNTHETIC COMPLEXES

In this section, we want to check if and how the effects stud-
ied so far can survive in more realistic networks. Specifically,
we will consider models that can be relevant for the description
of energy transfer in photosynthetic systems. Similar simple
modelizations of photosynthetic systems are currently under
intense investigation (see, e.g., Refs. 13, 15, 18, 19, and 26).
Differently from most of the current literature, here we want
to analyze the effect that multiexciton configurations can have
on the transfer dynamics. To this end, we will consider the
dynamics in the whole Liouville space and not restricted
to the zero- and one-exciton sectors as usually done. This
requirement results in a computational cost exponentially large
in the system size (as opposed to the standard linear growth),
which effectively limits the size of the network that can be
efficiently simulated to very short ones.

For the analysis of the congestion effect and asymptotic
unitarity, we will use the network configuration of the LH1
complex, which is made of 32 bacterioclorophyll units, limited,
however, to a very small ring (L = 4 sites). We have tried to
incorporate in our short networks most of the features that
are present in the actual LH1 complex,39,40 so that our toy
models are effectively a scaled-down version of the actual
LH1 complex.
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FIG. 7. (Color online) Toy model for LH1 complexes. N particles
on the ring interact via dimerized nearest-neighbor hopping constants
ti,i+1 = t[1 + δ(−1)i]. Each of these particles can hop to the central
site [(N + 1)th] with hopping constant J . The central site transfers
excitations incoherently to the reaction center via L = √

γ σ−
N+1σ

+
RC.

The reaction center itself is connected to a (2s + 1)-dimensional
“battery” via Lb = √

γbσ
−
RCS+

bat. The effect of external degrees of
freedom is schematized by incoherent dissipation and dephasing
processes (thin, blue, wavy lines). In actual LH1 complexes, the sites
on the ring are bacteriochlorophylls, and N = 32.

A. Congestion effect

Our motivation for the study of the “congestion effect”
originated from a careful analysis of the structure of the
reaction center in LH1-RC complexes. In most photosynthetic
bacteria, photons are captured by light-harvesting antennae
where a particle-hole exciton is created and carried to the
reaction center (RC) where eventually a redox reaction takes
place1. In the LH1-RC complexes present in purple bacteria
(purple bacteria are protobacteria that implement photo-
synthesis without producing oxygen), the light-harvesting
complex and the RC form a compact core unit. Typical
transfer times of excitations to the RC are of the order of
hundreds of picoseconds. A cartoon picture of the LH1-RC
complex is shown in Fig. 7. Yellow spheres represent the
bacteriochlorophylls forming LH1. In the purple bacterium
Rodobacter sphaeroides, there are 32 bacteriochlorophylls
(BChl) displaced on a ring surrounding the reaction center.
In Fig. 7, we display a possible structure for the RC. Instead
of treating the RC as a simple two-level system, as typically
done in the literature, we replace the RC with a structure
containing two qubits and a d-level system, which we call a
“battery.” In purple bacteria, this structure has to be imagined
sitting at the center of the ring. The first of these qubits [the
(N + 1)th] interacts via coherent dipole-dipole hopping with
the BChls of the ring. Excitations are then transferred at a
rate γ to what we call reaction center. In turn, the RC itself is
connected to larger d-level system (d = 3 in our simulations)
via irreversible transfer at a rate γb. It is the interplay between
the two time scales γ −1 and γ −1

b , and their relation to the
transfer efficiency, that we want to analyze here.

The master equation for the whole system is of Lindblad
type: ρ̇ = −i[H,ρ] + Ltot(ρ). For what we said so far, the
incoherent part is given by Ltot = LL + LLb

+ Lnoise with
L = √

γ σ−
N+1σ

+
RC and Lb = √

γbσ
−
RCS+

bat. Dissipation and de-
phasing effects are taken into account via incoherent terms
acting on the sites of the ring Lnoise = ∑N

j=1 LLj,diss + LLj,deph

with Lj,diss = √
γdissσ

−
j and Lj,deph = √

γdephnj .

Regarding the Hamiltonian of the ring degrees of freedom,
we referred to the detailed structure of couplings given in
Refs. 39 and 40. The most salient feature emerging from
the data of Ref. 40 is that the couplings present a dimerized
structure: strong coupling t+ = t(1 + δ) alternate with weak
ones t− = t(1 − δ). Indeed, instead of using all the couplings
ti,j reported,40 almost the same band structure can be obtained
using only a nearest-neighbor description with a dimerization
of δ = 0.12. Some groups have suggested the possibility that
dimerization might favor the transfer efficiency.41 Our choice
of resorting to a dimerized nearest-neighbor hopping structure
has the additional advantage of making the system scalable to
different sizes N . Hence, our choice for the Hamiltonian is

H =
N∑

j=1

tj (σ−
j σ+

j+1 + σ+
j σ−

j+1) + J (σ−
j σ+

N+1 + σ+
j σ−

N+1).

This represents N particles on a ring hopping between
neighboring sites with constants tj = t[1 + δ(−1)j ] and to
a central site N + 1 with hopping constant J . We will also add
static random diagonal noise (H → H + ∑

j εjnj ) to inhibit
the possible appearance of decoherence-free subspaces, which
can limit the efficiency of transfer.18 To be specific, we will
use static random noise of the form

∑
j t cos(je)nj where e is

the Neper constant. This form of static noise mimics random
noise of amplitude (variance) t and zero mean, but it has the
computational advantage of being reproducible.

The results of our simulations are shown in Fig. 8. We
initialize the system by starting with a pure Dicke state for
the ring while keeping all other sites empty. This means the
initial state is |ψ0〉 = ( N

n )−1/2(σ+
tot)

n|0〉, where σ+
tot =∑N

j=1 σ+
j

refers only to the ring sites and |0〉 is the empty state for
the whole system. The choice of an initial Dicke state is
natural for a series of reasons. First, it allows us to treat initial
states with general definite particle number n � N . Second,
Dicke states are symmetric under permutation, thus carrying
no net momentum. If the photon’s wavelength is larger than
the size of the LH1 complex, the excitations created must
be a completely delocalized k = 0 object. In any case, since
only the k = 0 component of the ring couples to the central
(N + 1)th site, transfer in the antisymmetric channel k = π ,
being a higher-order process, is highly suppressed and gives
much lower transfer efficiency.26

We first performed simulations on a “clean” system, i.e.,
with no dissipation or dephasing present. In Fig. 8, we
plotted the population of the reaction center (normally called
efficiency η in the literature) as a function of time for different
values of γb. Looking at Figs. 8(a) and 8(b), the situation is
completely analogous to the congestion effect observed in our
simple toy model (see Figs. 2 and 3). As long as we start with a
number of excitations that can be accommodated in the battery,
they will all flow to the battery for γb �= 0 (left panel). When
we start with three particles in the ring, we see again the ap-
pearance of a nonmonotonic behavior between γb and γ , which
shows up as a valley at large times and γb � γ (γb smaller than,
but of the order of γ ). When we add additional decoherence in
the form of dissipation and dephasing, the situation is only
quantitatively changed. The valley due to the “congestion
effect,” although less pronounced, is still visible in Fig. 8(d).
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FIG. 8. (Color online) “Congestion effect” in light-harvesting complexes. The ring has N = 4 sites, hopping constants are t = J = 1 (meV)
and dimerization is δ = 0.12. Diagonal static noise of the form εn = t cos(en) is added (see main text). The RC transfer rate is set to γ = 0.3 ps−1.
(a), (b) Clean system, no dissipation and dephasing. (c), (d) Same parameters plus dissipation and dephasing γdiss = γdeph = 0.03 ps−1. (a), (c)
The initial state is a two-particle Dicke state for the ring, other sites are empty. (b), (d) The initial state is a three-particle Dicke state for the
ring, other sites are empty.

B. Asymptotic unitarity

To study asymptotic unitarity, the “battery” is an unnec-
essary complication. Therefore, we will use the same model
of Fig. 7 without the battery site and the corresponding jump
operator. This leads to a network of N + 2 qubits where the
site N + 1 is connected to site N + 2 (which we called RC)
via irreversible transfer at a rate γ . As done previously, we
will use an n-particle Dicke state as initial state. Let us first
consider the case where the only incoherent term is the one
transferring particles from the central site to the RC. In this
case, the dynamics becomes exactly unitary when the RC is
full. Simulations on a network with N + 2 = 6 qubits are
shown in Fig. 9. We also show the effect of dissipation and
dephasing, although one order of magnitude smaller than the
RC transfer. For short times, the evolution is the same as for
the clean (i.e., no dissipation and dephasing) case, however,
for time of order γ −1

diss, dissipation sets in and the parametric
plot for a generic matrix element 〈n|ρ(t)|m〉 spirals down to
zero [Fig. 9(d)].

The conclusion of this section is as simple as it is intriguing,
in view of potential applications to biological systems. If the
time scale γ −1

diss is large enough, there may exist a time window
Trelax < t < γ −1

diss in which quantum effects are not only visible
but the dynamics is effectively unitary! In our models, Trelax

is the time needed for the RC to get filled, and is of the
order of Trelax ∼ γ −1. Considering the LH1-RC complex, the
separation of time scales does indeed occur and generally

the dissipation is four orders of magnitude smaller than the
RC charge-separation rate.26,33

The experimental observations reported in Ref. 35 suggest
that the reaction center in photosynthetic aggregates has a
richer structure than usually believed. Accordingly, in place of
the simple description of the RC as a sink where excitations
disappear, we modeled the last part of the excitation transfer to
the reaction center via an incoherent transfer between two two-
level systems. This has the implication that the reaction center
can not accept further excitations when it is full. Although the
qubit model is clearly far from a realistic portrayal of organic
chromophores, this is a plausible feature of the reaction center
(see, also, Ref. 26).

C. Staircase effect

Here, we want to show that the staircase effect, studied in
Sec. III, survives in more elaborate networks. We will study
this effect in the model depicted in Fig. 10. To tell the truth,
very similar networks as those considered here have been
analyzed in the literature. The kind of networks analyzed in
Ref. 19 are essentially the same as those of Fig. 10 except
for the incoherent injection on the first site. In Ref. 19, the
authors considered the efficiency of transfer of a single exciton
localized on the leftmost site traveling toward the “trap” sitting
after the rightmost site. Our modelization is the simplest one,
which takes into account a continuous feeding of excitons
into the network. The resulting dynamics is not constrained

134206-8



EXCITATION TRANSFER THROUGH OPEN QUANTUM . . . PHYSICAL REVIEW B 84, 134206 (2011)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

t

po
pu

la
tio

ns

n
RC

n
ring

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

t

po
pu

la
tio

ns

n
RC

n
ring

−4 −2 0 2 4

x 10
−3

−4

−2

0

2

4
x 10

−3

Re

Im

−4 −2 0 2 4

x 10
−3

−4

−2

0

2

4
x 10

−3

Re

Im

(a)

(c)

(b)

(d)

FIG. 9. (Color online) Asymptotic unitarity on a structure containing N + 2 = 6 sites. On (a) and (b), we plot the populations of the ring and
of the RC as a function of time (arbitrary units). (c), (d) Parametric plot of the real and imaginary parts of a matrix element 〈ψm|〈1|ρ(t)|ψn〉|1〉
for certain m, n. |ψn〉 are the Hamiltonian eigenstates. (a), (c) The Hamiltonian has t = J = 1, δ = 0.12, diagonal static noise εp = t cos(ep),
and no dissipation or dephasing. Excitations are transferred to the RC at a rate γ = 0.2. (b), (d) Same parameters, but on the particles of the
ring acts dissipation and dephasing with γdeph = γdiss = 0.01.

to any particle sector so that the simulation must necessarily
be carried out in the whole Liouville space, thus making the
computational cost exponential in the chain length. For this
reason, we limited our simulation to open chains of N = 6
sites, but we have no reason to doubt that similar qualitative
behavior remains for longer chains.

The model we consider consists of an open chain of N

sites hopping coherently between nearest neighbors, i.e., the
Hamiltonian is

H =
N−1∑
j=1

J (σ−
j σ+

j+1 + σ+
j σ−

j+1).

FIG. 10. (Color online) N sites interact via a nearest-neighbor
hopping Hamiltonian. Particles are injected and, respectively, ex-
pelled incoherently at rates γin, γout on the first and last sites. On
top of this basic structure, we can add static diagonal disorder and
dissipation as well as dephasing (symbolized by thin blue wavy
arrows) Lnoise = ∑N−1

j=2 LLj,diss + LLj,deph .

Particles are injected into the first site of the chain via a
jump operator Lin = √

γinσ
+
1 and taken away at the last site

via Lout = √
γoutσ

−
N . On top of this basic framework, we

add different layers of complexity. First, we can add some
static random diagonal noise, i.e., we add site-dependent
energies to the coherent part H → H + ∑

j εjnj . Second,
we can also include dissipation and dephasing acting on the
inner sites of the chain by adding the following superoper-
ator: Lnoise = ∑N−1

j=2 LLj,diss + LLj,deph (Lj,diss = √
γdissσ

−
j and

Lj,deph = √
γdephnj as defined previously).

The picture that we have is the following. Through the
coherent part of the evolution, excitations travel in the chain
in packets of quasiparticles at velocities vk = O(J ) (k is a
quasimomentum label). This introduces a lag time scale T0 ≈
L/v ∼ O(L/J ), which is the time needed for an excitation to
travel from one side of the chain to the other. From Figs. 11(a)–
11(f), we see that, when the population at the injection site
increases, the population at the expulsion site stays constant
during this time lag T0 and vice versa.

Considering Figs. 11(c)–11(f), we can appreciate how
robust the effect is with respect to various types of “pertur-
bations.” The addition of static random noise has the effect
of localizing states and shuffling the single-particle dispersion
εk . Both of these effects destroy the picture of wave packets
traveling at constant velocity, in that both the traveling times
and the dispersion of the wave packets increase. Instead, the
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FIG. 11. (Color online) Staircase effect on an open chain of N =
6 sites. Parameters are J = 1 and γin = 0.2, γout = 0.3. nIN, nOUT are
the populations at the injection and extraction sites, respectively,
while nNET is the total number of excitons in the network. (a),
(b) Neither dissipation nor dephasing, and no static noise. (c), (d)
Addition of diagonal static noise εn = J cos(en). (e), (f) Static noise
plus dissipation and dephasing γdiss = γdeph = 10−2.

addition of dissipation (and dephasing) to the network mostly
has the effect of relaxing the system at a faster rate. As long
as the system has not relaxed, the effect remains visible.
Comparatively, the presence of static coherent noise hinders
the staircase effect more to dissipation and dephasing.

VI. CONCLUSIONS

Inspired by the models that are recently being used to
describe energy transfer in photosynthetic pigments, we have
identified and discussed a few effects arising in quantum
networks with coherent (Hamiltonian) as well as incoherent
(Lindblad) coupling between the nodes. For the reader’s sake,
we summarize here these basic effects.

(i) Congestion effect.The incoherent transfer of excitations
is inversely proportional to the population in the reaction
center. This is due to the hard-core nature of the excitations
that effectively reduces the amplitude of the jump operator as
the reaction center fills.

(ii) Asymptotic unitarity. Coherent, unitary evolution may
emerge out of a dissipative, incoherent dynamics. This happens
if states that annihilate the incoherent part of the dynamics
can be reached during the time evolution. For this effect
to be observable, one needs a separation of time scales
Trelax � Tdiss. Such separation of time scales does take place in
some photosynthetic systems, e.g., in the LH1-RC complexes
present in purple bacteria.

(iii) Staircase effect.This effect refers to a situation in which
particles are injected incoherently, travel coherently along a
given chain, and then are expelled (or digested) at a certain
rate at the other end of the chain. The effect of the coherent
part is to introduce a time scale T0 = O(L/v) = O(L/J ) (L
is the system size, v the velocity of excitations, and J is
the energy scale of the coherent network). T0 is roughly the
time needed for the excitations to travel from one side of
the chain to the other. The peculiar feature emerging from
the dynamic evolution is that, when the population at the
injection site increases, the population at the expulsion site
stays constant during this time lag T0 and vice versa. This
effect results in a steplike behavior in the parametric plot of the
injection-extraction populations.It would be interesting to see
if a modification of the methods of Ref. 19, not constrained to
the zero- and one-particle sectors, allows us to derive a simple
classical description, i.e., a kinetic rate equation, for this effect.

The effects we analyzed in this paper can be traced
back to very simple mechanisms displayed even by networks
composed by only few qubits. We provided analytical solutions
for these toy models and showed numerical evidence that
these effects survive in more elaborate networks such as those
modeling energy transfer in purple bacteria. Clearly, further
investigations are in order to establish the relevance of the
elementary calculations presented in this paper to the newborn
field of quantum biology.
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6M. T. W. Milder, B. Brüggemann, R. van Grondelle, and J. L. Herek,
Photosynth. Res. 104, 257 (2010).

7T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E.
Blankenship, and G. R. Fleming, Nature (London) 434, 625
(2005).

8G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C.
Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London)
446, 782 (2007).

134206-10

http://dx.doi.org/10.1021/jp011032r
http://dx.doi.org/10.1021/jp011032r
http://dx.doi.org/10.1039/b514032c
http://dx.doi.org/10.1039/b514032c
http://dx.doi.org/10.1529/biophysj.105.079483
http://dx.doi.org/10.1007/s11120-009-9472-9
http://dx.doi.org/10.1007/s11120-010-9540-1
http://dx.doi.org/10.1038/nature03429
http://dx.doi.org/10.1038/nature03429
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678


EXCITATION TRANSFER THROUGH OPEN QUANTUM . . . PHYSICAL REVIEW B 84, 134206 (2011)

9E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and
G. D. Scholes, Nature (London) 463, 644 (2010).

10G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram,
E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl.
Acad. Sci. USA 107, 12766 (2010).

11G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, M. Ballottari,
R. Bassi, and G. R. Fleming, Proc. Natl. Acad. Sci. USA 107, 13276
(2010).

12J. M. Womick, S. A. Miller, and A. M. Moran, J. Chem. Phys. 133,
024507 (2010).

13K. Gaab and J. Bardeen, J. Chem. Phys. 121, 7813 (2004).
14M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik,

J. Chem. Phys. 129, 174106 (2008).
15P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and

A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
16P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys. Chem.

B 113, 9942 (2009).
17M. B. Plenio and S. Huelga, New J. Phys. 10, 113019 (2008).
18F. Caruso, A. Chin, A. Datta, S. Huelga, and M. Plenio, J. Chem.

Phys. 131, 105106 (2009).
19J. S. Cao and R. Silbey, J. Chem. Phys. A 113, 13825 (2009).
20J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12,

105012 (2010).
21A. Chin, A. Datta, F. Caruso, S. Huelga, and M. Plenio,

New J. Phys. 12, 065002 (2010).
22O. Mulken and T. Schmid, Phys. Rev. E 82, 042104 (2010).
23H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosyn-

thetic Excitons (World Scientific, Singapore, 2000).
24J. Cao, J. Chem. Phys. 107, 3204 (1997).

25T. Renger and R. Marcus, J. Chem. Phys. 116, 9997 (2002).
26A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, Phys.

Rev. B 78, 085115 (2008).
27A. Ishizaki and G. Fleming, J. Chem. Phys. 130, 234111 (2009).
28S. Lloyd and M. Mohseni, New J. Phys. 12, 075020 (2010).
29J. Zhu, S. Kais, P. Rebentrost, and A. Aspuru-Guzik J. Phys. Chem.

B (to be published).
30A. Nazir, Phys. Rev. Lett. 103, 146404 (2009).
31P. Nalbach, J. Eckel, and M. Thorwart, New J. Phys. 12, 065043

(2010).
32F. Fassioli and A. Olaya-Castro, New J. Phys. 12, 085006 (2010).
33F. Fassioli, A. Nazir, and A. Olaya-Castro, J. Phys. Chem. Lett. 14,

2139 (2010).
34A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner, C. J. Law,

N. W. Isaacs, and R. J. Cogdell, Science 302, 1969 (2003).
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