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Cooperation among unrelated individuals distinguishes 
humans markedly from other mammals, and it is one of the 
central pillars of our evolutionary success1. Past research 

has emphasized that the structure of social interactions is cru-
cial for the evolution of cooperation, but thus far predominantly 
in the realm of networks where links connect pairs of players2,3. 
However, since cooperation often unfolds in groups, the need 
for a paradigm shift in the way we model social interactions is 
evident and indeed urgent. Regardless of the model that we use 
to describe human interactions, cooperation remains at odds 
with the fundamental principles of Darwinian evolution, and it 
is fascinating that we have succeeded in collectively holding off 
self-interest over most of the past two million years, ever since the 
Homo genus first emerged4.

Given this puzzle, the search for reasons and mechanisms that 
may allow cooperation to evolve and proliferate is an evergreen 
and vibrant subject across the social and natural sciences5–11. 
Evolutionary game theory is long established as the theory of 
choice for addressing the puzzle mathematically12–14, wherein 
social dilemmas constitute a particularly important class of games. 
Namely, social dilemmas capture the essence of the problem since 
defection is the individually optimal strategy, whilst cooperation 
is the optimal strategy for the highest social welfare15. An impor-
tant mechanism for cooperation in social dilemmas is network 
reciprocity16, which stands for the fact that a limited interaction 
range, as dictated by lattices or other types of network, facilitates 
the formation of compact clusters of cooperators that are in this 
way protected against invading defectors. This basic mechanism 
could also be seen if the degree distribution of the interaction net-
work is strongly heterogeneous17–19, if there is set or community 
structure20,21, or if the evolution unfolds on two or more network 
layers that mutually support cooperative clusters22–29.

Despite the wealth of important insights concerning the evo-
lution of cooperation on networks and fundamental discover-
ies30–32, accounting for cooperation in groups remains an important 
unsolved problem, such as in the public goods game (PGG)33,34. The 
simplest remedy is to consider members of a group to be all the 
players that are pairwise-connected to a central player35,36. However, 
since the other players are further connected in a pairwise manner, 
one would also need to consider all the groups in which the central 
player is a member but is not central. Evidently, classical networks 
do not provide a unique procedure for defining a group. Moreover, 
members of the same group are commonly not all directly con-
nected with one another, which prevents strategy changes among 
them, either in terms of imitation, replication or exploration. These 
facts posit a lack of common theoretical foundation for studying the 
evolution of cooperation in networked groups. Without knowing 
who is connected to whom in a group, it is also impossible to imple-
ment fundamental mechanisms that promote cooperation, such as 
reciprocity37,38, image scoring39–41 and reputation42–44.

As a solution, we introduce and study higher-order interactions 
in evolutionary games that are played in groups. The distinctive 
feature of higher-order interactions is that, unlike in classical net-
works45, a link can connect more than just two individuals46. Thus, 
higher-order networks naturally account for structured group inter-
actions47, wherein a group is simply made up of all players that are 
connected by a so-called hyperlink, which is the higher-order ana-
logue of the link. As a paradigmatic example, we consider a stan-
dard PGG on the higher-order analogue of a network, referred to as 
a hypergraph (Fig. 1). We first show that it corresponds exactly to 
the replicator dynamics in the well-mixed limit as long as no hyper-
degree–hyperdegree correlations exist. As such, it thus provides a 
formal theoretical foundation to study cooperation in networked 
groups—effectively a null model—that is amenable to further 
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upgrades. Next, we consider the PGG on hypergraphs with hetero-
geneity either in their node hyperdegrees (number of hyperlinks a 
node is involved into) or in the order of their hyperlinks (number 
of nodes that form each hyperlink), which allow us to describe the 
dynamics induced by the presence of highly connected players and 
to consider scenarios in which the synergy factor depends on the 
group size in a systematic and consistent way. We show, for exam-
ple, how synergy factors that are given by different powers of the 
group size lead to a critical scaling in the transition from defec-
tion to cooperation. Lastly, we also demonstrate how the proposed 
higher-order interaction framework can be used to determine the 
synergy factor as a function of the group size from empirical data 
on cooperation and collaborations. Under the assumption that the 
structure of the hypergraph is the outcome of an optimization pro-
cess of the game it hosts, we extract the game parameters from data-
sets describing collaborations in science and technology, showing 
that higher-order interactions induce diverse benefits and costs in 
different social domains.

The PGG constitutes the fundamental example of a social 
dilemma when multiple individuals interact simultaneously. It 
presents a situation where the gain or loss of an initial investment 
is shared symmetrically between the members of a group, even if 
the investment itself can be asymmetric. In other words, there is 
no correlation between the individual effort and the distribution of 
the reward, meaning that some players receive more than what they 
give or deserve, while some others receive less. Metaphorically, one 
would say that the game has no memory, in the sense that the payoff 
is assigned blindly to all the players as if the system had lost the 
information about the original contribution of each player. More 
formally, the PGG describes a setting where N players are requested 
to contribute to a common pool with a token of value c (ref. 10).

Cooperators contribute, and defectors do not. The collected 
amount is then multiplied by the so-called synergy factor R, and the 
benefit is shared amongst all the members of the group. The pay-
off for the defectors and cooperators playing in a group of g mem-
bers is given by πD = RcwC/g and πC = RcwC/g − c respectively, with 
wC representing the number of cooperators in the group. Typically,  
c has a fixed value of 1, so that the behaviour of the system is  
determined by the synergy factor R, or the reduced synergy factor 
r = R/g. It is common to represent the state of the system by the frac-
tion of players adopting each strategy, xC for the cooperators and  
xD for the defectors.

The evolutionary dynamics determine how the strategies of the 
players evolve with each iteration of the PGG, that is, how the frac-
tions xC and xD change with time. Here, we implement the so-called 
fixed cost per game approach, where cooperators contribute with 
an entire token to each game they play. Individual updates consti-
tute micro-steps of the dynamics, whereas a (global) time step cor-
responds to N individual steps, so that all the players in the system 
have the chance to play the game and update their strategies. Players 
interact among themselves following the links of the network they 
are embedded in. As mentioned before, the standard network 
implementation35, henceforth referred to as graph implementation 
(GI), is not able to account for the most general type of interac-
tion in groups. One of the first proposals to overcome the limitation 
of a GI is evolutionary set theory20, which considers a structure of 
interaction in which the players are organized as the elements of 
a set. Yet, the game itself is pairwise, and thus different from the 
type of approach proposed here. However, it is worth pointing out 
that the set theory description is equivalent to the hypergraph for-
malism, and therefore, one should expect the same results when 
studying the same game on both structures. In this work we have 
opted for hypergraphs because, as a higher-order generalization 
of graphs, they inherit the whole family of graph tools with which 
evolutionary game theory scholars are more familiar with. A few 
years later, it was proposed to address higher-order interactions by 
bipartite graphs, having a set of nodes for the players and a second 
set for the groups48–50. The authors adapted the PGG to the bipar-
tite graph, in what we call the bipartite implementation (BI). In  
such a case the game is indeed polyadic, but the update process is 
still dyadic, and the constraints associated with the formalism do 
not make it suitable for an analytical treatment. Here, we generalize 
the BI to a fully higher-order implementation and provide the theo-
retical foundation to study higher-order cooperative games in uni-
form and heterogeneous hypergraphs. Finally, we mention that in a 
more recent work51, the authors have considered games played by 
agents belonging to subpopulations and whose interactions occur 
across and within the population, providing a useful methodol-
ogy for situations in which one can get rid of the fine details of the  
individual connections.

Results
Game implementation. In order to account for higher-order interac-
tions, we use hypergraphs46. A hypergraph, HðN ;LÞ

I
, is a mathemati-

cal object that consists of a set of N nodes N ¼ fn1 ¼ 1; ::; nN ¼ Ng
I

 
and a set of L hyperlinks L ¼ fl1; :::; lLg

I
. Each hyperlink is a subset 

of two or more elements of N
I

 and represents a group interaction. 
For instance, in Fig. 1a, the hyperlink l1 contains nodes n1 and n3, 
whereas the hyperlink l3 is the subset made up by nodes n4, n5 and 
n6. Furthermore, the cardinality of a subset, known as the order of 
the hyperlink, is the number g of nodes in the group. In the pre-
vious example, l1 has order 2 and l3 has order 3. In a hypergraph, 
the hyperdegree, ki, of a node i represents the number of hyper-
links into which the node is involved, thus, the number of groups 
of a specific order g that contain i can be denoted by kgi

I
. Hence, the 

hyperdegree of i is given as ki ¼
Pgþ

g¼g� k
g
i

I
, where g− and g+ account 

for the minimal and maximal orders in L
I
. For example, in Fig. 1a, 
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Fig. 1 | Higher-order versus pairwise interactions in a PGG. Comparison 
of the proposed HI with a standard GI of the game based on pairwise 
interactions only. a, In the HI implementation, a node, n2, and one of its 
hyperlinks, l2, are randomly selected. All the nodes in l2, namely node n2, 
and the two nodes highlighted in red, n3 and n4, play all the games they are 
involved in, corresponding, in this example, to PGG defined for the subset 
of nodes of the hyperlinks l1, l2, l3 and l4. Then, the strategy of n2 is updated 
by comparing its payoff with that of the node with the highest accumulated 
payoff of the hyperlink l2. This is not equivalent to playing the PGG in the 
graph generated by projecting the interactions of the hypergraph, which is 
shown in b. b, In the standard GI implementation, a neighbour of n2, let us 
say n3—highlighted in red—is randomly selected. The two nodes n2 and n3 
then play all the games of the groups they are part of, that is, of the groups 
made up by the subsets of nodes {n1, n3}, {n2, n3, n4}, {n1, n2, n3, n4} and {n2, 
n3, n4, n5, n6, n7}. These subsets, coloured as indicated in the figure, could 
be represented by a different set of hyperlinks �l1, �l2, �l3 and �l4, respectively, 
which are different from the set of hyperlinks of the original hypergraph. 
Finally, the strategy of n2 is updated by comparing its accumulated payoff 
to that of node n3.
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k4 ¼ 3 ¼ k24 þ k34
I

, with k24 ¼ 1
I

 (the hyperlink l4) and k34 ¼ 2
I

 (the 
hyperlinks l2 and l3). As 〈k〉 we indicate the average hyperdegree of 
node i, where the averages are evaluated over all the nodes in the 
system, that is hki ¼ 1

N

P
i2N ki

I
.

Although hypergraphs are not the only possible representation of 
group interactions, they allow exploitation of the analogy between 
the links representing pairwise interactions in contact networks and 
hyperlinks, which are based on higher-order, group interactions. As 
we will show next, the differences between these two approaches 
lead to fundamentally distinct outcomes of the PGG evolutionary 
dynamics. To see how the evolutionary dynamics evolve in hyper-
graphs, let us consider the first step of a standard graph implemen-
tation of the PGG. When a node ni and one of its neighbours nj are 
selected on a graph, it is equivalent to say that a node and one of 
its links are selected. Such a procedure can be easily generalized to 
group interactions of more than g = 2 individuals, see Fig. 1b. Note 
that if we choose more neighbours of ni to generate higher-order 
interactions, such an extension would still be based on dyadic ones. 
Instead, we propose a hypergraph implementation (HI) of the game 
that consists of selecting one of the hyperlinks of ni. That is, in the 
HI setup, we select at random with uniform probability a node ni in 
the hypergraph and one of its hyperlinks, li. Then, all the members 
of the hyperlink li play a game for each of the hyperlinks they are 
part of, as illustrated in Fig. 1. Finally, as it is customary, the nodes 
accumulate the payoffs of all the rounds they play, and we normalize 
this quantity by the total number of played games, such that each 
node’s performance is represented by its average payoff.

The second part of each micro-step of the evolutionary dynam-
ics of the game involves updating the strategy of node ni. To this 
end, we normalize the discrete replicator dynamics for the case of 
higher-order interactions. We propose to compare the payoff πi of a 
node ni with the maximal payoff of the selected hyperlink li. Under 
this rule, ni will adopt the strategy of the node with the maximal 

payoff of probability 
1
Δ ½ðmax

li
πjÞ � πi

I
, where Δ, whose precise defi-

nition is provided in Supplementary Equation 3, accounts for the 
maximal payoff difference, and is employed to guarantee that the 
probability is normalized. The rationale behind the choice of this 
expression is that node i will compare its payoff to that of the node 
with the largest payoff in hyperlink li. Note that the previous expres-
sion reduces to the standard one of the GI when g = 2. Summing up, 
the HI accounts for a more realistic update than that in the BI, since 
the player inspiring a strategy change is the one with the highest 
payoff of the group, and not a randomly chosen one.

Uniform hypergraphs. To get some insights into the dynamics 
of the system in a simple configuration, we first studied the PGG 

on uniform random hypergraphs (URH) with hyperlinks of order 
equal to g = 2, 3, 4 and 5 (see Methods for details on how to gen-
erate URH). Numerical simulations have been carried out for 
hypergraphs with N = 1,000 nodes (players), and the game has been 
iterated for T = 104 time steps. Figure 2a shows the final fraction of 
cooperators as a function of the reduced synergy factor r. In each 
case, the simulations refer to hypergraphs with L = Lc hyperlinks, 
where Lc accounts for the minimal number of hyperlinks that guar-
antees the connectedness of the hypergraph. As it can be seen in 
the figure, there is a value of r beyond which cooperation emerges. 
We define this critical value of the reduced synergy factor, rc, which 
depends on g, as the lowest value of r for which the fraction of  
cooperators is non-zero.

The results show that rc decreases when the order g of the hyper-
links of the hypergraph increases. This is equivalent to saying that 
rc decreases when the same number of N = 1,000 individuals play 
in larger groups. We believe that this observation is important, 
since determining how r varies with the size of the group, allows 
us to get more realistic insights. Admittedly, the well-mixed limit 
of population-size groups is rarely applicable in reality, thus, the 
study of the impact of having large groups inside large populations, 
as allowed by our higher-order framework, is key. Figure 2b displays 
how the value of rc depends on the number of hyperlinks L in the 
hypergraphs. For each value of g, we observe an increase of rc with 
L, and a tendency, for large hypergraph densities, to the value rc = 1, 
which corresponds to the well-mixed replicator approximation52. 
The replicator equation approximation relies on the indistinguish-
ability of the nodes, and as such, it is exact when the hypergraph is 
fully connected, that is contains all the possible hyperlinks. However, 
we show that the approximation is also good for sparse hypergraphs, 
with a number of hyperlinks of the order of the critical value for 
ensuring a giant component. Therefore it is natural that the higher 
the value of L, the closer rc is to 1. The same argument can be used to 
explain the results in Fig. 2a. The ratio Lc=CN

g

I
, which represents the 

fraction between the critical number of hyperlinks Lc and the total 
possible number of hyperlinks, given by the binomial coefficient 
CN
g

I
, decreases with g. This implies that, if two hypergraphs have 

L = Lc, but different values of g, the one with lower g will be denser, 
and thus will exhibit a critical point closer to the analytic predic-
tion. Therefore, we can say that at fixed reduced synergy factor, r, 
large groups are better to foster cooperation in sparse hypergraphs, 
as the number of hyperlinks required for connecting all the play-
ers represents a smaller fraction of the total number of hyperlinks. 
Finally, the value of r also influences how long it takes for the system 
to converge to the stationary solution. This is illustrated in Fig. 2c,  
where we report the measured relaxation time T from an initial 
configuration with xD = xC = 0.5, in a hypergraph with L = 5Lc. These 
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Fig. 2 | A PGG with higher-order interactions in URHs. Numerical simulation of the HI of the game on URHs of N = 1,000 players and different orders g. 
a, Fraction of cooperators, xC, as a function of the synergy factor, r, for hypergraphs with hyperdegree 〈k〉 = kc, or total number of hyperlinks L = Lc, where 
kc and Lc stand for the critical hyperdegree or number of hyperlinks guaranteeing a connected hypergraph. b, Critical value of the synergy factor, rc, as a 
function of the ratio between the number of hyperlinks L and the critical value Lc in hypergraphs of different density. c, Relaxation times as a function of the 
synergy factor, r, for hypergraphs with hyperdegree 〈k〉 = 5kc. In all plots, triangles correspond to numerical simulations, while the solid lines are the results 
of our theoretical predictions.
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results are obtained by running the simulations up to a maximum of 
104 steps. Furthermore, for the replicator approximation, the value 

of T can be analytically computed as T ¼ lnðN�1Þ
jQj

I
, with Q = (1 − r)/Δ 

(details of the calculations are shown in Supplementary Equations 
4 and 5). As can be seen in Fig. 2, the agreement between the theo-
retical predictions and the numerical results is not only qualitatively 
but also quantitatively very good. The absorbing state, either full 
cooperation or full defection, emerges when the system is at equi-
librium, a condition that can only be reached if enough iterations 
have occurred. On the other hand, real-world social interactions 
that can be modelled as games usually take place over a limited time 
interval τ. Hence, the relation between the relaxation time T, which 
depends on the synergy factor r, and τ is crucial to determine if the 
system does or does not reach the equilibrium, and consequently, 
if the replicator dynamics can or cannot predict the numerically 
computed fraction of cooperators. All these results indicate that the 
dynamics of the PGG on uniform random hypergraphs correspond 
to the replicator dynamics in the well-mixed limit. In order to test 
the robustness of these findings with respect to the implementation 
selection, we have also carried out numerical simulations in the BI 
implementation (Supplementary Fig. 1).

Hyperdegree-heterogeneous hypergraphs. The previous sec-
tion addressed the simplest scenario in which the individuals of a 
population are assumed to be indistinguishable (URH). However, 
such an assumption can be oversimplified to describe real situ-
ations as it is well known that social systems are heterogeneous. 
Think of your friends at college. It is likely that a minority of them 
are involved in considerably more activities, and therefore social 
circles, than the rest. Such heterogeneity is typically characterized 
by a non-exponential degree distribution, allowing the presence of 
hubs, or highly connected individuals45. Hence, we consider here 
two families of hyperdegree-heterogeneous hypergraphs that we 
name power random hypergraphs (PRHs) and scale-free random 
hypergraphs (SRH). The algorithms we have used to generate these 
hypergraphs are reported in the Methods, and their properties  
have been studied in Supplementary Figs. 2 and 3. Scale-free hyper-
graphs are characterized by a power-law distribution, and repre-
sent the most hyperdegree-heterogeneous family of hypergraphs  

considered here. For this reason, these hypergraphs display a hier-
archy between the nodes, as a few of them are involved in most of 
the hyperlinks and thus have a dominant position in the dynam-
ics of the system. By contrast, PRHs stay in between uniform and 
scale-free hypergraphs, as their hyperdegree distribution combines 
exponential and non-exponential functions.

To study the emergence of cooperators in hyperdegree- 
heterogeneous hypergraphs, we have run T = 104 time steps of the 
game on ensembles of hypergraphs with N = 1,000 nodes and orders 
g = 2, 3, 4, 5, respectively sampled from PRH and SRH. In order to 
compare the simulations with those reported in Fig. 2a, we have 
fixed the total number of hyperlinks to L = Lc. When, for high het-
erogeneity, some of the nodes (a minimal fraction of the total) do 
not belong to the main component, we have neglected their contri-
bution to the fraction of cooperators.

The results reported in Fig. 3 show an important difference 
between PRH and SRH. In the case of PRH (top panels) the posi-
tion of the transition does not depend on the heterogeneity of the 
node hyperdegree distribution, tuned by parameter μ, (see Methods 
for the precise definition of μ), and the critical point is the same as 
that obtained in URH. Conversely, the simulation of the game on 
SRH (bottom panels) shows that, the larger the heterogeneity in the 
hyperdegree distribution (larger values of μ), the more the solution 
deviates from that of URH, and the closer the critical point gets to 
r = 1. This indicates that hierarchically structured systems inhibit 
cooperation in the PGG with higher-order interactions at variance 
with numerical simulations obtained on traditional networks under 
the same evolutionary dynamics.

In order to be able to explain these results we need to consider a 
refinement of the replicator approximation that takes into account 
the possible presence of correlations between the hyperdegrees of 
nodes belonging to the same hyperlink. Let K

I
 be the set of all possi-

ble hyperdegrees a node can have, and let k 2 K
I

 be the hyperdegree 
of a randomly chosen node. We now denote as p(k″∣k) the condi-
tional probability that the node of hyperdegree k is part of a hyper-
link where the remaining g − 1 nodes have hyperdegrees k″ = {k1, k2, 
…, kg−1}, where k00 2 Kg�1

I
 is a vector whose g − 1 components are 

elements of K
I
. We have been able to show that the system will fulfil 

the replicator approximation as long as the conditional probability 
p(k″∣k) does not depend on k (see Supplementary Equation 6 and 
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Fig. 3 | A PGG with higher-order interactions in hyperdegree-heterogeneous random hypergraphs. a–h, Numerical simulation for the fraction of cooperators 
xC as a function of the reduced synergy factor r on hyperdegree-heterogeneous random hypergraphs of N = 1,000 players and different orders g. Top and bottom 
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the section below it for detailed analysis). This is true for the case of 
the PRH. Conversely, in the case of the SRH, increasing heterogene-
ity while maintaining the total number of hyperlinks in the hyper-
graph requires reducing the number of effective nodes. This induces 
non-trivial correlations in the model between the hyperdegrees of 
nodes belonging to the same hyperlink, and has a similar effect of 
driving the system closer to the rc = 1 threshold, as that we have 
observed when we increase the hyperlink density in the uniform 
case (URH). Intuitively this can be explained by the notion of local-
ity. When the density is low, or when no large hubs are present in the 
system, there is a non-negligible probability that cooperator bubbles 
emerge below the critical threshold, because there may be regions of 
the hypergraph that are semi-isolated, and therefore protected from 
defectors, even if they belong to the same component. However, 
either increasing the density or introducing hubs will reduce the 
probability of finding these isolated groups of nodes, and therefore 
will inhibit the formation of cooperator bubbles below r = 1.

Order-heterogeneous hypergraphs. Heterogeneity can also arise 
in the order of the hyperlinks. Indeed, the proposed HI of the PGG 
allows studying the more general, realistic and interesting case 
of hypergraphs where not all the hyperlinks have the same order. 
Important examples of such systems include teams of different sizes 
working for a common goal or one-to-many communication via apps 
like WhatsApp, where users can create and belong to several groups 
of different sizes. In what follows, we consider order-heterogeneous 
random hypergraphs with an assigned distribution of hyperlinks. 
Such hypergraphs are characterized by their total number of hyper-
links L and by a probability vector p ¼ fpgggþg¼g�

I
, whose entry 

pg = kg/k specifies how likely it is, on average, that the hyperdegree k 
of the node contains kg groups of order g. p is normalized such that Pgþ

g¼g� p
g ¼ 1

I
. Considering groups of different orders in the same 

hypergraph allows us to focus on another important aspect of the 
PGG on higher-order structures, namely, the possible dependence 
of the rescaled synergy factor r on the order of the group. This is 
important for practical purposes, given the increasing interest in 
understanding how the size of a group impacts its performance. As 
it has been shown recently53, large and small teams play different 
roles in science and technology ecosystems. Thus, it is natural to 
assume that the synergy factor of a group depends on its size. This is 
particularly true in scientific publications, where it has been shown 
that the larger the group, the more citations a produced publica-
tion is likely to attract54,55. Therefore, as a general form for such a 
dependence we assume that the synergy factor R is an increasing 
power-law function of g, namely:

RðgÞ ¼ αgβ ð1Þ

with parameter α > 0 and exponent β ≥ 0. The value of the exponent 
allows tuning of the benefit so that the players are able to produce 
when working as a group. In particular, adopting a superlinear scal-
ing β > 1, means considering a synergistic effect of a group that goes 
beyond the sum of the individual contributions56,57. Notice, how-
ever, that the assumed dependence in equation (1) is only a first 
approximation as it neglects saturation effects or even possible dis-
advantages due to difficulties in coordinating large groups, which, 
as we will see later on, appear in real systems. Under this assump-
tion, the average payoff difference between cooperation and defec-
tion can be written as:

πD � πC ¼
Xgþ

g¼g�
pgð1� αgβ�1Þ ð2Þ

where g− and g+ are again the minimal and maximal orders of 
hyperlinks, respectively. The relaxation time is again given by 

T ¼ lnðN � 1Þ=jQj
I

, where Q = (πD − πC)/Δ (see Supplementary 
Equation 5 for the definition of Δ in the general case and for explicit 
calculations). It is then possible to derive the critical value of the 
parameter α as a function of the exponent β as:

αcðβÞ ¼
1Pgþ

g¼g�
pggβ�1

¼ 1
Kβ

ð3Þ

where, for simplicity, we have defined Kβ 
Pgþ

g¼g�
pggβ�1

I
. We 

remark here that α = αc for a fixed value of β is the critical point sep-
arating the defection and cooperation phases. This means that when 
α < αc the system will converge to full defection, while for α > αc it 
will converge to full cooperation.

To explore how the dynamics evolves in order-heterogeneous 
random hypergraphs, we have performed numerical simulations of 
the PGG considering four different values of g = 2, 3, 4 and 5 and 
allowing the values of pg to take only multiples of 0.25. This leads 
to 35 possible hypergraphs, one for each of all conceivable convex 
sums of {p2, p3, p4, p5} with the previous constraints. This means that 
the hypergraphs we consider are composed by hyperlinks of differ-
ent orders, where each order g takes Lpg hyperlinks out of the total 
number L. For instance, on a hypergraph with L = 100 and order 
probabilities (0, 0.25, 0.25, 0.5), on average we would expect 25 
hyperlinks of order g = 3, another 25 of order g = 4 and the remain-
ing 50 of order g = 5. Results are reported in Fig. 4 for four differ-
ent values of the power exponent β, namely, β = 0, 1, 2, 3, shown 
with different colours. Notice that the case β = 1 corresponds to the 
underlying linear assumption of the standard PGG: in this case, α 
plays the role of the reduced synergy factor r. Figure 4a–d plot the 
colour-coded fraction of cooperators as a function of the parameter 
α in the definition of the synergy factor. The hypergraphs Hi

I
 have 

〈k〉 = 2kc and are displayed according to their value of Kβ

I
, that is, the 

value of the critical point αc(β). As for the case of uniform random 
hypergraphs, we find that although the critical point is slightly over-
estimated for low densities by the analytical approximation, there 
is still a good agreement between the theoretical predictions of the 
well-mixed replicator approximation and the numerical simula-
tions. We next explore the behaviour of the relaxation time. Figure 
4e–h shows results obtained for order-heterogeneous hypergraphs 
with 〈k〉 = 5kc. As was done for the homogeneous scenario, we follow 
the dynamics of the system up to a maximum of T = 104 time steps. 
The plots show that the relaxation times depend on α for all values 
of β ≠ 1, albeit rather differently with respect to the dependence of 
the critical value αc for β < 1 and β > 1. In order to further explore 
this relationship, we analysed how the average relaxation time varies 
as a function of the critical point αc. Results shown in Fig. 4i–l reveal 
that the dependence is always linear. However, when the synergy 
factor increases super linearly, there appear different curves, each 
corresponding to a distinct family of hypergraphs and character-
ized by a different linear relation between the average relaxation 
time and the critical value. This behaviour introduces an additional 
degree of freedom that can turn very useful, since the degeneracy 
that is observed for β ≤ 1 is broken for β > 1, and therefore one can 
independently set a critical point and a relaxation time by oppor-
tunely choosing the corresponding hypergraph. We remind the 
reader that cases with β > 1 are those in which the synergy factor 
r(g) has a superlinear dependence on the order g. Those values of 
β are a priori the most interesting ones to study, and the ones more 
likely to be found in real situations. Therefore, our results about 
the relaxation are particularly relevant, because in this case one can 
potentially turn an unstable system into a stable one, and vice versa, 
by changing the order of the hyperlinks, while still respecting the 
value of the critical point.

Synergy factor of real games. From the previous results, a natural 
question arises: is it possible to determine the value of the synergy 
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factor for a real PGG for each of the possible group sizes? A plau-
sible answer to this question can be obtained under the assumption 
that the very same structure of the hypergraph is the result of an 
evolutionary process in which nodes select the groups they belong 
to. We hypothesize that each individual tries to optimize the ideal 
number of groups of each order, based on the perceived dependence 
of the synergy factor on the group size. In this way, each real-world 
hypergraph would be the optimal structure that supports the game 
it hosts. We could then extract the functional form R(g) directly 
from the hyperdegree distribution of the hypergraph. More pre-
cisely, the goal would be to use the information in the vector p of 
the hypergraphs on which the PGG occurs to determine the func-
tional form, R(g), of the synergy factor by imposing two conditions. 
The first condition comes from the assumption that the unknown 
reduced synergy factor r(g) is proportional to pg. This originates in 
the intuition that the distribution of the hyperdegree of a generic 
player should be aligned with the potential benefit that each player 
expects to obtain for each higher-order interaction. The second 
condition imposes that the average payoff of cooperators is equal 
to the average payoff of defectors. This implies that the system is 
at equilibrium and guarantees the coexistence of cooperators and 
defectors. Thus, given that these two conditions are satisfied, it is 
possible to extract the curves of r(g) and R(g) from empirical data 
on higher-order interactions.

In order to show how the above-mentioned procedure works 
in practice in real cases, we have studied collaboration in science 

and technology. We believe that this could constitute an example 
in which the benefit of a group depends on its size and at the same 
time, all group members do not contribute the same to the collective 
task, which essentially leads to a PGG dynamics. Although there is 
not a single way of classifying in a binary manner (either cooperator 
or defector) the authors of a scientific publication, one can think of 
two type of players mimicking cooperators and defectors. A coop-
erator can be considered as anyone that has contributed at least a 
‘fair’ amount of work. The reverse applies to defectors, which can 
be considered those that put less effort in producing a teamwork 
than the average or the ‘fair’ amount of work. Note that whatever 
the effort of the team members is, they all receive the same benefit, 
for instance, in terms of citations (the citation is to the paper, not to 
the individual). Thus, given that there are cooperators and defec-
tors, what is the optimal collaboration (group) size? And that of the 
synergy factor?

In particular, we have considered a large dataset of all the sci-
entific articles published in the last century in thirteen journals of 
the American Physical Society (APS). For each journal, we have 
constructed a hypergraph whose nodes and hyperlinks represent 
respectively scientists and co-authored publications (Supplementary 
Table 1 has further details). The reduced synergy factors have then 
been obtained from information on the number of authors in each 
publication (see Methods). From the plots of r(g) versus g reported 
in Fig. 5a we notice the existence of a maximum value of r at inter-
mediate group orders g. This indicates that there is an optimal 
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Fig. 4 | A PGG with higher-order interactions in order-heterogeneous random hypergraphs. We assume that the synergy factor grows according to 
equation (1) and consider the set of hypergraphs Hi

I
 that contain hyperlinks of orders g = {2, 3, 4, 5} with probabilities pg taking values in the set {0, 0.25, 

0.5, 0.75, 1}—there are 35 possible such hypergraphs. a–d, Fraction of cooperators as a function of α for each of the 35 hypergraphs Hi
I

 and several values 
of β. The hypergraphs are ordered according to their value of Kβ

I
. Simulations have been carried out up to T = 104 time steps for hypergraphs with 〈k〉 = 2kc, 

and triangles correspond to the theoretical predictions in the replicator approximation (Supplementary Information). e–h, Relaxation time as a function 
of α for the set of hypergraphs Hi

I
. Now hypergraphs have 〈k〉 = 5kc. i–l, Predictions for the critical value αc as a function of the average relaxation time, 

calculated for each hypergraph in Hi
I

 by averaging over the intervals of α = [0,8], [0,2], [0,1] and [0,0.5] for β = 0, 1, 2, 3, respectively.
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trade-off between the positive and negative effects of increasing 
the group size. The optimal value of g depends on the specific sci-
entific community, as it varies from journal to journal. In the case 
of PhysRevLett the maximum of r(g) is located at g = 3. Different 
journals are associated with other optimal collaboration sizes. For 
instance, for Phys. Rev. Appl., r(g) is maximum at g = 5, indicating 
that larger collaborations are more beneficial in applied topics, such 
as device physics, electronics and industrial physics. For almost all 
journals, the synergy factor is low for g = 1, showcasing the diffi-
culty of publishing alone in physics, a research area where teamwork 
has been becoming increasingly important in the past decades58. 
Interestingly, a paradigmatic case is the one of Phys. Rev. (Ser. I), 
the very first journal published by the APS in the early 1900s, for 
which a sharp peak is located at g = 1, showing how most publica-
tions were produced by single scientists, in contrast with current 
trends. In order to shed light on this result we have factorized the 
synergy factor as the product of an increasing function of g times 
a decreasing function of g, and we have performed a numerical fit 
to extract the benefit exponent β and the so-called cost parameter 
γ (see Methods). This enables us to interpret the synergy factor as a 
combination of two contrary effects of the higher-order interactions 
in this particular dataset.

Figure 5b reports the values of β and γ obtained for each jour-
nal of the APS, and it allows us to classify the different scientific 
communities in terms of benefits and costs of higher-order interac-
tions. These results provide a game-theoretic interpretation of the 
APS dataset. Specifically, in the context of this bibliographic dataset, 
hidden benefits and costs that conform to the synergy factor can be 
associated with several aspects of the task of producing a publication. 
Benefits (an increase of the synergy factor with increasing g) would 
correspond to the potential reinforcement of the amount and quality 
of the ideas and the potential increase in the outreach of the work 
with the number of co-authors involved. On the contrary, the costs 
(decrease with increasing g) would be the additional organizational 
effort in the process of arriving at a consensus and carrying out the 
tasks for publishing a paper. Experimental communities, such as 
that of nuclear physicists publishing in Phys. Rev. C, tend to have low 
costs. These ideas are aligned with recent studies about the creation 
and production of research ideas59 and the role, group dynamics and 
success of teams53–55. Our formalism allows for a quantitative analy-
sis of these phenomena and could be used in future applications to 
design ways to foster higher-order cooperation.

Discussion
Summing up, we have introduced higher-order interactions in evo-
lutionary games to study cooperation in groups. Since higher-order 

interactions allow for a single link to connect more than just two 
individuals, they are naturally suitable to define groups in networks. 
In doing so, higher-order interactions thus do away with the arbi-
trary definitions of groups in classical networks, and they provide 
a formal theoretical foundation to study cooperation in networked 
groups. We have shown that the PGG on a hypergraph is effectively 
a null model that agrees exactly with the replicator dynamics in 
the well-mixed limit as long as no hyperdegree–hyperdegree cor-
relations exist. As such, it can be used in future research towards 
upgrades that add additional layers of reality in models of human 
cooperation, either by means of strategic complexity10, or by means 
of more complex interaction networks60.

Towards the latter effect, we have also studied the PGG on 
hyperdegree-heterogeneous and on order-heterogeneous hyper-
graphs, where we study the effects of the presence of highly con-
nected individuals and of hyperlinks of different orders, respectively. 
Due to the exact definition of a group in the proposed framework, 
we have been able to systematically and consistently consider syn-
ergy factors that are dependent on group size. Indeed, the frame-
work allows us to unveil the effects of group size on cooperation 
in its most general form. As an example, we have considered syn-
ergy factors that are given by different powers of the group size, 
showing a critical scaling in the transition from defection to coop-
eration. In this case too, we have observed a substantial agreement 
between the simulations and the analytical predictions of the model. 
Interestingly, we found that hierarchically structured hypergraphs 
could hinder cooperation in a structured population. Our frame-
work enables analysis of real systems, as we have shown for the 
APS publications dataset, providing insights regarding the positive 
and negative effects associated to higher-order interactions and the 
nature of group dynamics. However, even if our framework includes 
diverse forms of higher-order interactions, we recognize that a cur-
rent limitation of this representation of human interactions is given 
by the constraints imposed by the available data. Admittedly, the 
identification of interactions in social networks beyond the tradi-
tional pairwise relationships constitutes an important challenge 
nowadays. Interestingly enough, this also represents an opportunity 
from an experimental point of view. It is also worth mentioning 
that the application of our results to scientific publications is based 
on the hypothesis that the interaction structure is the outcome of 
an optimization process, where the average distribution of groups 
that each node is part of coincides with the synergy factor, such that 
the system is in a stationary state of the dynamics of the PGG. This 
hypothesis, which constitutes a limitation of our method to extract 
synergy factors from real data, could potentially be either validated 
or refuted by models considering the dynamics within the topology  
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of interactions on top of the PGG. Moreover, the PGG imposes  
all cooperators to contribute with the same amount, making this 
contribution a boolean variable in practice. And therefore, an addi-
tional limitation arises when adapting real systems to the rigid 
formalization of the PGG, as the role of cooperators and defectors 
cannot be unequivocally defined when the contributions are not 
only 0 or 1.

It is also worth mentioning that in his essay titled Innate Social 
Aptitudes of Man, W. D. Hamilton wrote, ‘There may be reasons to 
be glad that human life is a many-person game and not just a dis-
jointed collection of two-person games.’ He was referring to the fact 
that social enforcement works better in groups with more than two 
members, which can offer at least a partial cure for the problems 
with reciprocation in larger groups38. We note that the theoretical 
framework of higher-order interactions also invites to re-examine 
other fundamental mechanisms that may promote cooperation, 
such as image scoring39–41, rewarding61 and punishment62–65.

Given the fundamental differences between pairwise and 
higher-order interactions, it would also be of interest to revisit the 
role of specific network properties and their role in the evolution 
of cooperation. In this regard, the role of community structure21, 
as well as two or more network layers22–29, promise to be fruit-
ful ground for future explorations on how interaction structure 
impacts cooperation. Overall, we believe that the introduction of 
higher-order interactions to evolutionary games has the potential 
to improve our understanding of the evolution of cooperation and 
other social processes in networks.

Methods
Uniform random hypergraphs. We detail here the procedure we have adopted to 
sample g-uniform hypergraphs, that is hypergraphs with all hyperlinks of the same 
order g. A URH of order g can be constructed by assigning a uniform probability 
p to each g-tuple of N

I
. For each of them, a random number in the [0, 1) interval is 

generated, and if this number is lower than p, the hyperlink containing the g-tuple 
is created. However, this method scales badly with g since the number of g-tuples to 
be considered is equal to the binomial coefficient CN

g ¼ N
g

� �

I

, which grows fast as 
a function of g. A more efficient procedure is to fix the total number of hyperlinks, 
L, and generate a random integer in the ½1;CN

g 
I

 interval. One has to provide an 
ordering for the set of all possible hyperlinks, so that each of the random integers 
corresponds to a hyperlink. The hyperlinks selected through this process are 
then added to the hypergraph. The hyperlink ordering is based on the following 
combinatorial identity

CN
g ¼

XN�ðg�1Þ
i¼1

CN�i
g�1

that allows us to partition set L of all the possible hyperlinks of a g-uniform 
hypergraph in terms of disjoint hypergraphs, each one of them containing the 
hyperlinks that form the corresponding g-star hypergraph66. This holds true in 
general, which enables us to apply the same argument recursively, such that we 
can order all the possible hyperlinks univocally, and even more, the probability for 
having a specific node in a hyperlink is equal for all the nodes. These properties 
arise from the combinatorial probabilities di ¼

CN�i
g�1

CN
g

I

 for i = 1, … N − (g − 1) that is 
the normalized weights of each of the terms in the summation. We have empirically 
found a distribution that can be used as an approximation to ci ¼

Pi
j¼1 dj

I
, the 

cumulative distribution of di, namely given by 1 − (1 − x)g, where x = i/(N − (g − 1)). 
Supplementary Fig. 2 contains a numerical proof of the convergence between  
both expressions.

For the purpose of studying the stationary condition of a game, we are 
interested in having a connected hypergraph. The critical thresholds for the 
number of hyperlinks, Lc, and the hyperdegree, kc, are equal to Lc ¼ N

g lnN

I

 and 
kc ¼ lnN
I

. Hence, when L is larger than Lc, there is a high probability that the 
resultant hypergraph is connected.

Power random hypergraphs. We have seen that using the combinatorial 
probabilities di allows us to create uniform random hypergraphs. Therefore, 
increasing the value of the exponent g to g′ in ci, such that g 0>g

I
, will increase the 

probability of sampling the hyperlinks belonging to the g-star hypergraphs of low 
index nodes, and therefore introduce heterogeneities in the degree distribution. 
The control parameter that we use in the simulations in the manuscript is μ ∈ [0, 1].  
In terms of μ, one can obtain the power to use in the cumulative distribution g 0 
as g 0 ¼ ð1þ μÞg

I
. In order to sample hyperlinks of order g according to the new 

distribution, we transform the random number r to a different random r0

r0 ¼ ci�1ð0Þ þ ½r � ci�1ðμÞ
dið0Þ
diðμÞ

ð4Þ

Here i is the g-star to which the hyperlink would belong if it was sampled according 
to r. In this expression di(μ) and ci(μ) account for the distributions using the value 
of g 0 as a function of μ. Accordingly, di(0) and ci(0) are simply the distributions 
of the uniform case. Supplementary Fig. 3 has an analysis of degree distribution 
emerging from the PRH.

Scale-free random hypergraphs. The standard indicator of heterogeneity in 
graphs is the power-law decay of the degree distribution. Here we employ the static 
scale-free algorithm67 to generate such a profile. We use the same control parameter 
as in the PRH, μ ∈ [0, 1], which in this case results in a power-law pk ~ k−λ where 
the power λ is λ = 1 + 1/μ. Supplementary Fig. 3 illustrates degree distribution of 
the hypergraphs generated with the SRH.

Extracting synergy factors from real data. We show here how the dependence 
of the reduced synergy factor r(g) on group size g can be derived for real systems, 
based on the assumption that this information is encoded in the very same 
structure of a hypergraph. In particular, we have considered a dataset of scientific 
publications and we have used it to investigate how benefits change with the 
size of groups in scientific collaborations. The dataset consists of 577,886 papers 
published in the period from 1904 to 2015 in the collection of all the journals of the 
APS68. We have constructed 13 hypergraphs corresponding to different journals, 
such as Phys. Rev. and Phys. Rev. Lett. of the APS. The nodes and hyperlinks of 
these hypergraphs represent scientists and publications respectively. The order of a 
hyperlink is equal to the number of authors of the corresponding publication. For 
each hypergraph, we have extracted the number Lg of hyperlinks of a given order 
g, which we used to compute the average number kg = gLg/N of hyperlinks of order 
g that a node is involved in. The reduced synergy factor r(g) can then be extracted 
from the proportion pg = kg/k of hyperlinks of order g of a node, by assuming that 
r(g) = zpg and using the critical point relation:

Xg¼gþ

g¼g�
pgð1� rðgÞÞ ¼ 0 ð5Þ

to calculate the proportionality constant z.

Cost–benefit factorization of the synergy factor. In scientific collaborations 
across all journals of the APS, an optimal team size is associated with a maximum 
in the synergy factor, suggesting that an excessively large number of co-authors 
might lead to disadvantages in cooperation. In order to account for these effects, 
we have modelled the synergy factor extracted from real-world collaboration data 
as the following function of g:

f ðg; α; β; γÞ ¼ αgβe�γðg�1Þ ð6Þ
ruled by the three parameters, α, β and γ. The first parameter, α, introduced in 
equation (1), is determined by the critical point condition. The remaining two 
parameters account, respectively, for the benefits and costs of the higher-order 
interactions. Benefits are modelled as a power-law of the group size g with an 
exponent β. Costs are described by an exponential decrease in the group size tuned 
by the cost parameter γ. Different functions of g might also provide a satisfactory fit 
of the data. Here we have opted for this expression because it enables us to factorize 
the group size dependence into two different contributions, benefits and costs, 
which can be interpreted in terms of behaviours of the players. The benefits grow 
as gβ, where β captures the synergistic effect of group interactions. The term due to 
the cost associated to task organization in groups has its maximum at g = 1, and the 
exponential dependence has been adopted to avoid possible singularities of other 
functional forms at g = 1. In conclusion, equation (6) has a maximum at g = β/γ, 
which summarizes the result in a compressed expression. To extract the pair of 
parameters (β, γ) for each journal, we explored the parameter space and performed an 
optimization in order to reproduce the empirical points correctly. For each considered 
pair (β, γ), we computed the normalized distance between the synergy factor inferred 
analytically and the one associated to the data (Supplementary Equation 7 has further 
details on the procedure). The pairs with the smallest distance were selected as the 
outcome of the optimization process and are those reported in Fig. 5c.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The APS dataset is provided by the APS at: https://journals.aps.org/datasets.

Code availability
Custom code that supports the findings of this study is available from the 
corresponding author upon request.
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