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ABSTRACT 

Invasive meningococcal disease (IMD) has a low and unpredictable incidence, presenting 

challenges for real-world evaluations of meningococcal vaccines. Traditionally, meningococcal 

vaccine impact is evaluated by predicting counterfactuals from pre-immunization IMD incidences, 

possibly controlling for IMD in unvaccinated age groups, but the selection of controls can influence 

results. We retrospectively applied a synthetic control (SC) method, previously used for 

pneumococcal disease, to two infant immunization programs against serogroups B and C IMD in 

England and Brazil. Time series of infectious/non-infectious diseases in infants and IMD cases in 

older unvaccinated age groups were used as candidate controls, automatically combined in a SC 

through Bayesian variable selection. SC closely predicted IMD in absence of vaccination, adjusting 

for non-trivial changes in IMD incidence. Vaccine impact estimates were in line with previous 

assessments. IMD cases in unvaccinated age groups were the most frequent SC-selected controls. 

Similar results were obtained when excluding IMD from control sets and using other diseases only, 

particularly respiratory diseases and measles. Using non-IMD controls may be important where 

there are herd immunity effects. SC is a robust and flexible method that addresses uncertainty 

introduced when equally plausible controls exhibit different post-immunization behaviors, allowing 

objective between-countries comparisons of IMD programs. 

Keywords: Interrupted time series analysis, synthetic controls, vaccine impact, meningococcal 

infections, invasive meningococcal disease, vaccines, effectiveness  

Abbreviations: CI: credible interval; CITS: controlled ITS; ICD-10: International Classification of 

Diseases, 10th Revision; IMD: invasive meningococcal disease; ITS: interrupted time series; 

MenB: meningococcal serogroup B; MenC: meningococcal serogroup C; Prob: probability of 

inclusion; RSV: respiratory syncytial virus; SC: synthetic control  
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Neisseria meningitidis (meningococcus) is a major cause of invasive bacterial disease globally, with 

high rates of morbidity and mortality (1-3). The incidence of invasive meningococcal disease 

(IMD) is low, 0.01–3.6 cases per 100,000 persons globally, but IMD is fatal in 10–15% of cases 

even if treated with antibiotics, and up to 20% of survivors suffer severe sequelae (1, 4). The 

incidence of IMD is strongly associated with age, being highest in infancy, with a second peak in 

adolescence and relatively high rates in older adults (1, 5). Its incidence tends to fluctuate over time 

and is influenced by geographical location and an interplay of various factors, such as bacterial 

transmissibility and virulence, immune system maturity, degree of mucosal and systemic immunity, 

and social habits like smoking (6-8). This complicates epidemiological measures of the disease, 

even with sophisticated mathematical models (9-15). 

Meningococci are classified by their capsular serogroup, and IMD is caused almost exclusively by 

serogroups A, B, C, W, X and Y (6, 16, 17). Vaccination is the only effective prevention measure 

against IMD (1, 6, 17), and polysaccharide-protein conjugate vaccines against serogroups A, C, W, 

and Y are effective in eliciting both direct and indirect immunity when implemented in mass 

immunization programs (18-20). The first broadly protective serogroup B meningococcal vaccine, 

the 4-component meningococcal serogroup B vaccine (4CMenB) (21, 22), was introduced in 2015 

in the United Kingdom’s national immunization program and high impact was demonstrated from 

real-world data (23).  

Measuring the impact of a mass immunization program against IMD is of primary importance for 

public health. Observational studies can be used to monitor real-world vaccine-attributable changes 

in disease incidence (24). However, due to the low incidence of IMD, several years of historical 

data (similar in definition and recording) can be required to obtain precise effect estimates, in a 

period of time where natural fluctuations in IMD incidence unrelated to vaccination are likely to 

occur. This inevitably introduces a risk of biased estimates and misinterpretation about causal 

effects (25). 
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A variety of quasi-experimental approaches have been developed for evaluating the impact of 

interventions from real-world time series data. The interrupted time series (ITS) method allows for 

adjustments for underlying trends (26). With controlled ITS (CITS) models, external controls can 

be added to adjust for time-varying confounders which could affect the outcome (27, 28). Ideally, 

controls are time series that are similar to the target disease but not influenced by the intervention, 

typically time series of the same disease in different geographical locations. However, this approach 

is problematic for IMD, since its epidemiology can substantially vary between countries (1-6, 17, 

29, 30). A reasonable option is to use as controls IMD cases from the same country, but in different 

age groups (23, 31, 32). However, there is no general gold standard for determining the most 

appropriate controls. Controls that similarly fit pre-immunization data may then exhibit different 

post-immunization behavior, and an arbitrary selection could influence the results and 

underestimate uncertainty in predictions. 

A possible solution is to use approaches that synthesize estimates of vaccine impact that arise when 

using different control diseases. This can be done by fitting models with different sets of covariates 

and averaging the results or by using Bayesian variable selection approaches (33-36). An extension 

of CITS methods is the synthetic control (SC) method (33-35) where controls are selected from a 

large pool of candidate time series and are weighted to build a composite control. The set of 

controls with best similarity to the target time series during the pre-intervention period receives 

more weight. SC approaches have been applied in different fields, from marketing to internet 

technologies (33-35). There are variations, including SC methods based on Bayesian variable 

selection (35), which have been used to quantify public health interventions against pneumococcal 

disease and pertussis (36-39).  

We investigated the validity of the SC method based on Bayesian variable selection for assessing 

the impact of meningococcal vaccines by applying it to two different immunization programs 

against meningococcal serogroups B and C (MenB and MenC) disease in England and Brazil (23, 
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32), using several infectious and non-infectious diseases as controls. We compared the SC 

performance with traditional ITS methods, with or without control time series, in scenarios where 

the immunization program was expected to have no effect. We then compared vaccine impact 

estimates of the SC method with the corresponding original assessments. Finally, we investigated 

which control diseases had the highest probability to be selected as predictors of meningococcal 

disease in infants.  

 

METHODS 

Data 

We collected laboratory-confirmed MenC invasive disease cases, grouped by subject age and month 

of disease onset (January 2007 – December 2013) (31) from Brazilian public databases (40). Data 

from the city of Salvador were excluded because a mass vaccination campaign was implemented in 

2010 following an outbreak of MenC disease (31). The MenC vaccine-eligible age groups were <1 

and 1–4 years old. For England, MenB invasive disease cases were retrieved from the Public Health 

England national surveillance system website (41). We collected quarterly cases from the last 

quarter of 2011 to the first quarter of 2019; before this period, data were not stratified by age group. 

The MenB vaccine-eligible age groups were 18—51 weeks and 1 year old (Web Appendix 1). 

Details on the two early childhood immunization programs are provided in Table 1.  

As candidates to compose SC, we used time series of cases from several infectious/non-infectious 

diseases from the same country and same target age groups. We included only diseases that were 

unaffected by meningococcal vaccination and for which no other interventions were introduced 

during the considered time. In addition, we used time series of the same target disease (MenB for 

England, MenC for Brazil) in older age groups not eligible for the immunization program. Full lists 
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of control time-series used for Brazil and England are provided in Web Tables 1/2 and Web 

Appendix 2. 

For the CITS, we used MenB/MenC cases in non-vaccine-eligible age groups as control time series, 

as done in previous analyses of the same data from Brazil and England (23, 32). 

 

Models to assess the impact of the vaccines 

We followed the SC approach based on Bayesian variable selection (35). SC models were fitted to 

pre-vaccination targets (meningococcal time series) (36) and fitted SC models were then used to 

generate counterfactual predictions for post-vaccination periods (36, 42). The SC models relied on 

Bayesian variable selection to select the optimal set of candidate controls and combine them into a 

composite (36, 42). The specific approach used implements a Poisson model with an observation-

level random intercept developed to fit over dispersed count data, available as an R package (43), as 

follows:  

IMD cases 𝑦𝑡 at time t are modelled as a Poisson process, 𝑦𝑡∼ Poisson(𝜆𝑡), with mean 𝜆𝑡  (42, 43): 

log(𝜆𝑡) = 𝑏0 + ∑ 𝑐𝑘 ∗ 𝐼[𝑚𝑜𝑛𝑡ℎ𝑘 = 𝑚(𝑡)] + ∑ 𝛽𝑘(𝛿𝑘) ∗ 𝑥𝑘𝑡
𝑝
𝑘=1𝑘 + 𝑏𝑐(𝑡)                                     

(Eq1) 

where t = 1,2,..., is the total number of time points; 𝑥𝑘𝑡 represents the number of cases of control 

disease k at time t; 𝑚𝑡 is a function that maps a time point to the corresponding calendar month; 𝑐𝑘 

represents the month k regression coefficient; I[.] represents the indicator function; 𝑏0 is an 

intercept; p is the total number of control diseases included in the analysis; 𝛽𝑘(𝛿𝑘) is the regression 

coefficient for control disease k, which is given a spike-and-slab prior distribution (depending on 

𝛿𝑘) in order to allow for data-driven variable selection; 𝛿𝑘 are binary random variables that are 
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equal to 1 if the control disease k is included in the model or equal to 0 if it is excluded; and 𝑏𝑐(𝑡) is 

an observation specific random intercept. All the control time series were log-transformed and 

standardized prior to being included in the model.  

The Bayesian variable selection procedure (35, 36, 42) with a spike-and-slab prior distribution was 

used to select variables among the candidate control time series. Each control is associated with an 

indicator variable which is 1 if the control is included in the model and 0 otherwise. Specifically, 

we used the function “poissonBvs” in R (44), which uses a Markov chain Monte Carlo sampling 

scheme for Bayesian inference (45). Among the values returned from the “poissonBvs” function, 

there is the posterior probability that the indicator variable 𝛿𝑘 is equal to 1 (“pdeltaBeta” in the 

package). The probability of inclusion for each control variable is computed as the proportion of 

Markov chain Monte Carlo iterations that include the variable in the model. We collected 10,000 

posterior samples after a burn-in period of 5,000 iterations.  

Since subjects in age groups not eligible for the meningococcal immunization program may have 

been indirectly protected by vaccination (herd immunity effects), the SC models were re-run 

excluding IMD time-series from the control sets, as a sensitivity analysis. We called ‘SC1’ the 

models that used all the controls (including those that may be impacted by herd immunity), while 

the second implementations without meningococcal controls were called ‘SC2’ models. 

The SC1 and SC2 models were first tested on target age groups not included in the vaccination 

programs, specifically on time series of IMD cases in 5–9, 10–14, and 15–19-year-old age groups 

(when used as a target, the respective time series was removed from the set of controls for the SC1 

model). In these scenarios, if the models provide good predictions, there will be no measurable 

vaccine effect in any of the age groups in Brazil or England. Consequently, the counterfactuals 

would be close to the observed points (no indirect protection was assumed, as reported in previous 

analyses (23, 32)).   
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As a comparison, we also tested more traditional models: ITS, where no external controls are used, 

and CITS, where control time series are selected by the investigator and included as covariates. We 

tested models that included control time series for all age groups and also tested models with single 

age groups at a time to give an indication of whether the choice of controls influences the estimates. 

Two variants of ITS and CITS were implemented: one included changes in both level and slope 

(ITS-S and CITS-S) and the other incorporated changes in level only (ITS-L and CITS-L). Further 

details on the ITS and CITS models are available in the Web Appendices 3 and 4. 

 

Evaluation of vaccine impact 

Vaccine impact was computed by comparing the total number of observed cases (Yobs) and the 

number of predicted counterfactual cases (Ycf) during the evaluation period Teval: 

Vaccine Impact = 1 – incidence rate ratio, 

where the incidence rate ratio equals (Yobs / Teval) / (Ycf / Teval) (36).  

We excluded the first year after vaccine introduction from the evaluation period (see Table 1), to 

avoid evaluating the impact while vaccine uptake was not yet stable, in agreement with previous 

impact studies (23, 32).  

 

RESULTS 

The SC model accurately predicted observed meningococcal cases in the absence of vaccination 

Using a SC approach with meningococcal cases in non-vaccinated age groups as target, we found 

no significant vaccine impact, as expected (Figure 1), and the SC1 model correctly captured the 
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seasonal behavior of IMD cases in all age groups (Figure 2). In addition, the SC1 model accurately 

reproduced long-term non-linear trends in the incidence of IMD, i.e. the decrease in MenC cases 

among 5–9 and 10–14-year-olds in Brazil since 2012 (Figure 2, panels A/B), and the increase in 

MenB cases among 15–19-year-olds reported in England during the entire immunization period, 

compared to negative trends reported before immunization (Figure 2, panel F). 

We tested the robustness of the SC estimates by using only non-IMD controls (SC2 model). With 

exclusion of IMD cases from the set of controls (i.e., using other diseases only), predictions did not 

change in England for any age group. In Brazil, small, statistically non-significant discrepancies 

were observed between the SC1 and SC2 predictions in 5–9 and 10–14-year-olds in the last 6–7 

months of the evaluation period (Figure 2, panels A/B). 

When the ITS and CITS models were tested on non-vaccinated age groups, in some cases, an 

unexpected significant positive or negative impact was detected (Figure 1). In general, a change in 

the slope negatively affected predictions: ITS and CITS predictions both improved when the change 

was in level only and not in slope (i.e. models ITS-L and CITS-L).  

 

Impact estimates in Brazil and England 

When using IMD cases in vaccinated age groups as the target disease, the SC1 model fitted pre-

vaccination data well, even in the presence of non-trivial incidence patterns, such as a trend 

inversion between 2014 and 2015 in England (Figure 3). Reported meningococcal disease 

incidences declined in both countries after the introduction of infant routine immunization 

programs, and the observed values declined relative to the counterfactual predictions. In Brazil, we 

measured a 69% (95% credible interval [CI]: 51%, 80%) vaccine impact on MenC cases in <1-year-

old infants associated with vaccination. In children aged 1–4-years, the impact was estimated to be 
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64% (95%CI: 55%, 70%). In England, we estimated a 75% reduction (95%CI: 69%, 80%) in 18–

51-week-old infants. In 1 and 2-year-olds, the reduction was, respectively, 72% (95%CI: 65%, 

79%) and 58% (95%CI: 38%, 71%). These vaccine impact estimates were in agreement with 

previous assessments based on time series methods (23, 32) (Web Appendix 5 and Web Tables 

3/4). 

Vaccine impact estimates from the ITS-L and CITS-L models were in line with SC1 model results 

in all age groups and countries, though in 1–4-year-olds in Brazil, the predicted impact was slightly 

higher (Web Figure 1). Vaccine impact estimates were not affected by the choice of controls (Web 

Figure 2). 

Conversely, including a linear trend component (change in slope) led to high variability among 

vaccine impact estimates in all age groups and both countries depending on which controls were 

included, if any (Web Figures 1/3). In the <1-year-old age group in Brazil, a simple ITS model 

without covariates estimated a 81% decline in incidence while a model with all covariates estimated 

a 75% decline, and results from CITS models with a single covariate ranged between them (Web 

Figure 3). Similarly, in 18–51-week-olds in England, we found impact values ranging from 48% for 

ITS to 62% for the CITS model with all covariates (Web Figure 3).  

 

IMD cases in older unvaccinated age groups are consistently among the best predictors of infant 

IMD caused by the same serogroup 

Even when the most frequently selected time series varied by age group and country, there was a 

common general pattern, since the IMD (MenB/MenC) time-series in non-eligible age groups was 

consistently among the 3 predictors with highest probability of inclusion. 
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For Brazil, a larger number of candidate controls was available (see full list of 36 controls in Web 

Table 1) than for England (Web Table 2). Figure 4 (‘All the controls’ panels) displays the 3 most 

selected time series according to probability of inclusion to fit pre-immunization MenC cases for 

age groups <1 and 1–4-years, which included not only MenC cases in older age groups, but also 

other infectious and non-infectious disease time series. The most selected predictor of MenC in <1-

year-olds was ‘diseases of blood and disorders involving the immune mechanism’ (International 

Classification of Diseases, 10
th

 Revision [ICD-10] code D50-89, probability of inclusion (Prob) = 

0.57), followed by MenC in adolescents aged 15–19 years (Prob = 0.23) and ‘injury, poisoning, and 

consequences of external causes’ (ICD-10 code S00-T98, Prob = 0.19). For MenC in 1–4-year-olds 

the most selected predictor of MenC was first ‘other acute lower respiratory infections’ (ICD-10 

code J20-J22, Prob = 0.35), then ‘diseases of the circulatory system’ (ICD-10 I00-99, Prob = 0.24) 

and MenC cases among 20–39-year-old adults (Prob = 0.22). 

In England, as shown in Figure 4 (‘All the controls’ panels), MenB incidence in the non-vaccine-

eligible age groups was predominantly selected among the top controls. In particular, MenB cases 

in the 3-year-old age group was selected with Prob = 0.97 to predict MenB in 1-year-old children. 

For the 18–51-week-old age group, posterior inclusion probabilities were lower than 50%. The most 

selected control time series was MenB cases in 15–19-year-olds with Prob = 0.23, similar to MenC 

in Brazil. Also, two childhood infectious diseases, measles and mumps, were selected among the 

best controls for the 18–51-week-old age group and 1-year-olds, respectively, but with a relatively 

lower probability (respectively, Prob = 0.13 and Prob = 0.08). 

 

SC predictions are not impacted by the exclusion of IMD cases in unvaccinated age groups 

The robustness of the SC approach was tested by repeating the analysis with the exclusion of IMD 

cases of the same serogroup in older unvaccinated age groups (the SC2 model). MenB and MenC 
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controls could be influenced by indirect (herd immunity) effects and removing IMD controls of the 

same serogroup allowed us to relax our initial assumption (i.e., that indirect effects are negligible).  

For Brazil, excluding non-vaccine-eligible IMD cases from the set of controls (SC2) did not change 

the goodness of fit and accuracy of predictions, while for England the performance was lower (Web 

Figure 4 and deviation information criterion and mean absolute error metrics displayed in Web 

Tables 5/6 and Web Appendix 6). For both countries and age groups, impact estimates were robust, 

with almost coincident best estimates and overlapping 95% CIs (Figure 5). 

Looking at the controls selected with the highest probability, the SC2 model often selected other 

respiratory infections or airborne diseases. Specifically, for England, we found that measles and 

respiratory syncytial virus (RSV) were frequently selected as predictors of meningococcal disease 

incidence (Figure 4 ‘NE MenB excluded’ panel). In particular, the incidence of RSV is associated 

with a probability of inclusion Prob = 0.90 to predict MenB in 1-year-olds. In Brazil, a specific 

time series for RSV was not available among the controls. However, acute lower respiratory 

infections (ICD-10 J20-J22) consistently appeared among the top 3 controls for 1–4-year-olds 

(Figure 4 ‘NE MenC excluded’ panel). J20-J22 refers to bronchitis, bronchiolitis, and other acute 

lower respiratory infections, including bronchitis and bronchiolitis due to RSV. 

 

DISCUSSION 

We re-analyzed data from two large infant immunization campaigns in Brazil (against MenC 

disease) and England (against MenB disease) using a SC approach. The two settings differed in 

many aspects, including meningococcal serogroup, vaccine type, disease seasonality patterns, age 

and socioeconomic status of the population, and public health system. Nevertheless, findings with 
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the SC method were in good agreement with those from the original studies (Web Tables 3/4 (23, 

32)). 

Control variables are crucial when predicting infectious diseases like IMD, given the large number 

of clinical, epidemiological, social, and environmental factors that could influence its behavior (1). 

Some of these factors are probably strictly related to the pathogen studied, while it is reasonable to 

assume others are shared with other diseases. For this reason, we included, as candidate controls, 

infectious and non-infectious disease cases in infants of the same age as those vaccinated, following 

the approach previously applied to pneumococcal vaccines (36). We also included MenB and MenC 

cases in older age groups that were not eligible for the vaccine program, similar to the original 

analyses run in England and Brazil (23, 32). We then investigated which control diseases should be 

selected to compose the SC. 

MenB and MenC cases in non-eligible age groups were consistently among the most frequently 

selected controls in England and Brazil, respectively. Examination of non-IMD diseases associated 

with infant IMD identified RSV disease and measles as among the best predictors for 1-year-old 

and 18–51-week-old infants, respectively, in England. An association between IMD and RSV and 

measles cases has been reported in some epidemiological studies (46-49), although others did not 

detect any clinical association (50, 51). One recent study found that measles could reduce humoral 

immune memory, thereby generating potential vulnerability to future infections (52). In Brazil, we 

found bronchitis/bronchiolitis and other acute respiratory infections to be good predictors of MenC 

cases. Both time series included RSV disease cases (36, 53). 

Our test of the performance of ITS and CITS designs found that a linear trend component (change 

in slope) may bias the results towards seeing an effect of vaccination when no vaccine impact is 

expected. This was probably due to the linear trend component incorrectly projecting an increasing 

or decreasing trend even after adjusting for covariates. Removing the linear trend component 
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improved ITS and CITS performances. CITS-L showed performances similar to the SC method, 

which is not surprising since the most frequently selected controls in the SC were the ones 

incorporated in CITS, i.e. IMD cases in non-vaccine-eligible age groups. 

In general, SC approaches based on Bayesian variable selection are appealing because they allow 

appropriate controls to be identified in situations where the choice is not obvious, and various 

plausible controls exist that may generate different counterfactual predictions. For example, when 

two or more plausible controls (e.g., IMD cases in different age groups) fit equally well pre-

immunization data but differ in the post-immunization period, results will be influenced by 

selecting one control or all of them. Instead, the SC method probabilistically generates posterior 

counterfactuals, whose credible intervals will also include uncertainty due to diverging controls in 

the post-immunization period. In this way SC efficiently handles uncertainty due to control 

selection, enabling more reliable counterfactuals to be built. In any case, it is usually beneficial to 

test different models (such as ITS, CITS, and SC) as a comparison of results may reveal differences 

that require further investigation to address possible sources of confounding. 

SC, ITS, and CITS models are all quasi-experimental approaches where interventional effects are 

evaluated relative to a predicted counterfactual, and not with respect to a similar population that 

received a placebo. Therefore, interpretation of results concerning the causality of such 

interventional effects should always be done cautiously and in light of the assumptions made when 

generating counterfactuals. The SC method relies on two major assumptions: 1) the time series of 

candidate control diseases must be unaffected by the vaccine under study and 2) any change in the 

relationship between the target disease and components of the SC over time must be caused by the 

vaccine (36). If the SC assumptions are fulfilled, then the difference between observed incidence 

and counterfactual may be interpreted as an indication of a causal effect of the vaccine (25, 36). 

However, no firm conclusions can be made on causality: as for other observational study designs, it 

is unlikely that confounding can be completely eliminated (36). 
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Our work has some limitations. Using time series of IMD cases in non-vaccine-eligible age groups 

as controls comes with inherent risks of generating biased impact estimates. Meningococcal 

vaccination may indirectly protect unvaccinated subjects (12, 54), so a reduced risk of IMD in non-

vaccinated age groups would lead to an underestimation of vaccine impact (24, 25). In particular, it 

has been shown that MenC vaccines induce indirect protection, specifically when targeting larger 

portions of the population that also include adolescents (15, 55). However, previous studies 

reported no evidence of indirect effects in both of the investigated settings (23, 31, 32). We 

nevertheless re-ran all the analyses excluding meningococcal cases in non-vaccine-eligible age 

groups from the set of controls. The results were robust even with this exclusion. In some 

circumstances, the SC model failed to identify an appropriate set of controls, such as with 18–51-

week-old infants in England (Figure 4). Here, the SC model was still able to produce a reliable 

counterfactual with only the intercept and seasonal components (Figure 3, panel C).  

Present results suggest that the SC model could be successfully applied to evaluate meningococcal 

immunization campaigns targeting adolescents and adults, where indirect effects could hamper a 

correct assessment of the overall impact. SC correctly adjusted for non-trivial changes in incidence 

of IMD and efficiently handled model uncertainty about which controls to include through Bayesian 

variable selection. Also, our finding that IMD may be associated with measles and RSV disease 

should be further investigated to uncover possible common causal factors. 

In conclusion, we showed that the SC model is a promising approach for estimating the impact of 

meningococcal immunization programs. Its general applicability in different contexts and its 

efficiency in automatically addressing uncertainty about selection of controls allows for an 

objective comparison between meningococcal vaccines and immunization strategies in different 

countries, offering a valid alternative for public health decision making.  
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TABLES 

Table 1. Details on the MenC and MenB Vaccination Programs Implemented in Brazil and England, Respectively 

Country Target time 

series 

Target age 

groups 

Time range Vaccine 

schedule 

Start of 

immunizatio

n program 

Evaluation 

period 

First Author, 

Year 

(Reference 

No) 

Brazil
a
 Monthly 

MenC cases 

<1 year and 

1–4 years 

Jan 2007 – 

Dec 2013 

3 doses at 

age 3, 5, 12–

15 months 

Nov 2010 Dec 2011 – 

Dec 2013 

Sinan, 2016 

(40) 

England Quarterly 

MenB cases 

18–51 weeks 

and 1 year
b
 

Q4 2011 – 

Q1 2019 

3 doses at 

age 2, 4, 12 

months 

Sep 2015 Q4 2016 – 

Q1 2019 

Phe, 2014 

(41) 

MenB: meningococcal serogroup B; MenC: meningococcal serogroup C; PHE: Public Health England; Q: quarter of year (e.g. Q1 is January to 

March inclusive); SINAN: Sistema de Informação de Agravos de Notificação. 
a 
Cases from the city of Salvador are excluded from the analysis 

b 
After data augmentation, as described in the Web Appendix 1 
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FIGURE LEGENDS 

Figure 1. Vaccine Impact Estimates in Non-Vaccine-Eligible Age Groups: 5–9 (Panels A and D), 

10–14 (Panels B and E), and 15–19 (Panels C and F) Years Old in Brazil (Panels A, B and C) and 

England (Panels D, E and F), Using Different Models (SC1 and SC2 Shown as Circles, ITS and 

CITS as Diamonds). 

CITS-L: controlled ITS with all MenB (England)/MenC (Brazil) cases in non-vaccine-eligible age 

groups used as controls (excluding the target) and incorporating changes in level only; CITS-S: 

same as CITS-L, but incorporating changes in both level and slope; ITS: interrupted time series; 

ITS-L: interrupted time series incorporating changes in level only; ITS-S: ITS incorporating 

changes in both level and slope; SC1: synthetic control method using all the controls available; 

SC2: synthetic control method excluding IMD cases in non-vaccine-eligible from the set of 

candidate controls.    

Figure 2. Meningococcal Cases Predicted by the SC1 and SC2 Models for MenC (Brazil) (Panels 

A, B and C) and MenB (England) (Panels D, E and F) Disease in the 5–9 (Panels A and D), 10–14 

(Panels B and E), and 15–19 (Panels C and F) Years Old Non-Vaccinated Age Groups. In blue, 

cases predicted with the synthetic control method using all the controls available (SC1) (curve: best 

estimate; shaded region: 95%CI). In cyan, cases predicted excluding MenB/MenC cases in 

unvaccinated age groups (SC2) (curve: best estimate; shaded region: 95%CI). Observed data 

reported as black dots. The model was fitted on pre-vaccination data only (best fits shown as solid 

lines). Post-intervention predictions (i.e. counterfactuals) shown as dashed lines. 

CI: credible interval; MenB: meningococcal serogroup B; MenC: meningococcal serogroup C; SC: 

synthetic control. 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



 

 
25 

Figure 3. Meningococcal Cases Predicted by the SC1 Model for MenC Disease (Brazil) in <1-Year-

Old (Panel A) and 1–4-Year-Old (Panel B) and MenB Disease (England) in 18–51-Week-Old 

(Panel C) and 1-Year-Old (Panel D) Vaccine-Eligible Age Groups. In black, cases predicted with 

the SC method (curve: best estimate; shaded region: 95%CI). Observed cases are shown as black 

dots. Solid black vertical lines indicate the introduction of the vaccination campaign. Dashed grey 

vertical lines indicate the initial point for measuring impact.  

CI: credible interval; MenB: meningococcal serogroup B; MenC: meningococcal serogroup C; SC: 

synthetic control. 

Figure 4. Top 3 Selected Controls With Highest Probability of Inclusion, for the <1 Year-Old Age 

Group and 1–4 Years-Old Age Group in Brazil (Panels A and B, Respectively); and for 18–51 

Weeks-Old Age Group and 1 Year-Old Age Group in England (Panels C and D, Respectively). We 

report results using all the controls (black bars) and a subset where MenB/MenC cases in non-

vaccine-eligible age groups were excluded (white bars).  

ach: aggregated variable with all the controls summed together; D50-89: diseases of blood and 

blood-forming organs and certain disorders involving the immune mechanism; E00-99: endocrine, 

nutritional, metabolic disorders; E40-46: malnutrition; I00-99: diseases of the circulatory system; 

J20-J22: bronchitis, bronchiolitis and unspecified acute lower respiratory infection; MenB: 

meningococcal serogroup B; MenC: meningococcal serogroup C; NE: non-eligible age group; P00-

99: perinatal diseases; RSV: respiratory syncytial virus; S00-T98: injury, poisoning and 

consequences of external causes. 

Figure 5. Vaccine Impact Estimates for MenC (Brazil) Disease in the <1 and 1–4 Years-Old (Panel 

A) and MenB (England) Disease in the 18–51-Weeks-Old and 1-Year-Old (Panel B) Vaccine-

Eligible Age Groups When Using the SC1 and SC2 Models (Black and White Dots). 95%CIs are 

shown as grey lines. Vaccine impact estimates using all the controls available are shown as black 
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dots. Vaccine impact estimates excluding MenB/MenC cases in unvaccinated age groups are shown 

as white dots.  

CI: credible interval; MenB: meningococcal serogroup B; MenC: meningococcal serogroup C; NE: 

non-eligible age group; SC: synthetic control. 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



Va
cc

in
e 

Im
pa

ct
, %

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

100

‐25

-150

-275

-400

100

50

0

-50

-100Va
cc

in
e 

Im
pa

ct
, %

Model

Model
F)

C)

Va
cc

in
e 

Im
pa

ct
, %

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

100

‐50

-200

-350

-500

Model

E)

Va
cc

in
e 

Im
pa

ct
, %

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

100

50

0

-50

-100

Model

B)
Va

cc
in

e 
Im

pa
ct

, %

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

100

50

0

-50

-100

Model

A)

Va
cc

in
e 

Im
pa

ct
, %

SC1 SC2 ITS-L CITS-L ITS-S CITS-S

50

0

-50

-100

Model

D)
100

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



N
o.

 o
f M

en
C

 C
as

es
40

30

20

10

0
2007 2008 2009 2010 2011 2012 2013 2014

A)

N
o.

 o
f M

en
B 

C
as

es

40

30

20

10

0
2012 2013 2014 2015 2016 2017 2018 2019

D)

40

30

20

10

0
2007 2008 2009 2010 2011 2012 2013 2014

B)

Year

40

30

20

10

0
2012 2013 2014 2015 2016 2017 2018 2019

E)

Year Year

Year

40

30

20

10

0
2007 2008 2009 2010 2011 2012 2013 2014

C)

Year

40

30

20

10

0
2012 2013 2014 2015 2016 2017 2018 2019

F)

Year

SC1
SC2

Model

N
o.

 o
f M

en
C

 C
as

es

N
o.

 o
f M

en
C

 C
as

es
N

o.
 o

f M
en

B 
C

as
es

N
o.

 o
f M

en
B 

C
as

es

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



N
o.

 o
f M

en
B 

C
as

es
N

o.
 o

f M
en

C
 C

as
es

N
o.

 o
f M

en
B 

C
as

es
N

o.
 o

f M
en

C
 C

as
es

40

30

20

10

0
2007 2008 2009 2010 2011 2012 2013 2014

A)

60

40

20

0
2007 2008 2009 2010 2011 2012 2013 2014

B)

Year Year

60

40

20

0
2012 2013 2014 2015 2016 2017 2018 2019

C)

Year

60

40

20

0
2012 2013 2014 2015 2016 2017 2018 2019

D)

Year

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



0.0 0.2 0.4 0.6 0.8 1.0

D50–89
NE 15–19 Years

S00–T98
D50–89
E00–99
E40–46

G
ro

up
A)

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

NE 15–19 Years
NE 13 Years

Measles
Measles

ACH
RSV

G
ro

up

C)

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

J20–J22
I00–99

NE 20–39 Years
I00–99

J20–J22
P00–99

G
ro

up

B)

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

NE 3 Years
NE 4 Years

Mumps
RSV
ACH

Mumps
G

ro
up

D)

Inclusion Probability

All Controls
NE MenB/C Excluded

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021



<1 1–4

100

75

50

Va
cc

in
e 

Im
pa

ct
 E

st
im

at
e,

 %

Age, years

A)

All Controls
NE MenB/C Excluded

<1 1–4

100

75

50

Va
cc

in
e 

Im
pa

ct
 E

st
im

at
e,

 %

Age, years

B)

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ab266/6424453 by Politecnico Torino user on 12 N
ovem

ber 2021


