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Recent advances in data collection have facilitated the access to time-resolved human proximity data that
can conveniently be represented as temporal networks of contacts between individuals. While the structural and
dynamical information revealed by this type of data is fundamental to investigate how information or diseases
propagate in a population, data often suffer from incompleteness, which possibly leads to biased estimations
in data-driven models. A major challenge is thus to estimate the outcome of spreading processes occurring on
temporal networks built from partial information. To cope with this problem, we devise an approach based on
non-negative tensor factorization, a dimensionality reduction technique from multilinear algebra. The key idea is
to learn a low-dimensional representation of the temporal network built from partial information and to use it to
construct a surrogate network similar to the complete original network. To test our method, we consider several
human-proximity networks, on which we perform resampling experiments to simulate a loss of data. Using our
approach on the resulting partial networks, we build a surrogate version of the complete network for each. We
then compare the outcome of a spreading process on the complete networks (nonaltered by a loss of data) and
on the surrogate networks. We observe that the epidemic sizes obtained using the surrogate networks are in good
agreement with those measured on the complete networks. Finally, we propose an extension of our framework that
can leverage additional data, when available, to improve the surrogate network when the data loss is particularly
large.
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I. INTRODUCTION

The advances made in data collection technologies have
led to a wealth of high-resolution time-resolved data. Mobile
sensing devices, social networking applications, and wearable
sensors have indeed significantly contributed to monitor social
interactions and physical proximity of individuals in time
[1–6]. Such fine-grained data monitoring is crucial for a deeper
study of human proximity dynamics, described by complex
temporal networks, in which links are drawn between nodes
representing individuals when they are in close range [7], and
their interplay with contagion processes. Physical proximity
interactions indeed play a fundamental role in conveying
information or in the spread of diseases [8–11]. They can
thus inform our understanding of how messages or infectious
diseases such as flulike illnesses propagate among individuals.

However, despite the efforts made to increase the accuracy
in the data collection, relational data often suffer from in-
completeness, resulting in missing links in empirical networks
[12]. This lack of information can arise for several reasons:
limited participation during surveys, incomplete records (diary
based or device based) [13–16], and technical issues occurring

during the data collection process. In the case of smartphone
sensing such as in [3,5], proximity might be undetected during
some time windows. For instance, people might turn off their
Bluetooth or call detail records might not provide access
to the vicinity of individuals to a cell tower at each time,
possibly leading to undetected co-presence events. In the case
of self-reporting of sexual relationships, individuals might
choose not to disclose all of their partners, which leads to biases
when focusing on the spread of sexually transmitted disease
[17]. Data incompleteness not only can affect the measured
properties and structure of temporal networks [18,19] but can
also reflect on the simulated evolutions of contagion processes,
leading to inaccurate conclusions [17,20,21]. The investigation
of information or disease propagation processes in data-driven
models built using such data must thus be undertaken carefully.

Several approaches have been put forward to recover miss-
ing links in networks [22]. These methods include distribu-
tional models, which estimate the likelihood of the presence
of a link on the basis of the observed links and nodes attributes
[23], hierarchical structure methods [24], stochastic block
models [25,26], and expectation maximization methods [27],
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which try to extract the connectivity patterns in the available
part of the network to infer and complete the unknown part. The
goal of these methods is the exact recovery of the missing links,
a complicated task that becomes nearly impossible to achieve
when a large amount of data is missing. Notably, this might
actually not be necessary if the goal is to estimate the global
outcome of a contagion process at the population level and
not the risk concerning a specific individual. Starting from this
point of view, several approaches have thus been developed to
specifically estimate important properties of epidemic spread
and information cascade without trying to recover the original
network [15,20,28–30]. These methods, however, either are
process specific or rely in a fundamental way on the existence
of metadata (allowing one to define groups in the population)
in the network, together with the knowledge of the structure to
which each population member belongs.

Here we propose a self-contained approach that does not
rely on metadata and addresses the issue of missing data
directly for temporal networks, while most existing methods
are based on static network representations. Moreover, our
approach is not based on a microscopic scale, i.e., on statistical
distributions of local quantities, or on macroscopic properties
of the network, but on an intermediate scale (which we refer
to as the mesoscale level), i.e., modular structures typically
observed in networks that are relevant for spreading processes
[31]. As in [15,20], the aim of this work is not to recover
the exact links which are missing in the data but instead to
build a surrogate version of the network of interactions. The
main difference with these previous works, which is a crucial
building block of our approach, is that we uncover in the
incomplete data latent structures that involve nodes affected
by missing activity.

To study the network at this mesoscale level, we take advan-
tage of tensor decomposition techniques [32] to extract both the
topological and temporal properties of the network [33]. With-
out using metadata or external information about the nodes,
our method allows us to recover fundamental properties of
the studied temporal network, such as the temporal activity of
nodes with partial information (i.e., the temporal evolution of
their number of contacts). Differently from other methods that
apply tensor factorization techniques for tensor completion
and prediction [34–36], we use this approach to build a
surrogate version of the network that yields a correct estimate
of the outcome of a simulated spreading process occurring
on the network. Furthermore, we show that the framework
presented can naturally be extended to take advantage of other
sources of information, correlated with the original network,
that might be available, such as information deriving from
subsidiary data sources. In particular, we use approximated
location data as a subsidiary source for contact data, as two
individuals must be in the same location to be in contact, thus
making the location data correlated with the contacts.

The paper is organized as follows. In Sec. II we present
the notation used in the paper. In Sec. III we describe the
problem statement. In Sec. IV we explain the method that
we developed to carry out the study. In Sec. V we report
the results achieved by our approach in the study of several
temporal human proximity networks. In Sec. VI we discuss the
performance and limitations of the method and future research
directions.

II. NOTATION

The following notation is used throughout the present paper.
Lowercase letters denote scalar variables, e.g., t , capital letters
denote defined constants, e.g., T , and boldface lowercase
letters denote vectors, e.g., t. Matrices are denoted by boldface
capital letters, e.g., T, where the ith column of a matrix T is
ti and the (i,j ) entry is tij . Third-order tensors are denoted by
bold calligraphic letters, e.g., T , whose (i,j,k) entry is tijk . The
tensor product is denoted by ◦, the Hadamard (elementwise)
product by ∗, the Kronecker product by ⊗, and the outer
product by ·. The Frobenius norm is denoted by ‖ · ‖F .

III. PROBLEM STATEMENT

In this work, we aim at reproducing the outcome of conta-
gion processes on temporal networks of human interactions,
by starting from incomplete information on these networks. To
this aim, we consider a scenario in which part of the activity of
a fraction of the network nodes (i.e., part of their interactions
over time) is missing in the data and we only assume to know
which nodes might be affected by missing data.

To provide an estimate of the outcome of spreading pro-
cesses on the network, we do not try to recover the exact
missing links and interaction events of these nodes. Our method
aims instead at building a surrogate version of the complete
network by taking advantage of the only information that is
available. As we will describe in detail in Secs. IV A and IV B,
this information can be related either only to the partial network
of human contacts or to richer data that can be used as a proxy
for human proximity. For instance, we could have access both
to the partial temporal contact network and to the approximated
location of individuals provided by smartphones, through GPS,
Bluetooth, or WiFi signals: Such additional information can
conveniently be represented, in the same spirit as in [37], as a
temporal bipartite network between individuals and locations,
in which a link is drawn between an individual and a location
when the individual is detected in that location. We will show
how such information can be integrated in our framework.

The underlying assumption of our method is that we can
leverage the mesoscale properties of the partial network,
such as the presence of correlations in the node activities, to
build a surrogate version of the complete network. To extract
these topological and temporal properties from the incomplete
data we rely on the non-negative tensor factorization (NTF)
technique [32]. In particular, our method is based on a NTF
framework handling missing values [38,39]. By applying the
NTF on a tensor representing a temporal network, we can
indeed identify groups of nodes having similar connectivity
patterns and whose links have similar activation times. Each
of these groups can be seen as a subnetwork. Note that a latent
structure is defined by nodes sharing some links and having
correlated activity. By construction, such a structure has to be
composed by at least three nodes to form at least two links
which co-occur at least once. By studying the structure and
the temporal activity of each subnetwork, we can infer the
properties of the nodes whose activity is partially missing. Our
method is thus divided into two main steps that we detail in
the next section. The first step consists in extracting latent
structures from the partial temporal network through NTF
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adapted to handle incomplete information. The second step
is the construction of a surrogate network.

IV. METHOD

A. Extracting latent structures from a partial temporal network

Three-way tensors (i.e., three-dimensional arrays) are natu-
ral representations of temporal networks: Given an undirected
temporal network, composed of N nodes and k = 1, . . . ,K

time intervals, we can represent its snapshots Gk = (V,Ek),
which have |V | = N nodes and a set of links Ek , by K

adjacency matrices Mk ∈ RN×N of the form

Mk =
{
mij = 1 if (i,j ) ∈ Ek

mij = 0 otherwise.

These adjacency matrices form the slices of a tensor T ∈
RI×J×K , where I = J = N . In the case of missing data, zero
values in the tensor can correspond either to no activity or
to undetected activity. We need to factorize however only the
part of the tensor that corresponds either to measured activity
or to actual inactivity (absence of contact). To this aim, the zero
entries that correspond to possibly undetected activities have to
be masked in the tensor. If a node with partial information has
no activity at all measured during a given snapshot (in a given
slice of the tensor), we consider the related zero entries in the
tensorT as possible undetected activities, i.e., possible missing
contacts. On the other hand, if a node, for which we know that
some data are missing, has at least one contact measured in
a slice, we assume that no information about that node was
lost at all in that tensor slice. In other terms, we assume for
each node and each time slice that either all or none of the
activity recorded by that node in that time slice is present in the
data. For instance, this would reflect the case in which a sensor
measuring proximity is turned off or the GPS coordinates of
a mobile user are not collected during a time window: All
the proximity information concerning this sensor in this time
window is lost. However, if the measuring device is not turned
off, all the proximity relationships with other devices that are
also on during that time window are present in the incomplete
data. We explain at the end of this section the possible impact
of the choice of such a hypothesis.

We thus introduce a binary tensor W , of the same size as
T , whose entries are defined as

wijk =
{

0 if i or j has no activity in the time window k

1 otherwise.

This tensor is used to mask the part of the tensor T that might
be linked to possibly undetected activity. The approximation
of the masked tensor T ∗ W consists in minimizing the cost
function with non-negative constraints [39]

fw(λ,A,B,C) =
∥∥∥∥∥W ∗

(
T −

R∑
r=1

λrar · br · cr

)∥∥∥∥∥
2

F

,

where R is the rank of the approximation and is hereinafter
called the number of components. The vectors ar , br , and
cr with r ∈ [1,R] form, respectively, the factor matrices A ∈
RI×R , B ∈ RJ×R , and C ∈ RK×R .

Each component, i.e., each tuple of vectors (ar ,br ,cr ), is
interpreted as a latent structure in the data set: The sum Tapp =

∑R
r=1 λrar · br · cr yields thus an approximation of T that can

be interpreted as a superposition of R latent structures. The
vectors ar and br indicate which nodes and links participate in
the latent structure r , while cr describes the temporal activity
of the structure r . Let us note that here we impose that the
vectors ar , br , and cr are normalized, which is made possible
by the use of the scalar parameters λr . This is an important
point for building the surrogate network as described below.
For the sake of readability, the cost function is rewritten in the
following form:

fw(λ,A,B,C) = ‖W ∗ (T − [[λ; A,B,C]])‖2
F . (1)

Using the mask W amounts to approximating the tensor
T based only on information of which we are certain: We
are approximating only the part of the tensor composed of
elements that are either 1, corresponding to measured events,
or 0, corresponding to the real absence of contact, without
taking into account all the 0 values that might correspond to
undetected activity.

In other terms, minimizing the cost function fw corresponds
to finding the best approximation of the nonmasked part of
the tensor by a sum of components, each corresponding to
a latent structure. The analysis of A, B, and C yields then
information on which link is involved in which mesoscale
structure, including in particular the links involving nodes
with incomplete information. Several methods are available
to estimate the factor matrices A, B, and C [40,41] and details
are given in Sec. VII.

B. Extracting latent structures from coupled temporal networks

Here we propose an extension of the latent structure
detection method to the case in which we have access to
richer information, not expressible in one single temporal
network. The integration of such information might help to
better recover the missing entries in the tensor describing the
temporal contact network: For instance, if we have access,
in addition to the partial contact network, to the location of
individuals involved in the contacts, the latter can contribute
to recover the missing information on contacts. To integrate
such additional data, we propose to use the so-called joint
non-negative tensor factorization (JNTF) [42] that makes it
possible to decompose multiple temporal networks at once in
a coupled manner (in practice, we will consider the partial
temporal contact network and a position network evolving with
time).

Let us consider the general case of S different temporal
networks, each represented by a tensor Ts , with possibly
different dimensions as they might represent different types
of information. We can approximate them in a coupled way
by computing the following minimization problem with non-
negative constraints:

min
S∑

s=1

‖Ts − [[λs ; As ,Bs ,Cs]]‖2
F such that λs ,As ,Bs ,Cs � 0.

(2)

Different couplings can be considered by imposing that some
of the factor matrices As , Bs , and Cs in the equation are equal
for different values of s. The idea behind the introduction of
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this coupling is that different networks can provide partially
redundant information and that this redundancy is relevant for
recovering missing entries. For instance, if we have access
to the locations of nodes but only to partial information
concerning their contacts, we can couple the decomposition
of the tensor T1 representing the partial contact network to the
decomposition of the tensor T2 representing the time evolution
of the location of nodes and gain in this way information on the
possible contacts over time. In practice, we would impose A1 =
A2 and C1 = C2, which correspond, respectively, to imposing
the same nodes’ memberships and the same activity timeline
for each latent structure in the resulting approximations of the
contact and location tensors.1

The joint factorization of tensors, including one with miss-
ing information Ts ′ , can be adapted to handle missing values
in the same way as the NTF:

min

(
αs ′ ‖W ∗ (Ts ′ − [[λs ′ ; As ′ ,Bs ′ ,Cs ′ ]])‖2

F

+
S∑

s = 1
s �= s ′

αs‖Ts − [[λs ; As ,Bs ,Cs]]‖2
F

)

such that λs ,As ,Bs ,Cs � 0 ∀s.

To solve this minimization problem we adapted the active-set-
like method with Karush-Kuhn-Tucker optimality conditions
[40,43] (see Sec. VII for details). In the following, we set all
the αs parameters equal to 1. We note, however, that they could
be used to tune the relevance of the information provided by
each tensor. As an example, by setting αs ′ > αs ∀s �= s ′, we
would give more importance to the information provided by
the network with partial information than to the one given by
the subsidiary data.

C. Surrogate network

As introduced in the previous sections, both types of
factorizations, either with or without the use of auxiliary data,
approximate the partial tensor (network) as Tapp, which is fully
defined by the three factor matrices A, B, and C and the vector
λ. The columns of the factor matrices correspond to the latent
structures, which can be interpreted as subnetworks whose
links have similar temporal properties, as we now describe.

Each tuple (ar ,br ,cr ) obtained by the factorization step
gives information on the level of membership of each link for
the corresponding structure and on the times in which these
links are active in the network (i.e., on the level of activation
of the links). First, we obtain the membership of each link (i,j )
to each structure r by using A and B; this membership is indeed
given by the (i,j )th element of the Kronecker product

ar ⊗ br = ar · bT
r .

1Note that because of the auxiliary information the factor matrices
A1 = A2, B1, and C1 = C2 provided by the JNTF differ from those
found when applying the NTF.

As we consider undirected networks, the actual membership
of each link is symmetrized in the following way:

ar · bT
r + br · aT

r

2
.

For each r , we rank these values in decreasing order and we
consider that the links with the largest membership values,
composing 95% of the total sum of the squared memberships,
belong to the component r (note that, depending on the
membership values, a link could belong to more than one com-
ponent). Then, to detect the times in which each latent structure
is active, we consider the matrix C, which summarizes the
temporal activity of each component; by using the Otsu method
[44], a common way to perform binary thresholding, we
transform the temporal activity of each component in its binary
version (1 if it is active, 0 otherwise). Note that this step is
possible because we work with normalized vectors cr .

For each structure, we then select the links involving at least
one node with partial information and the times in which its
activity was potentially lost (in the sense that no activity of
that node was recorded at all for this particular time) and we
add the corresponding elements of the structure to the partial
tensor T to create the surrogate tensor Tsurrogate. The rationale
is that the factorization has allowed us to determine, for the
links for which only partial information is available, to which
latent structures they belong. Using the activity timelines of the
latent structures, we thus reconstruct the missing parts of the
activity timelines of these links. The procedure of binarization
of the approximated tensor described above is summarized in
Fig. 1.

To find the surrogate tensor by using the JNTF, an addition
is necessary. The JNTF indeed yields components influenced
by the activity in both the partial proximity network and
the subsidiary temporal network (such as a network linking
individuals and locations). Thus, the JNTF will approximate
the network in a way based also on co-presence events of
individuals. As co-presence is a necessary but not sufficient
condition for two individuals to be in contact, the links added
when creating Tapp are less likely to correspond exactly to
contacts that were missing than in the NTF case. This results
in link weights larger than in the original data, with less bursty
activity patterns (the weight of a link is given by the number
of time slices in which it is active). As mentioned in Sec. IV B,
the weight of the information provided by the second tensor
can of course be tuned in the JNTF by adding coefficients
so that the components extracted by the factorization are
more representative of the network with partial information
than of the other one. The investigation of this possibility,
however, is outside the scope of this paper. The procedure of
binarization ofTapp described above needs thus to be completed
to make the properties of the network more heterogeneous.
In order to do this, we have to discard some of the times
in which the links involving nodes with partial information
are active in Tapp to compensate for the overestimation and
get closer to the empirical network. The key idea here is to
zero out some elements in Tsurrogate to recover a distribution
of link weights comparable to the empirical one, measured on
the links involving only nodes with no missing information.
We pick from this distribution a number of weights equal to
the number of links having partial information, for which we
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FIG. 1. Schematic representation of the approach for creating the surrogate network in the case in which we just have access to a partial
network, such as a temporal contact network (NTF), and in the case in which we also have access to additional data, such as the approximate
location of the nodes (JNTF). The main steps are (i) masking of the tensor in order to retain only the part of the data we are sure about (for
each link, the times at which we know if it is active or not), (ii) factorization that approximates the tensor as a sum of components interpreted
as latent structures, and (iii) extraction of link memberships and temporal activity for each latent structure. Finally, we use this information to
complete the partial tensor and obtain the surrogate network. In order to exploit potential additional data, the factorization step can be done in
a joint way (JNTF) where we constrain the factor matrices related to the common dimensions to be equal (A1 = A2 and C1 = C2); in this case,
an additional step of weight reassignment is needed.

have to adjust the weights, and we assign them at random to
these links. Finally, we compare for each link the new value
to its weight in Tsurrogate: If the new weight is smaller than
the old one, we erase at random parts of the link activity
that are present in Tsurrogate, until we reach the new weight;
if instead the new weight is larger than the old one, we do
not act on that link’s activity. The reason why we can rely
on the weight distribution measured on the partial network is
due to its robustness to sampling, as shown in [4,15,20,28]
for various sampling procedures and in Appendix C for the
sampling considered here. After the reassignment of weights,
the resulting tensor Tsurrogate is used to approximate the whole
temporal network of contacts and perform simulations of
spreading processes. The procedure in the case of additional
data is also summarized in Fig. 1.

D. Summary outline of the approach

The steps of our method can be summarized as follows.
(i) Given a tensor with missing data, representing a temporal

network (weighted or unweighted), the NTF approximates
such a tensor through the sum of R components, interpreted
as structures. Each component is fully determined by three
normalized vectors ar, br, and cr and a scalar λr .

(ii) We use the vectors ar and br to identify the links involved
in each component r . Once the list of links is identified,
we further select those involving at least a node with partial
information.

(iii) We need now to assign to these links their temporal
activation and reconstruct the surrogate tensor. To this aim,
we binarize the vector cr (cr is normalized and its elements
are bounded between 0 and 1) by using the Otsu method. The
binarization provides the times at which the links should be
present.

(iv) At this stage we have obtained the needed information
about the entries tijk to insert back in the incomplete tensor:

the identified links (i,j ) at the selected times k. In the case
study we just insert in the tensor a new value equal to 1 (as
the original network is unweighted). Note that this could be
extended to the case of a weighted network, as we could then
insert back the approximated value of Tapp at position (i,j,k).
This value is given by the product of ari , brj , crk , and λr .

An additional step of weight reassignment is needed in
the case of the joint non-negative factorization, as explained
previously.

Let us note that we consider here a type of data loss
that would correspond to having devices turned off at some
moments: For each node and at each time slice, either all or
none of the activity recorded by that node in that time slice is
present in the data. This assumption comes into play in two
ways. (i) In the construction of the mask W , the assumption
allows us to make the approximation by a sum of latent
structures using the information on both activity times and
inactivity times of the links. It would be possible to relax this
assumption by using only the values of 1 in T , i.e., the times
at which links are known to be active. The tensor W would
then be used to mask all the 0 entries tijk in the incomplete
tensor, where either i or j is a node affected by data loss.
(ii) When we are adding the recovered links (involving nodes
with missing information) to the partial tensor, we indeed add
back links active only at times in which the involved node
with partial information had no interaction at all. To relax this
assumption, we could add back links involving nodes with
partial information at times chosen according to a criterion on
the node activity, for instance, if the activity of the nodes with
missing information at that times is below the average activity
of nodes without missing information.

E. Baseline network

In order to have a reference to which to compare our
approach, we additionally consider a baseline procedure that
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assigns activities to nodes with partial information based
simply on the average activity of the other nodes. In this
procedure, we first compute the average total activity of the
nodes for which no information is missing, aav; the total
activity of a node is simply given by its total number of
contacts. We also compute the total activity for each node with
potentially missing information; if it is lower than aav , we add
contacts at times chosen at random among the times in which at
least one other node had some activity (in order to avoid adding
contacts in periods with no activity at all, such as the nights
in contact network data), until the activity of the node reaches
aav . We obtain in this way our baseline surrogate network.

V. RESULTS

We apply the method described in the previous sections
to three temporal human proximity networks. The data were
collected by the SocioPatterns collaboration [45] in two con-
ferences in Italy (HT09) and France (SFHH) and in a primary
school in France (LSCH). In each case, the proximity of
individuals in the network was measured with wearable sensors
able to capture face-to-face contacts occurring in a (1–2)-m
range with a 20-s time resolution. As for the purpose of the
present paper we do not need such a high resolution, we
aggregate the data to a 15-min resolution. The HT09 data
set was collected during the conference in [46]. The resulting
temporal network has N = 113 nodes and K = 237 snapshots.
The SFHH data set was collected during the conference of the
Société Française d’Hygiène Hospitalière, yielding a temporal
network with N = 417 nodes and K = 129 time snapshots
[4]. Finally, the LSCH data set was collected in a primary
school in Lyon [47]. The resulting network has N = 241 nodes
and K = 130 snapshots. We consider all the snapshots as
unweighted networks (meaning that each element of the tensor
is either 0 or 1).

We simulate on each data set a loss of data determined by
a fraction of nodes pnodes ∈ [0.1,0.2,0.4] for which we zero
out the activity occurring during the first half of the total time
span, i.e., the information concerning each of these nodes is
lost over a fraction ptimes = 0.5 of the temporal snapshots. We
consider in scenarios where all the nodes are affected by the
data loss at the same times and in particular in the first part of
the time range. This choice corresponds indeed to a worst-case
scenario maximizing the impact of the loss of information on
the spreading process. To show the versatility of the method,
we also consider in the Appendix D scenarios in which data
losses occur at random times for each affected node.

In practice, for each data set we start from the complete
tensor T̂ and we create a tensor with partial information T by
erasing, in the first half of the temporal slices of T̂ , the elements
related to Npnodes chosen at random. To test the limits of our
method, we also consider cases where either all the nodes lost
some information or a fraction of the nodes lost all their activity.
More details on the cases dealt with are provided below.

A. Approximated network

For each data set and for each data loss scenario, we perform
the approximation of T , i.e., the minimization of Eq. (1),
with a number of components selected using the so-called

TABLE I. Range of values of the Pearson coefficient computed
by comparing the original and approximated node activities for each
node in the different sets considered. The table also reports the median
value obtained. The p values are lower than 10−3.

pnodes ptimes Pearson’s coefficient Median value

LSCH
0.1 0.5 [0.53,0.96] 0.77
0.2 0.5 [0.54,0.96] 0.76
0.4 0.5 [0.53,0.96] 0.77

HT09
0.1 0.5 [0.38,0.83] 0.54
0.2 0.5 [0.37,0.80] 0.52
0.4 0.5 [0.37,0.73] 0.50

SFHH
0.1 0.5 [0.40,0.89] 0.57
0.2 0.5 [0.48,0.93] 0.57
0.4 0.5 [0.40,0.89] 0.57

core consistency diagnostic [48] as a guide (see Sec. VII for
details). We perform 20 decompositions in each case, varying
the initial conditions, and we use the one with the highest
core consistency value. Moreover, for each value of pnodes

we repeat the procedure on ten different sets of nodes with
missing information chosen at random, in order to evaluate the
variations in the performance of our method.

From the factorization of the tensors with missing informa-
tionTHT09,TSFHH, andTLSCH, we recover the first approximated
version of the complete network Tapp for each data set. The
first evaluation of the results provided by the decomposition
is obtained by computing the Pearson coefficient between the
complete and approximated temporal activities of the nodes for
which only partial information is available in T . The correla-
tion is measured only on the part of the activity that is missing in
the partial data. We report the correlation coefficients found in
Table I and we show in Appendix A a representative example of
the temporal activities of these nodes with partial information
in the complete, partial, and approximated networks. The
correlation coefficients shown are measured on ten different
sets of nodes with missing information for each data set. The
ranges of Pearson’s coefficient indicate positive moderate
to high correlation between the complete and approximated
node activity, indicating a good recovery of the node temporal
activities in Tapp. Interestingly, the results depend only weakly
on the fraction of nodes affected by information loss. This is
due to the fact that these nodes are here chosen at random in
the resampling procedure. They are thus distributed among all
the latent structures present in the data so that each of these
structures will also retain a number of nodes with no missing
data, making it still detectable by the NTF step and allowing
us to access the whole activity timeline of each structure.
By definition of the latent structures as subnetworks with
correlated link activities, this in turn implies that the NTF yields
a good approximation of the activity timeline of the nodes
affected by missing data. Obviously, a scenario in which whole
latent structures would be missing from the data would yield
a worse recovery of the activity timelines of the nodes with
incomplete data. In addition, we note that, by construction,
the approximation through the factorization relies on the
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existence of correlated activity patterns and consequently
performs better in the presence of strong such patterns.
This explains why the temporal activities are better recovered
(larger Pearson correlation coefficients) in the LSCH case than
in HT09 and SFHH. Indeed, in schools the schedule is quite
constrained and all the students of a given class have highly
correlated activity timelines, leading to stronger correlated
activity patterns than in conferences, during which attendees
are free to move and interact with different people at different
times.

B. Surrogate network

As illustrated in the preceding section, the approximation
step achieves good results to recover single-node temporal
activities by using NTF handling missing information. Despite
these correlations, however, the direct use of the approximated
network Tapp in simulations of spreading processes results
in a strong underestimation of the process outcomes (see the
Appendix B). We thus apply the procedure described above
and build a surrogate temporal network Tsurrogate relevant to
estimate the outcome of spreading processes. For the JNTF,
for each link involving nodes with partial information, we
moreover assign a weight extracted from the distribution of
weights measured on the links with no missing information
and, if needed, we remove a part of the link’s activity present
in Tsurrogate but not in T until we match this weight.

C. Estimate of the outcome of spreading processes

To evaluate the performance of the method in estimating the
outcome of spreading processes on the network, we simulate
susceptible-infected-recovered (SIR) processes (see details in
Sec. VII E) over three temporal networks for each data set:
the complete, the partial, and the surrogate network. In each
case we run multiple simulations for each set of values (β,μ)
of the infection and recovery probabilities per unit time. We
focus on the couples of probabilities (β,μ) that satisfy the
following criterion. The spreading has to be finished within
the time span of the data set and the epidemic size, defined
as the final fraction of recovered individuals, has to be greater
than 20% and lower than 80% (the selection is based on the
median of the epidemic size). These conditions ensure that
we avoid the selection of parameters such that the simulations
either never reach a significant epidemic size and/or are too
slow with respect to the total time span of the network. The
limit for the final number of recovered individuals to 80% of the
entire population prevents the selection of parameters leading
to too fast spreading that are far from realistic conditions.

For each selected pair of parameter values β and μ, we
compute the distribution of the epidemic sizes in the three cases
(here called complete, partial, and surrogate). As we simulate
a loss of data by considering ten different sets of randomly
chosen nodes with partial information, we report the median
distribution of the epidemic size on the simulations over these
ten cases as well as the 25th and 75th percentiles. In addition,
we provide a quantitative evaluation of the results by measuring
the Jensen-Shannon divergence between the distribution of
epidemic sizes obtained on the original network and on the
surrogate cases. The Jensen-Shannon divergence quantifies the

difference between two distributions P1 and P2 of epidemic
sizes σ in the following way:

Ds
JS(P1‖P2) = 1

2

∑
σ

P1(σ ) ln
P1(σ )

P2(σ )

+ 1

2

∑
i

P2(σ ) ln
P2(σ )

P1(σ )
.

We first consider the case in which the only available
information is the partial temporal networkT and then a case in
which an additional source of information is available, namely,
the location of individuals over time.

1. Using only the partial temporal network

In Fig. 2 we report the epidemic size distributions obtained
for the LSCH data set, for two couples of selected spreading pa-
rameters, β = 0.3 and μ = 0.3 [Figs. 2(a)–2(c)] and β = 0.15
and μ = 0.25 [Figs. 2(d)–2(f)], and for different fractions of
nodes pnodes with partial information. The figure shows that the
distributions obtained by simply simulating the SIR process on
the network with partial information strongly underestimates
the epidemic size and this underestimation becomes stronger as
pnodes increases. The distributions obtained using the baseline
network is in good agreement with the ones obtained with the
full original network at low pnodes, but the estimation becomes
rapidly rather bad as pnodes increases. On the other hand,
using the surrogate network yields consistently much better
results. This is also corroborated by the differences between the
distributions measured with the Jensen-Shannon divergences
and reported in Table II.

TABLE II. Jensen-Shannon divergences measured between the
distributions of epidemic sizes obtained on each network (partial,
surrogate, and baseline) and on the original network.

pnodes ptimes Partial Baseline Recovered

LSCH (β = 0.3, μ = 0.3)
0.1 0.5 0.17 0.03 0.01
0.2 0.5 0.35 0.03 0.01
0.4 0.5 0.39 0.04 0.06

LSCH (β = 0.15, μ = 0.25)
0.1 0.5 0.17 0.01 0.01
0.2 0.5 0.34 0.01 0.01
0.4 0.5 0.34 0.08 0.02

HT09 (β = 0.6, μ = 0.1)
0.1 0.5 0.12 0.02 0.02
0.2 0.5 0.52 0.03 0.02
0.4 0.5 0.6 0.15 0.08

HT09 (β = 0.25, μ = 0.05)
0.1 0.5 0.15 0.01 0.05
0.2 0.5 0.35 0.08 0.02
0.4 0.5 0.51 0.32 0.06

SFHH (β = 0.3, μ = 0.1)
0.1 0.5 0.47 0.08 0.06
0.2 0.5 0.6 0.33 0.14
0.4 0.5 0.58 0.48 0.39

SFHH (β = 0.25, μ = 0.08)
0.1 0.5 0.32 0.07 0.06
0.2 0.5 0.48 0.21 0.13
0.4 0.5 0.49 0.34 0.24
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FIG. 2. Distributions of epidemic sizes computed in the complete, partial, baseline, and surrogate cases for the LSCH dataset. Each panel
corresponds to ptimes = 0.5, one value of the fraction pnodes of nodes with partial information [panels (a),(d) = 0.1; (b),(e) = 0.2; (c),(f) = 0.4]
and one couple of spreading parameters: (a)–(c) β = 0.3 and μ = 0.3; (d)–(f) β = 0.15 and μ = 0.25. For the partial, baseline, and surrogate
cases, the symbols and lines show the median distribution of the epidemic size computed from the results relative to the 10 different sets of
nodes with partial information, while the shaded area is delimited by the 25th and 75th percentiles.

We obtain similar results for the HT09 and SFHH data sets,
for which we report the results of numerical simulations of
the SIR process for various values of the spreading parameters
(β,μ) and of pnodes in Figs. 3 and 4. In all cases, using only
the partial temporal network in the numerical simulations
of the SIR process leads to a clear underestimation of the
epidemic sizes and this underestimation becomes worse as
pnodes increases. Using the baseline networks yields better
results at small pnodes and the simulations performed on the
surrogate network are systematically much closer to the ones
based on the complete information, leading thus to a strong
improvement in the prediction of the epidemic risk. For the
SFHH case, however, we observe that the agreement becomes
worse when pnodes increases even for the surrogate network.
This is due to the fact that during large conferences attendees
tend to follow the schedule less rigorously than in small ones
and move around and engage in contacts more freely and in
a more random way, thus leading to less correlated activity
patterns. In such a case, auxiliary data could be useful, as
in the case we describe in the next section. Table II gives a
quantitative description of the results.

2. Using both the partial network and an additional proxy

By construction, the method based on the NTF cannot
handle extreme cases such as missing information for all
nodes at the same time or activity fully missing for some
nodes (as considered in [20]). To address this limitation, we
propose an extension of our method that makes it possible to

take advantage of additional information that can be used as
a proxy for human proximity. To this aim, we consider the
JNTF method described in Sec. IV B. We test this extended
method on the LSCH data set, for which we have access to
the approximate position of individuals in time. There are
indeed 15 locations in the school: ten classes, the cafeteria, the
playground, two staircases, and a control room. The resulting
bipartite temporal network relating individuals and locations
is composed of N = 241 nodes representing individuals, 15
nodes representing locations, and 130 temporal snapshots; the
tensor representing this additional information has dimensions
I = 241, J = 15, and K = 130. We note that due to the
temporal resolution selected, a node might appear in several
locations in the same snapshot.

To compare the methods of construction of surrogate data
based on the JNTF and on the NTF decompositions, we
simulated a loss of data on the contact network for a fraction
of nodes pnodes = 0.2 and for several fractions of the time span
ptimes = [0.6,0.8,1] selected consecutively on the temporal
activity of the nodes. Here the set of nodes with partial activity
is the same for all values of ptimes, so we can compare the
outcomes of the SIR process and the impact of incrementally
removing larger fractions of the temporal activity of the same
nodes. We build surrogate data using the methods based
on the NTF and on the JNTF decompositions, performed,
respectively, on the partial contact networks and on the joint
partial contact and location networks. For the JNTF, we impose
a coupling on the first and third dimensions (i.e., we impose
the equality of the matrices obtained in the decompositions
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FIG. 3. Distributions of epidemic sizes computed in the complete, partial, baseline, and surrogate cases for the HT09 dataset. Each panel
corresponds to ptimes = 0.5, one value of the fraction pnodes of nodes with partial information [panels (a),(d) = 0.1; (b),(e) = 0.2; (c),(f) = 0.4]
and one couple of spreading parameters: (a)–(c) β = 0.60 and μ = 0.10; (d)–(f) β = 0.25 and μ = 0.05. The symbols and lines show the median
distribution of the epidemic size computed from the results relative to the 10 different sets of nodes with partial information, while the shaded
area is delimited by the 25th and 75th percentiles.

FIG. 4. Distributions of epidemic sizes computed in the complete, partial, baseline, and surrogate cases for the SFHH dataset. Each panel
corresponds to ptimes = 0.5, one value of the fraction pnodes of nodes with partial information [panels (a),(d) = 0.1; (b),(e) = 0.2; (c),(f) = 0.4]
and one couple of spreading parameters: (a)–(c) β = 0.3 and μ = 0.10; (d)–(f) β = 0.25 and μ = 0.08. For the partial, baseline and surrogate
cases, the symbols and lines show the median distribution of the epidemic size computed from the results relative to the 10 different sets of
nodes with partial information, while the shaded area is delimited by the 25th and 75th percentiles.

012317-9



SAPIENZA, BARRAT, CATTUTO, AND GAUVIN PHYSICAL REVIEW E 98, 012317 (2018)

FIG. 5. Distributions of epidemic sizes computed in the complete, partial, baseline, and surrogate cases both using the NTF with only
the partial network and also using the JNTF with auxiliary data for the LSCH data set. Each panel corresponds to a fixed fraction of nodes
pnodes = 0.2 with increasing loss of information for nodes ptimes = 0.6,0.8,1. The JNTF is computed on the two tensors representing the
temporal social network of the LSCH data set and the related temporal location network. Here we report the epidemic size distributions of the
complete, partial, and surrogate networks for SIR processes with two different couples of infection and recovery probabilities: (a)–(c) β = 0.3
and μ = 0.3 and (d)–(f) β = 0.15 and μ = 0.25. In (c) and (f), as ptimes = 1, no information can be gained on the nodes with missing data
using simply NTF, so the results of the NTF-based method coincide with the ones obtained by simulating the SIR process over the network
with partial information.

of the two tensors, for A on the one hand and for C on the
other hand: A1 = A2 and C1 = C2), as the two networks have
the same nodes related to individuals and the same snapshots
in time. The choice of this coupling relies on the reasonable
assumption that co-located individuals are more likely to be in
contact. Note that B1 is used as in the NTF case to compute
the membership of links to structures. On the other hand, B2

could be used with A2 to compute the membership of locations
to latent structures; as we are interested here in computing
a surrogate network for the contact data, we do not use this
information in our method.

In Fig. 5 we display the results obtained for pnodes = 0.2,
ptimes = 0.6,0.8,1, and SIR processes with the infection and
recovery probabilities β = 0.3 and μ = 0.3 [Figs. 5(a)–5(c)]
and β = 0.15 and μ = 0.25 [Figs. 5(d)–5(f)]. As in the previ-
ous cases, the distributions of epidemic sizes computed on the
network with partial information show a clear underestimation
of the number of individuals infected. For these large values
of ptimes, using the baseline network also yields a strong
underestimation of the epidemic sizes. For ptimes = 0.6 and
ptimes = 0.8, the results achieved with both procedures based
on the NTF and the JNTF are in agreement and give a better
estimation of the distributions of epidemic sizes obtained in
the original network than using the incomplete data. Finally,
we report in Figs. 5(c) and 5(f) the extreme case for which no
information about 20% of nodes is present in the partial contact
network (ptimes = 1). In this case, as no information is present
at all for the selected nodes, no correlated activity pattern

concerning them can be inferred by the NTF decomposition,
which thus cannot help recover any information on these
nodes. Using JNTF then proves helpful and the surrogate
network built using this method, which combines contact and
location information, yields a distribution of epidemic size
closer to the one obtained on the complete network. This shows
that the external information provided by the approximated
location of individuals in the school helps to infer possible
correlations in the contact activity, even for nodes for which
no contact activity was initially known. We note, however,
that the epidemics sizes remain underestimated with respect
to the complete network. All these results are confirmed
with the Jensen-Shannon divergence computed between the
distribution obtain on the complete network and the other
distributions respectively obtained with the baseline and the
two surrogate networks (see Tables III and IV).

Finally, we consider a case in which all nodes had some
activity missing. We simulate a scenario in which all the nodes
have lost half of their activity: For each node, we zero out
its activity for half of the times taken at random among the
times it was active. In that way each node has a different
set of times during which its activity is erased. We apply the
method based on the JNTF in such scenarios with ten random
generations of the missing times for each node. The epidemic
size distributions obtained are represented on Fig. 6 together
with the one measured with the complete network. While the
distributions measured on the partial networks strongly differ
from those obtained with the complete network, the approach
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TABLE III. Jensen-Shannon divergences measured between the
distributions of epidemic sizes obtained on each network [partial,
surrogate (both NTF, when this is possible, and JNTF), baseline] and
on the original network.

pnodes ptimes Partial Baseline Recovered (NTF) Recovered (JNTF)

LSCH (β = 0.3, μ = 0.3)
0.2 0.6 0.36 0.32 0.08 0.06
0.2 0.8 0.36 0.32 0.08 0.09
0.2 1 0.36 0.31 0.19

LSCH (β = 0.15, μ = 0.25)
0.2 0.6 0.33 0.3 0.06 0.02
0.2 0.8 0.33 0.3 0.04 0.09
0.2 1 0.33 0.31 0.15

based on the JNTF yields a much better estimation of the real
epidemic size distribution.

VI. DISCUSSION

In this work, we have proposed a versatile approach to face
the problem of estimating the outcome of spreading processes
on temporal human proximity networks built from incomplete
information. Our method leverages the existent correlations
in the observed activity of the nodes to recover the contact
properties of nodes whose activity is partially missing, without
depending on the availability of metadata describing the nodes.
To this aim, we rely on tensor decomposition techniques able
to extract the mesoscale properties of temporal networks. In
practice, the methodology we put forward follows two main
steps: (i) the extraction of structures from the partial network
through tensor decomposition and (ii) the construction of a
surrogate network that is used in numerical simulations to
estimate the outcome of spreading processes.

In the first step we use NTF handling missing values to de-
compose the partial networks into a sum of components, each
describing a latent structure. In this step, we take into account

FIG. 6. Results achieved by the surrogate construction method
using the JNTF. Each panel corresponds to the case in which pnodes =
1 and ptimes = 0.5. The JNTF is computed on the two tensors repre-
senting the temporal human proximity network of the LSCH data set
and the related temporal location network. Here we report the results
for two different couples of infection and recovery probabilities: (a)
β = 0.3 and μ = 0.3 and (b) β = 0.15 and μ = 0.25. The symbols
and lines show the median distributions of epidemic sizes computed
over the ten random generations of the missing times, while the shaded
area is delimited by the 25th and 75th percentiles.

the fact that the tensor describing the temporal contact network
is based on incomplete information and the decomposition is
thus performed using only the part of the tensor composed
of known contacts or known noncontacts. This leads to a good
approximation of the temporal activity of the nodes with partial
information. In the second step, we determine which links
belong to each latent structure and use the binarized activity
timeline of each structure to fill in the unknown part of the
timeline of each link with missing information. We obtain in
this way a surrogate network comparable to the empirical one
when used in data-driven models of epidemic spread.

We have indeed tested our method on three different data
sets describing face-to-face contacts between individuals in
different contexts (two conferences and a primary school),
represented as temporal human proximity networks, on which
we simulated a loss of data by resampling experiments, namely,
a loss of information concerning a fraction of the individuals,
each for a fraction of the total timeline (either at the same time
or at different moments for the different individuals). Due to
the data loss, epidemic sizes are strongly underestimated when
we simulate the process on the networks with incomplete infor-
mation. A simple baseline method based only on the average
activity of nodes yields good results when only a few nodes are
affected by missing information, but its performance decreases
strongly as pnodes increases. On the other hand, our method is
able to correctly estimate the outcome of a spreading process
even when half of the activity is missing for 40% of the nodes.

The performance of the method based on the NTF, however,
decreases when the amount of missing information drastically
increases. In particular, it is not applicable if no information
at all is available for some of the nodes. To deal with this
issue, we have proposed an adaptation of the method based on
the joint factorization of multiple tensors. The JNTF is indeed
a natural extension that allows us to integrate information
encoded in multiple networks. It is particularly adequate if the
information available concerns, on the one hand, the contacts
of individuals and, on the other hand, their (approximate)
location, encoded in a bipartite temporal network in which
a link is drawn between a node representing an individual
and a node representing a location when the individual is
detected in that location. The joint factorization of the tensors
representing the partial temporal network of contacts and the
temporal network encoding positions, constrained to extract
latent structures with the same nodes and the same activity
timelines in both tensors, can then help to recover the missing
information about the contacts. However, the JNTF might
overestimate the activity of the links with missing activity and
leads to a distribution of weights (number of contacts per pair
of individuals) that is more homogeneous than in the original
case. As the heterogeneity properties of contact networks are
well known to play a crucial role in determining the outcome of
spreading processes [49–55], we adjust the weight distribution
of the links for which only partial information was available;
this step is made possible by the robustness under sampling
of the contact network weight distribution. We can thus rely
on the weight distribution measured on those links for which
no information is missing in the incomplete network to extract
at random values and assign them to the links with missing
information. We have tested this alternative method in a data set
for which both contacts and approximated positions of nodes in
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time are available and shown that it yields results similar to the
NTF when both methods can be applied. When information
about some nodes is completely lost, i.e., when the method
based on NTF alone cannot be used, using JNTF allows us to
recover part of the missing information and yields a distribution
of epidemic sizes closer to the original than when using the
partial network in the simulations, even when as much as 50%
of the contact activity of each node has been lost in the data.

The methodology we have presented manages to cope
with missing information in various contexts. Importantly, and
contrarily to other methods, it does not rely on the availability
of metadata or any knowledge on the structure of the population
into groups (such as classes in a school) as in [20]: The NTF or
JNTF decompositions are indeed able to extract the effective
structure (both in groups and temporal) of the temporal network
of interactions and to assign each individual to one or multiple
latent structures, each with its activity timeline.

Some limitations of our method stem from the tensor de-
composition itself. For instance, if a whole group of correlated
links or nodes is missing in the data, it will not be uncovered
by the NTF. In such an unfavorable case, the JNTF method can
compensate for the lack of correlated activity in the incomplete
contact network by relying on auxiliary data when available.
Moreover, when the temporal network of contacts lacks struc-
ture or when the nodes with partial information behave in a
random way, i.e., do not exhibit any activity correlation with
other nodes, neither decomposition (NTF or JNTF) might be
able to clearly assign them to any latent structure and thus
to determine their activity timeline. A way to cope with this
issue might be to attribute some random activity (based, for
instance, on the average behavior) to those nodes with missing
information that are not found in any latent structure. Given
the relatively good results obtained when using the baseline
network, built by assigning a random average activity to nodes
with missing data, this could be a meaningful starting point
to combine with our approach in order to better tackle the
problem of missing data for nodes whose activity turns out to
be completely uncorrelated with other nodes.

Another limitation, which can be easily overcome though,
is that for the JNTF we rely on the distribution of link weights
measured in the partial network. Indeed, if the remaining in-
formation is not representative enough (too much information
missing), the heterogeneity properties of the surrogate network
might be affected as the weights assigned to the links with
missing information are taken among those measured. We
could however take advantage of the known robustness of the
weight distributions in different contexts [15,56] to use pub-
licly available weight distributions collected in other contexts.

Finally, a natural direction for future research is the ex-
tension of our technique to infer mesoscale properties of
human proximity networks even when no direct information
on contacts is available, but only proxies such as approximate
locations of individuals have been collected.

VII. METHODOLOGY

Here we describe some technical details regarding the
different steps of our procedure.

A. The NTF computation

To build the surrogate network, we need to apply the non-
negative tensor factorization to the masked tensor introduced

in this paper. We consider an algorithm based on an al-
ternating large-scale non-negativity-constrained least-squares
framework using the Karush-Kuhn-Tucker (KKT) optimality
conditions in a block principal pivoting (BPP) framework [43].
To solve the problem through the BPP algorithm we rewrite the
minimization problem as a multiple-right-hand-side problem
of the form

min ‖VX − W‖2
F . (3)

This is done using matricization, which transforms the problem
in three minimization subproblems [32]. Then we follow the
update rules given by [43]. This allows us to perform the
original non-negative tensor factorization. As we mask a part of
the tensor, however, we need to adapt the method. In practice,
at each time step of the factorization ofW ∗ T , we replaced the
masked elements by the corresponding elements in the tensor
[[λt ; At,Bt,Ct]], where λt ; At,Bt,Ct are the latent factors at
the iteration step t considered.

B. The JNTF computation

To integrate data from multiple sources we use the joint
non-negative tensor factorization, described in Sec. VII B. To
this aim, we adapt the alternating large-scale non-negativity-
constrained least-squares framework and in particular the way
to compute the KKT optimality conditions in a BPP framework
[43]. Here we illustrate the adaptation details to solve Eq. (2) in
the case of two data sources that are coupled in two dimensions
(case study in Sec. V), i.e., S = 2, A = A1 = A2, and C =
C1 = C2, such that Eq. (2) becomes

min

(
1

2
‖T1 − [[λ1; A,B1,C]]‖2

F + α1

2
‖λ1‖2

2

+ 1

2
‖T2 − [[λ2; A,B2,C]]‖2

F + α2

2
‖λ2‖2

2

)
such that λ1,2,A,B1,2,C � 0. (4)

Note that we added here the regularization terms α1,2

2 ‖λ1,2‖2
F ,

which are sparsity penalties.
To solve the problem through the BPP algorithm we rewrite

the minimization problem as a multiple-right-hand-side prob-
lem of the form

min ‖VX − W‖2
F (5)

and solve it for each of the factor matrices (here we include
λ1,2 in the factor matrices). To this aim, we start by solving
the problem for the factor matrices B1 and B2 which are
respectively present in the first and third terms of Eq. (4). With
respect to these factor matrices, we can rewrite the equation
by using the two-mode matricization [32] of T1 and T2, which
leads to the approximations

T1,(2) ≈ B1�1(C � A)T ,

T2,(2) ≈ B2�2(C � A)T ,

where

�1 = diag(λ1,1, . . . ,λ1,R),

�2 = diag(λ2,1, . . . ,λ2,R).
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We can rewrite the approximations as

TT
1,(2) ≈ (C � A)�1BT

1 ,

TT
2,(2) ≈ (C � A)�2BT

2 ,

where �T
1,2 = �1,2 and thus

BT
1 ≈ �−1

1 (C � A)†TT
1,(2),

BT
2 ≈ �−1

2 (C � A)†TT
2,(2).

By using the property of the Khatri-Rao product, for which

(C � A)† = (CT C ∗ AT A)†(C � A)T ,

we can write the approximation as

�1(CT C ∗ AT A)BT
1 ≈ (C � A)T TT

1,(2),

�2(CT C ∗ AT A)BT
2 ≈ (C � A)T TT

2,(2).

The related subproblems of Eq. (4) for B1 and B2 are then
reduced to

min
B1

1
2‖�1(CT C ∗ AT A)BT

1 − (C � A)T TT
1,(2)‖2

F ,

min
B2

1
2‖�2(CT C ∗ AT A)BT

2 − (C � A)T TT
2,(2)‖2

F .

Finally, the subproblems can be respectively written in the form
of Eq. (5) by assigning

V = �1(CT C ∗ AT A), X = BT
1 ,

W = �2(C � A)T TT
1,(2);

V = (CT C ∗ AT A), X = BT
2 ,

W = (C � A)T XT
2,(2).

The solution to the subproblems is now straightforward, as
illustrated in [43].

We now need to rewrite the subproblems for the factors A
and C that are present in both the first and third terms of Eq. (4).
We show the procedure for A (which is analogous for C). First,
we write the minimization problem by using the one-mode
matricization of T1 and T2 (three-mode matricization for C):

min
A

[
1
2‖(C � B1)�1AT − TT

1,(1)‖2
F

+ 1
2‖(C � B2)�2AT − TT

2,(1)‖2
F

]
.

By following the procedure shown above, we can write the
problem as

min
A

[
1
2‖�1(CT C ∗ BT

1 B1)AT − (C � B1)T TT
1,(1)‖2

F

+ 1
2‖�2(CT C ∗ BT

2 B2)AT − (C � B2)T TT
2,(1)‖2

F

]
,

in which we can assign

V1 = �1CT C + BT
1 B1, W1 = (C � B1)T TT

1,(1),

V2 = �2CT C + BT
2 B2, W2 = (C � B2)T TT

2,(1),

X = AT ,

leading to

f (X) = min
X

( 1
2‖V1X − W1‖2

F + 1
2‖V2X − W2‖2

F ). (6)

To solve the problem in Eq. (6) we need to adapt the KKT
conditions, which result in

∇f (X) = (VT
1 V1 + VT

2 V2)︸ ︷︷ ︸
V1,2

X − (VT
1 W1 + VT

2 W2)︸ ︷︷ ︸
W1,2

,

∇f (X) � 0, ∇f (X)T X = 0, X � 0,

whose solution is given by solving

XT VT
1,2 − WT

1,2 = 0.

Since Eq. (4) includes regularization terms, we have to adapt
the KKT conditions for the minimization problem with respect
to λ1 and λ2. We show the procedure for λ1, which is analogous
for λ2. We consider the cost function built from the terms in
which λ1 is involved [the first and second terms in Eq. (4)],

fλ1 = 1

2
‖X1 − [[λ1; A,B1,C]]‖2

F + α1

2
‖λ1‖2

2,

and we rewrite it through the vectorization

fλ1 = 1

2
‖vec(C � B � A)λ1 − vec(X )‖2

F + α1

2
‖λ1‖2

2.

Minimizing the cost function fλ1 is equivalent to minimizing
f ′

λ1
, obtained by incorporating the regularization term as

follows:

f ′
λ1

= 1

2

∥∥∥∥∥∥∥∥∥
(

vec(C � B1 � A)√
α1

)
︸ ︷︷ ︸

V

λ1︸︷︷︸
x

−
(

vec(X )

0

)
︸ ︷︷ ︸

w

∥∥∥∥∥∥∥∥∥

2

F

.

The solution to the minimization of f ′
λ1

follows from [43].

C. The NTF rank selection

The selection of the number of components R for the
decomposition is guided by the core consistency diagnostic
[48], which estimates to what extent the PARAFAC model
[[λ; A,B,C]] with a given rank r (i.e., with a sum of r compo-
nents) is appropriate to represent the data. The core consistency
is a measure that has 100 as an upper bound and values
above 50 are usually considered acceptable. Here we computed
the core consistency values between the tensor with partial
information and its approximation for r ∈ [2, . . . ,Rmax], for
five realizations of the optimization procedure starting from
different initial conditions for A, B, and C for each value of
r . We select a rank R = Rcc − 1, where Rcc is the smallest
rank for which the core consistency value for each of the
five realizations is lower than 85. This threshold is selected to
ensure an approximation as faithful as possible to the original
tensor. For the JNTF case, we use as a hint for the number
of components to be selected the one obtained with the NTF
on the temporal contact network with partial information. It is
worth noting that, when the amount of available information
in the data decreases, the value of R determined by the core
consistency can vary. This is due to the fact that by erasing
an increasing percentage of node activities, the correlated
activity patterns are increasingly perturbed and might be
destroyed; a smaller number of components (subnetworks
composed by links having a correlated activity in time) is then
detected.
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D. The Otsu method

The Otsu method [44] is commonly used in image process-
ing to recover the different levels of gray in pixels. The same
idea can be used on the temporal activities of the components
by thinking of them as images composed of K pixels of
different values (level of activation). In particular, the method
for two-dimensional functions assumes that the function given
as an input contains values that follow a bimodal distribution.
The method computes then the optimal threshold, defined by
minimizing the intraclass variance and by maximizing the
interclass variance. The resulting optimal threshold can be used
to divide the values of the function into two groups.

Here we use the threshold given by the Otsu method to
define whenever a component is active or not. This is done
by applying the Otsu method on the temporal activity of each
component. The values above the threshold correspond to the
temporal activation of the component, while the values below
the threshold correspond to the times in which the component
is inactive.

E. The SIR processes

To simulate how an infectious disease propagates in a
population and thus how the related dynamical process spreads
over the network, we run a SIR process over the network. The
SIR model assumes that each individual in the population can

FIG. 7. Temporal activity for examples of the total number of contacts in time of a node for each data set and case study: (a)–(c) LSCH,
(d)–(f) HT09, and (g)–(i) SFHH. We report the temporal activity in the complete network, in the one with partial information, and in the one
obtained approximated by the NTF method. We show here the temporal activity only for the time steps in which we lost the information about
the contacts of the node, corresponding in our scenario to the first half of the timeline.
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be in one of three states: susceptible, infectious, or recovered.
The propagation of the disease starts from a single individual,
who is in the infectious state (the seed of the process), while
all others are initially susceptible. At each time step, each
susceptible individual in contact with an infectious one has a
probability β to become infectious. Each infectious individual
recovers with probability μ per time step. For simulation pur-
poses, the first node to be infected is chosen among the nodes
that are not in the set of those with partial information. For each
network and each set of values of the parameters β and μ, we
run 1000 simulations of the spreading process. In particular,
the parameter space we consider a priori is given by all the
couples of probabilities (β,μ), with β,μ in the range [0.001,1].
We select the suitable couples of parameters according to the
conditions described in Sec. V C and we show the results
corresponding to two representative examples of parameter
couples for each data set. Results related to other couples of
parameters are similar to the ones shown in the figures.
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APPENDIX A: APPROXIMATED NETWORK

By decomposing a network affected by missing information
through the NTF we are able to reconstruct some of the struc-
tural and temporal properties observed in the complete net-
work. One of these characteristics is the overall contact activity
of the nodes. In particular, given a node whose information is

partially missing, we are able to reconstruct its overall activity
in time, i.e., the number of contacts related to that node at each
time. We have indeed shown that the activities in the com-
plete network and in the approximated one are significantly
correlated and have high Pearson correlation coefficients. In
Fig. 7 we report a representative example for the overall
temporal activity of a single node in the complete, partial, and
approximated network for each data set: LSCH, HT09, and
SFHH. As we consider a scenario in which the missing activity
concerns, in each case, the first half of the timeline, the activity
of the nodes with missing information is 0 in the partial data,
while it shows nontrivial patterns in the complete network,
which are partially recovered in the approximated network.

APPENDIX B: THE SIR PROCESS ON THE
APPROXIMATED NETWORK

We have shown that by approximating a network with
partial information via NTF we are able to recover some of its
properties, such as the overall temporal activity of the nodes.
However, as discussed in the main text, this information is
not enough to obtain outcomes of a spreading process close
to the ones obtained on the complete network, because the
approximation tends to make the distributions of weights more
homogeneous than the empirical one. We illustrate this fact by
showing in Fig. 8 the distributions of epidemic sizes of a SIR
process simulated on the complete, partial, and approximated
Tapp networks for the LSCH data set, for different spreading
parameters β = 0.30 and μ = 0.30 [Figs. 8(a)–8(c)] and β =
0.15 and μ = 0.25 [Figs. 8(d)–8(f)] and different fractions of

FIG. 8. Outcome of an SIR process: over the complete network, the partial network and the network approximated through the NTF for the
LSCH dataset. Each panel corresponds to one fraction pnodes of nodes with partial information (a,d = 0.1, b,e = 0.2, and c,f = 0.4) and one
couple of spreading parameters: (a)–(c) β = 0.30 and μ = 0.30; (d)–(f) β = 0.15 and μ = 0.25. The lines show the median distribution of the
epidemic size computed from the results relative to 10 different sets of nodes with missing information, while the shaded area is delimited by
the 25-th and 75-th percentiles.
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FIG. 9. Weight distributions in the (a) LSCH, (b) HT09, and (c) SFHH data sets for the complete network and the partial network with
increasing percentage of nodes with missing information: pnodes ∈ [0.1,0.2,0.4] and ptimes = 0.5.

nodes missing (0.1, 0.2, and 0.4) and fraction of times with
missing data ptimes = 0.5.

Here we report the results only for the LSCH data set, as it is
the one characterized by highly correlated activity patterns and
thus the one for which the approximations obtained through
the NTF are closer to the complete case. In the primary school
indeed, students’ activity is determined by the school schedule
and they are divided in classes. This makes their activity highly
correlated as their contacts are more homogeneous during the
daily class activities. However, as we can see from Fig. 8, even
if the approximated network is close to the complete one in
terms of the overall activity patterns displayed, this is not the
case for the outcome of the spreading process. The epidemic
sizes in the case of the partial and approximated networks
are far from the complete network case. This strong under-
estimation is due to the fact that when we are approximating
the network via NTF, the method tends to approximate the
activity patterns of the nodes in the same component as fully
correlated, thus connecting the nodes in the same component
and rendering the network more homogeneous.

APPENDIX C: WEIGHT DISTRIBUTION

For the JNTF case, in order to obtain outcomes of SIR
processes close to the case of the complete network, we have to
reintroduce the heterogeneity properties into the approximated
network and use the resulting surrogate network to simulate
the SIR process. We reintroduce the heterogeneity properties
by reassigning the weights, i.e., the total number of contacts,
to the links involving nodes with partial information. In
particular, we measure the weight distribution on the available
part of the partial network. Then we use this distribution to
pick at random a weight that will be reassigned to the link
whose activity is approximated via the JNTF. We rely on
such a process as the weight distribution of a network is
robust to various sampling procedures, as shown in Fig. 9
for the sampling considered in this paper: For each data set,
LSCH [Fig. 9(a)], HT09 [Fig. 9(b)], and SFHH [Fig. 9(c)],
we compare the weight distribution of the complete network
with the corresponding weight distributions computed on the
links of partial networks not involving any nodes with missing
information, with pnodes ∈ [0.1,0.2,0.4]. By construction,
these distributions do not depend on ptimes. The results clearly
show that the weight distributions measured in the partial and
complete networks are consistent, meaning that, even in the
case in which we miss almost half of the links in the partial

network, we are able to compute a weight distribution similar
to the one of the complete network.

APPENDIX D: THE SIR RESULTS FOR A GENERAL
MISSING DATA SCENARIO

We consider here an additional scenario for the loss of data,
in order to test the robustness of the method. We simulate
on each data set a loss of data determined by a fraction of
nodes pnodes ∈ [0.1,0.2,0.4] for which we zero out the activity
occurring at a fraction ptimes = 0.5 of the temporal snapshots,
these snapshots being chosen independently at random for
each node.

In such a scenario, the impact of data loss on the spreading
process is lower than in the scenario considered in the main
text, as Figs. 10–12 show. Indeed, the underestimation of the

TABLE IV. Jensen-Shannon divergences measured between the
distributions of epidemic sizes obtained on each network (partial,
surrogate, and baseline) and on the original network. See Appendix D.

pnodes ptimes Partial Baseline Recovered

LSCH (β = 0.3, μ = 0.3)
0.1 0.5 0.029 0.08 0.01
0.2 0.5 0.09 0.14 0.02
0.4 0.5 0.17 0.19 0.04

LSCH (β = 0.15, μ = 0.25)
0.1 0.5 0.02 0.05 0.01
0.2 0.5 0.09 0.11 0.03
0.4 0.5 0.18 0.15 0.04

HT09 (β = 0.6, μ = 0.1)
0.1 0.5 0.02 0.03 0.08
0.2 0.5 0.10 0.05 0.17
0.4 0.5 0.27 0.09 0.25

HT09 (β = 0.25, μ = 0.05)
0.1 0.5 0.01 0.16 0.07
0.2 0.5 0.039 0.27 0.19
0.4 0.5 0.13 0.35 0.29

SFHH (β = 0.3, μ = 0.1)
0.1 0.5 0.05 0.04 0.11
0.2 0.5 0.16 0.05 0.11
0.4 0.5 0.21 0.12 0.15

SFHH (β = 0.25, μ = 0.08)
0.1 0.5 0.07 0.07 0.08
0.2 0.5 0.23 0.09 0.08
0.4 0.5 0.23 0.16 0.13
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FIG. 10. Distributions of epidemic sizes computed in the complete, partial, baseline and surrogate cases for the LSCH dataset, for a scenario
in which data loss occurs at random times. Each panel corresponds to one value of the fraction pnodes of nodes with partial information (a,d = 0.1,
b,e = 0.2, and c,f = 0.4) and one couple of spreading parameters: (a)–(c) β = 0.3 and μ = 0.3; (d)–(f) β = 0.15 and μ = 0.25. For the partial,
baseline and surrogate cases, the symbols and lines show the median distribution of the epidemic size computed from the results relative to the
10 different sets of nodes with partial information, while the shaded area is delimited by the 25-th and 75-th percentiles.

FIG. 11. Distributions of epidemic sizes computed in the complete, partial, baseline and surrogate cases for the HT09 dataset, for a scenario in
which data loss occurs at random times. Each panel corresponds to one value of the fraction pnodes of nodes with partial information (a,d = 0.1,
b,e = 0.2, and c,f = 0.4) and one couple of spreading parameters: (a)–(c) β = 0.60 and μ = 0.10; (d)–(f) β = 0.25 and μ = 0.05. The
symbols and lines show the median distribution of the epidemic size computed from the results relative to the 10 different sets of nodes with
partial information, while the shaded area is delimited by the 25-th and 75-th percentiles.
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FIG. 12. Distributions of epidemic sizes computed in the complete, partial, baseline and surrogate cases for the SFHH dataset, for a scenario
in which data loss occurs at random times. Each panel corresponds to one value of the fraction pnodes of nodes with partial information (a,d = 0.1,
b,e = 0.2, and c,f = 0.4) and one couple of spreading parameters: (a)–(c) β = 0.3 and μ = 0.10; (d)–(f) β = 0.25 and μ = 0.08. For the
partial baseline, and surrogate cases, the symbols and lines show the median distribution of the epidemic size computed from the results relative
to the 10 different sets of nodes with partial information, while the shaded area is delimited by the 25-th and 75-th percentiles.

epidemic sizes when using the partial network is less strong.
For the LSCH case, we obtain results similar to the ones
presented in the main text, with good agreement of the distri-
butions obtained with the surrogate and complete networks. In
the SFHH and HT09 data sets, baseline and surrogate networks

yield results that are closer. This can be explained by (i) the fact
that the data loss has a smaller impact here, allowing the base-
line to perform better and (ii) the lack of correlated activity in
SFHH and HT09 with respect to the LSCH data set, making the
random baseline based on the average activity perform better.

[1] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A.
T. Campbell, A survey of mobile phone sensing, IEEE Commun.
Mag. 48, 140 (2010).

[2] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M.
Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell,
in Proceedings of the Sixth ACM Conference on Embedded
Network Sensor Systems (ACM, New York, 2008), pp. 337–350.

[3] N. Eagle and A. Sandy Pentland, Reality mining: Sensing
complex social systems, Pers. Ubiquit. Comput. 10, 255 (2006).

[4] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-
F. Pinton, and A. Vespignani, Dynamics of person-to-person
interactions from distributed RFID sensor networks, PLoS ONE
5, e11596 (2010).

[5] A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, M. M.
Madsen, J. E. Larsen, and S. Lehmann, Measuring large-scale
social networks with high resolution, PLoS ONE 9, e95978
(2014).

[6] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman,
and J. H. Jones, A high-resolution human contact network for
infectious disease transmission, Proc. Natl. Acad. Sci. U.S.A.
107, 22020 (2010).

[7] P. Holme and J. Saramäki, Temporal networks, Phys. Rep. 519,
97 (2012).

[8] J. M. Read, K. T. D. Eames, and W. J. Edmunds, Dynamic
social networks and the implications for the spread of infectious
disease, J. R. Soc. Interface 5, 1001 (2008).

[9] T. Obadia, R. Silhol, L. Opatowski, L. Temime, J. Legrand, A.
C. M. Thiébaut, J.-L. Herrmann, E. Fleury, D. Guillemot, P.-
Y. Boëlle et al., Detailed contact data and the dissemination
of staphylococcus aureus in hospitals, PLoS Comput. Biol. 11,
e1004170 (2015).

[10] N. Voirin, C. Payet, A. Barrat, C. Cattuto, N. Khanafer, C. Régis,
B.-a. Kim, B. Comte, J.-S. Casalegno, B. Lina, and P. Vanhems,
Combining high-resolution contact data with virological data
to investigate influenza transmission in a tertiary care hospital,
Infect. Control Hosp. Epidemiol. 36, 254 (2015).

[11] W. He, Y. Huang, K. Nahrstedt, and B. Wu, in Proceedings of the
Eighth IEEE International Conference on Pervasive Computing
and Communications Workshops ( IEEE, Piscataway, 2010), pp.
141–146.

[12] J. L. Schafer and J. W. Graham, Missing data: Our view of the
state of the art, Psychol. Methods 7, 147 (2002).

012317-18

https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1007/s00779-005-0046-3
https://doi.org/10.1007/s00779-005-0046-3
https://doi.org/10.1007/s00779-005-0046-3
https://doi.org/10.1007/s00779-005-0046-3
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1098/rsif.2008.0013
https://doi.org/10.1098/rsif.2008.0013
https://doi.org/10.1098/rsif.2008.0013
https://doi.org/10.1098/rsif.2008.0013
https://doi.org/10.1371/journal.pcbi.1004170
https://doi.org/10.1371/journal.pcbi.1004170
https://doi.org/10.1371/journal.pcbi.1004170
https://doi.org/10.1371/journal.pcbi.1004170
https://doi.org/10.1017/ice.2014.53
https://doi.org/10.1017/ice.2014.53
https://doi.org/10.1017/ice.2014.53
https://doi.org/10.1017/ice.2014.53
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.1037/1082-989X.7.2.147


ESTIMATING THE OUTCOME OF SPREADING PROCESSES … PHYSICAL REVIEW E 98, 012317 (2018)

[13] T. Smieszek, E. U. Burri, R. Scherzinger, and R. W. Scholz,
Collecting close-contact social mixing data with contact diaries:
Reporting errors and biases, Epidemiol. Infect. 140, 744 (2012).

[14] V. Ouzienko and Z. Obradovic, Imputation of missing links and
attributes in longitudinal social surveys, Mach. Learn. 95, 329
(2014).

[15] R. Mastrandrea and A. Barrat, How to estimate epidemic risk
from incomplete contact diaries data? PLoS Comput. Biol. 12,
e1005002 (2016).

[16] T. Smieszek, S. Castell, A. Barrat, C. Cattuto, P. J. White, and
G. Krause, Contact diaries versus wearable proximity sensors in
measuring contact patterns at a conference: Method comparison
and participants’ attitudes, BMC Infect. Dis. 16, 341 (2016).

[17] A. C. Ghani, C. A. Donnelly, and G. P. Garnett, Sampling biases
and missing data in explorations of sexual partner networks for
the spread of sexually transmitted diseases, Stat. Med. 17, 2079
(1998).

[18] G. Kossinets, Effects of missing data in social networks, Soc.
Netw. 28, 247 (2006).

[19] L. E. C. Rocha, N. Masuda, and P. Holme, Sampling of temporal
networks: Methods and biases, Phys. Rev. E 96, 052302 (2017).

[20] M. Génois, C. L. Vestergaard, C. Cattuto, and A. Barrat, Com-
pensating for population sampling in simulations of epidemic
spread on temporal contact networks, Nat. Commun. 6, 8860
(2015).

[21] C. L. Vestergaard, E. Valdano, M. Génois, C. Poletto, V. Colizza,
and A. Barrat, Impact of spatially constrained sampling of
temporal contact networks on the evaluation of the epidemic
risk, Eur. J. Appl. Math. 27, 941 (2016).

[22] M. Huisman, Imputation of missing network data: some simple
procedures, J. Soc. Struct. 10, 1 (2009).

[23] L. Lü, L. Pan, T. Zhou, Y.-C. Zhang, and H. E. Stanley, Toward
link predictability of complex networks, Proc. Natl. Acad. Sci.
U.S.A. 112, 2325 (2015).

[24] A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical
structure and the prediction of missing links in networks, Nature
(London) 453, 98 (2008).

[25] R. Guimerà and M. Sales-Pardo, Missing and spurious interac-
tions and the reconstruction of complex networks, Proc. Natl.
Acad. Sci. U.S.A. 106, 22073 (2009).

[26] A. Godoy-Lorite, R. Guimerà, C. Moore, and M. Sales-Pardo,
Accurate and scalable social recommendation using mixed-
membership stochastic block models, Proc. Natl. Acad. Sci.
U.S.A. 113, 14207 (2016).

[27] M. Kim and J. Leskovec, in Proceedings of the 2011 SIAM
International Conference on Data Mining (SIAM, Philadelphia,
2011), Vol. 11, pp. 47–58.

[28] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina,
in Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining (ACM, New York, 2011),
pp. 55–64.

[29] J. Fournet and A. Barrat, Estimating the epidemic risk using
non-uniformly sampled contact data, Sci. Rep. 7, 9975 (2017).

[30] S. Ghonge and D. C. Vural, Inferring network structure from
cascades, Phys. Rev. E 96, 012319 (2017).

[31] M. Nadini, K. Sun, E. Ubaldi, M. Starnini, A. Rizzo, and N.
Perra, Epidemic spreading in modular time-varying networks,
Sci. Rep. 8, 2352 (2018).

[32] T. G. Kolda and B. W. Bader, Tensor decompositions and
applications, SIAM Rev. 51, 455 (2009).

[33] L. Gauvin, A. Panisson, and C. Cattuto, Detecting the com-
munity structure and activity patterns of temporal networks:
A non-negative tensor factorization approach, PLoS ONE 9,
e86028 (2014).

[34] A. Schein, J. Paisley, D. M. Blei, and H. Wallach, in Proceedings
of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (ACM, New York, 2015), pp.
1045–1054.

[35] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for
estimating missing values in visual data, IEEE Trans. Pattern
Anal. Mach. Intell. 35, 208 (2013).

[36] D. M. Dunlavy, T. G. Kolda, and E. Acar, Temporal link
prediction using matrix and tensor factorizations, ACM Trans.
Knowl. Discov. Data 5, 1 (2011).

[37] D. Hric, T. P Peixoto, and S. Fortunato, Network Structure,
Metadata, and the Prediction of Missing Nodes and Annotations,
Phys. Rev. X 6, 031038 (2016); R. Bro and S. De Jong, A fast
non-negativity-constrained least squares algorithm, J. Chemom.
11, 393 (1997).

[38] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, in
Proceedings of the 2010 SIAM International Conference on Data
Mining (SIAM, Philadelphia, 2010), pp. 701–712.

[39] J.-P. Royer, N. Thirion-Moreau, and P. Comon, in Proceedings
of the 20th European Signal Processing Conference (Elsevier,
Amsterdam, 2012), pp. 1–5.

[40] H. Kim, H. Park, and L. Eldén, in Proceedings of the Seventh
IEEE International Conference on Bioinformatics and Bioengi-
neering (IEEE, Piscataway, 2007), pp. 1147–1151.

[41] K. Balasubramanian, J. Kim, A. Puretskiy, M. Berry, and H.
Park, A fast algorithm for nonnegative tensor factorization using
block coordinate descent and an active-set-type method, in SIAM
International Conference on Data Mining, 2010, Text Mining
Workshop (SIAM, Philadelphia, 2010).

[42] E. Acar, M. Nilsson, and M. Saunders, A flexible modeling
framework for coupled matrix and tensor factorizations, in Pro-
ceedings of the 22nd European Signal Processing Conference
(EUSIPCO), 2014 (IEEE, Piscataway, NJ, 2014), pp. 111–115.

[43] J. Kim and H. Park, in High-Performance Scientific Computing:
Algorithms and Applications, edited by M. W. Berry, K. A.
Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and
F. Saied (Springer, London, 2012), pp. 311–326.

[44] M. Fang, G. Yue, and Q. Yu, The study on an application of Otsu
method in Canny operator, Proceedings of the 2009 International
Symposium on Information Processing (ISIP’09) Huangshan,
P.R. China, August 21–23, 2009 (Academy Publisher, Finland,
2009), pp. 109–112.

[45] www.sociopatterns.org.
[46] M. Szomszor, C. Cattuto, W. Van den Broeck, A. Barrat, and

H. Alani, in The Semantic Web: Research and Applications,
edited by L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, and T. Tudorache, Lecture Notes
in Computer Science Vol. 6089 (Springer, Berlin, 2010), pp.
196–210.

[47] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton,
M. Quaggiotto, W. Van den Broeck, C. Régis, B. Lina, and
P. Vanhems, High-resolution measurements of face-to-face con-
tact patterns in a primary school, PLoS ONE 6, e23176 (2011).

[48] R. Bro and H. A. L. Kiers, A new efficient method for de-
termining the number of components in PARAFAC models, J.
Chemom. 17, 274 (2003).

012317-19

https://doi.org/10.1017/S0950268811001130
https://doi.org/10.1017/S0950268811001130
https://doi.org/10.1017/S0950268811001130
https://doi.org/10.1017/S0950268811001130
https://doi.org/10.1007/s10994-013-5420-1
https://doi.org/10.1007/s10994-013-5420-1
https://doi.org/10.1007/s10994-013-5420-1
https://doi.org/10.1007/s10994-013-5420-1
https://doi.org/10.1371/journal.pcbi.1005002
https://doi.org/10.1371/journal.pcbi.1005002
https://doi.org/10.1371/journal.pcbi.1005002
https://doi.org/10.1371/journal.pcbi.1005002
https://doi.org/10.1186/s12879-016-1676-y
https://doi.org/10.1186/s12879-016-1676-y
https://doi.org/10.1186/s12879-016-1676-y
https://doi.org/10.1186/s12879-016-1676-y
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18<2079::AID-SIM902>3.0.CO;2-H
https://doi.org/10.1016/j.socnet.2005.07.002
https://doi.org/10.1016/j.socnet.2005.07.002
https://doi.org/10.1016/j.socnet.2005.07.002
https://doi.org/10.1016/j.socnet.2005.07.002
https://doi.org/10.1103/PhysRevE.96.052302
https://doi.org/10.1103/PhysRevE.96.052302
https://doi.org/10.1103/PhysRevE.96.052302
https://doi.org/10.1103/PhysRevE.96.052302
https://doi.org/10.1038/ncomms9860
https://doi.org/10.1038/ncomms9860
https://doi.org/10.1038/ncomms9860
https://doi.org/10.1038/ncomms9860
https://doi.org/10.1017/S0956792516000309
https://doi.org/10.1017/S0956792516000309
https://doi.org/10.1017/S0956792516000309
https://doi.org/10.1017/S0956792516000309
https://doi.org/10.1073/pnas.1424644112
https://doi.org/10.1073/pnas.1424644112
https://doi.org/10.1073/pnas.1424644112
https://doi.org/10.1073/pnas.1424644112
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1038/s41598-017-10340-y
https://doi.org/10.1038/s41598-017-10340-y
https://doi.org/10.1038/s41598-017-10340-y
https://doi.org/10.1038/s41598-017-10340-y
https://doi.org/10.1103/PhysRevE.96.012319
https://doi.org/10.1103/PhysRevE.96.012319
https://doi.org/10.1103/PhysRevE.96.012319
https://doi.org/10.1103/PhysRevE.96.012319
https://doi.org/10.1038/s41598-018-20908-x
https://doi.org/10.1038/s41598-018-20908-x
https://doi.org/10.1038/s41598-018-20908-x
https://doi.org/10.1038/s41598-018-20908-x
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
http://www.sociopatterns.org
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1002/cem.801
https://doi.org/10.1002/cem.801
https://doi.org/10.1002/cem.801
https://doi.org/10.1002/cem.801


SAPIENZA, BARRAT, CATTUTO, AND GAUVIN PHYSICAL REVIEW E 98, 012317 (2018)

[49] A. Vazquez, B. Racz, A. Lukacs, and A.-L. Barabasi, Impact of
Non-Poissonian Activity Patterns on Spreading Processes, Phys.
Rev. Lett. 98, 158702 (2007).

[50] J. L. Iribarren and E. Moro, Impact of Human Activity Patterns
on the Dynamics of Information Diffusion, Phys. Rev. Lett. 103,
038702 (2009).

[51] T. Smieszek, A mechanistic model of infection: why duration
and intensity of contacts should be included in models of disease
spread, Theor. Biol. Med. Modell. 6, 25 (2009).

[52] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella,
C. Régis, J.-F. Pinton, N. Khanafer, W. Van den Broeck, and P.
Vanhems, Simulation of an SEIR infectious disease model on the
dynamic contact network of conference attendees, BMC Med.
9, 87 (2011).

[53] A. Machens, F. Gesualdo, C. Rizzo, A. E. Tozzi, A. Barrat,
and C. Cattuto, An infectious disease model on empirical
networks of human contact: Bridging the gap between dynamic
network data and contact matrices, BMC Infect. Dis. 13, 185
(2013).

[54] L. Gauvin, A. Panisson, C. Cattuto, and A. Barrat, Activity
clocks: Spreading dynamics on temporal networks of human
contact, Sci. Rep. 3, 3099 (2013).

[55] C. L. Vestergaard, M. Génois, and A. Barrat, How memory
generates heterogeneous dynamics in temporal networks, Phys.
Rev. E 90, 042805 (2014).

[56] A. Barrat and C. Cattuto, in Social Phenomena, edited by B.
Gonçalves and N. Perra (Springer International, Cham, 2015),
Chap. 3, pp. 37–57.

012317-20

https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevLett.98.158702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1186/1742-4682-6-25
https://doi.org/10.1186/1742-4682-6-25
https://doi.org/10.1186/1742-4682-6-25
https://doi.org/10.1186/1742-4682-6-25
https://doi.org/10.1186/1741-7015-9-87
https://doi.org/10.1186/1741-7015-9-87
https://doi.org/10.1186/1741-7015-9-87
https://doi.org/10.1186/1741-7015-9-87
https://doi.org/10.1186/1471-2334-13-185
https://doi.org/10.1186/1471-2334-13-185
https://doi.org/10.1186/1471-2334-13-185
https://doi.org/10.1186/1471-2334-13-185
https://doi.org/10.1038/srep03099
https://doi.org/10.1038/srep03099
https://doi.org/10.1038/srep03099
https://doi.org/10.1038/srep03099
https://doi.org/10.1103/PhysRevE.90.042805
https://doi.org/10.1103/PhysRevE.90.042805
https://doi.org/10.1103/PhysRevE.90.042805
https://doi.org/10.1103/PhysRevE.90.042805



