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Estimating the impact of COVID-19 vaccine
inequities: a modeling study

Nicolò Gozzi1,2, Matteo Chinazzi3, Natalie E. Dean 4, Ira M. Longini Jr5,
M. Elizabeth Halloran 6,7, Nicola Perra 3,8 & Alessandro Vespignani3

Access to COVID-19 vaccines on the global scale has been drastically hindered
by structural socio-economic disparities. Here, we develop a data-driven, age-
stratified epidemic model to evaluate the effects of COVID-19 vaccine inequi-
ties in twenty lower middle and low income countries (LMIC) selected from all
WHO regions. We investigate and quantify the potential effects of higher or
earlier doses availability. In doing so, we focus on the crucial initial months of
vaccine distribution and administration, exploring counterfactual scenarios
where we assume the same per capita daily vaccination rate reported in
selected high income countries. We estimate that more than 50% of deaths
(min-max range: [54−94%]) that occurred in the analyzed countries could have
been averted. We further consider scenarios where LMIC had similarly early
access to vaccine doses as high income countries. Even without increasing the
number of doses, we estimate an important fraction of deaths (min-max range:
[6−50%]) could have been averted. In the absence of the availability of high-
income countries, the model suggests that additional non-pharmaceutical
interventions inducing a considerable relative decrease of transmissibility
(min-max range: [15−70%]) would have been required to offset the lack of
vaccines. Overall, our results quantify the negative impacts of vaccine
inequities and underscore the need for intensified global efforts devoted to
provide faster access to vaccine programs in low and lower-middle-income
countries.

Throughout the COVID-19 pandemic, socio-economic disparities have
been linked to higher and disproportionate COVID-19 burden, a finding
replicated across different countries and social strata1–10. In this context,
structural inequities in access to COVID-19 vaccines were discussed
even before any specific vaccine was authorized by regulatory
agencies11–15. Despite international initiatives for equitable sharing
agreements such as the COVID-19 Global Vaccine Access (COVAX)
program16,17, vaccine nationalism has largely superseded global equity
efforts. Indeed, the differences in terms of COVID-19 vaccines doses,

administered across countries grouped by income levels, are
staggering18–21. These inequities have potentially enormous effects on
the economies and future health of lower middle and low income
countries (LMIC)11,12,22–25. However, except for three recent studies that
modelled the effects of different global vaccine allocation and sharing
strategies26–28, a quantitative, detailed, and tailored estimation of the
consequencesof vaccine inequity across several LMIC is largelymissing.

Here, we develop a stochastic, multi-strain compartmental epi-
demic model applied to twenty LMIC selected from all WHO regions.
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The epidemic model accounts for national demographics, age-
structured contact mixing patterns, the impacts of non-
pharmaceutical interventions (NPIs), multiple virus strains and their
variable effects on vaccines’ efficacy. We fit the model to each country
independently using an Approximate Bayesian Computation method
based on Sequential Monte Carlo29,30 and we explore a range of
counterfactual scenarios aimed at quantifying the effect of a higher or
earlier vaccine availability on COVID-19 mortality as of 2021/10/01 in
the twenty LMIC considered. The results suggest that, if these coun-
tries could have afforded the same per capita daily vaccination rate
reported in selected high income countries, more than 50% of deaths
(min-max range: [54−94%]) that occurred could have been averted.
Even without more doses, if these countries had a similar early access
to vaccine doses as high income countries, an important fraction of
deaths (min-max range: [6−50%]) could have been averted. We also
estimate the level of NPIs that these countries would have needed to
offset the lack of vaccines. Indeed, while in the first phases of the
emergency the mitigation of the pandemic was achieved, around the
world, at high costs through the implementation of economically and
socially disruptive NPIs15, in high-income countries vaccines have
facilitated relaxing such tough socio-economic measures31,32. We find
that significantlymore effective or prolongedNPIs would be needed to
observe the same number of averted deaths estimated in high vaccine
availability scenarios.

In summary, our findings emphasize the negative consequences
of inequities in the access to COVID-19 vaccines and advocate for
concerted efforts to expedite and ensure fair distribution of vaccines
in LMICs. This is not just a moral imperative to reduce the burden of
COVID-19 around the world, but also a practical stance to limit the

emergence, spread, and introduction of new variants possibly able to
breach theprotectionof existing vaccines.Thoughwehave focusedon
twenty LMIC, the approach we developed could be used to study and
quantify the impact of inequitable vaccination in other countries.

Results
Quantifying vaccine inequities
To quantify vaccine access and administration across countries with
different income levels, we combine two datasets (see the Methods
section and the Supplementary Information formore details). The first
one is collected and updated by the United Nations Development
Programme via their Global Futures Platform18. It provides general
information about COVID-19 vaccine data around the world, including
several socio-economic dimensions. The second dataset, made avail-
able by Our World in Data33, provides a range of general information
about country-level vaccination efforts, including the number of doses
administered as a function of time which we have used as one of the
inputs in the modelling effort described below.

As of October 1st 2022, 77% of individuals living in high and upper
middle income countries completed the initial COVID-19 vaccination
course (i.e., one or two doses depending on the vaccine). The
equivalent share in LMIC was 50%, around 1.5 times lower. Inequities
were drastically more pronounced during the earliest stages of the
vaccination rollout, when populations also had much lower levels of
infection-induced immunity. In Fig. 1a, we plot the total number of
doses administered per 100 people. By October 1st, 2021 (i.e., the
horizon of our analysis), high and uppermiddle income countries had,
on average, more than one dose per person. The numbers are drasti-
cally different in LMIC. While lower middle income countries

Fig. 1 | Vaccine inequities. aTotal number of doses administered per 100people in
different income groups as of October 1, 2021. b Scatter plot of % of a country’s
population who is fully vaccinated versus their Human Development Index (HDI).
The color of dots indicates the country’s income groupwhile size is proportional to
the cost of vaccinating 40% of the population as a percentage of current healthcare

spending. c Histograms of the date of first COVID-19 vaccination across different
country income groups. d Evolution in the share of doses administered monthly
across country income groups (left hand), and evolution of monthly booster doses
share (right hand side).
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administered slightly more than 40 doses per 100, the equivalent
number for low income countries is only 3.6 doses per 100.

In Fig. 1b, we plot the percentage of each country’s population
that was fully vaccinated by October 1st, 2021, versus the country’s
Human Development Index (HDI). The HDI is a composite index that
accounts for life expectancy, education, and per capita income as well
as other aspects of humandevelopment34. The size of the data points is
set proportional to the estimated cost of vaccinating 40% of the
population as a percentage of the country’s current healthcare
spending; thismetric is used toquantify the economic challengeposed
by achieving the 40% vaccination level proposed byWHOas an interim
target by the endof 202118. Theplot shows a strongpositive correlation
between HDI and vaccination coverage (Pearson correlation coeffi-
cient: 0.79, p < 0.001). Themoredeveloped the country, the higher the
fraction of its population vaccinated. Furthermore, countries char-
acterized by the lowest values of HDI face drastically bigger economic
challenges in reaching 40% of the population vaccinated. Unfortu-
nately, even one year later, as of October 1st 2022, only half of lower
middle income countries have vaccinated at least 40% of the popula-
tion, while only one low income country out of ten met the target.

In Fig. 1c, we plot the distribution of the vaccine administration
starting dates by country income group. For high and upper middle
incomecountries this date is generallymuchearlier than for LMIC. This
figure clearly highlights the different logistic challenges in setting up a
mass vaccination campaign across countries and speaks to the differ-
ential power among income levels to secure a scarce resource such as
COVID-19 vaccines in the early phases of the rollout19.

In Fig. 1d, we plot the share of vaccines administered globally
across country income levels by month, starting in December 2020.
The plot confirms that, in the first seven months of the COVID-19
vaccination campaign, more than 80% of the doses were concentrated
in high and upper middle countries. The level of inequity becomes
even more staggering when considering the share of the global
population of the four groups. Only 16% of the global population lives
in high income countries, while nearly 50% live in LMIC (8% in low
income countries). Hence, the plot highlights how, as of the 1st of
October 2021, low income countries had administered a share of doses
that is smaller than 1%of totaldoses.As shownon the right hand sideof
Fig. 1d, high income countries similarly monopolized the administra-
tion of booster doses in late 2021 and the first half of 2022, whenmost
LMIC were still far behind with primary vaccinations.

Modeling the vaccination campaigns in LMIC
To quantify the impact of vaccines inequities on COVID-19 burden, we
developed a stochastic and multi-strain epidemic model. We consider
a SEIR-like natural history of the disease, and the model takes as input
for each country its demographics, proxy data for non-pharmaceutical
interventions (NPIs), age-stratified contact matrices from Ref. 35, var-
iants prevalence, and epidemic data describing confirmed deaths.
Vaccine administration is explicitly modeled with the number of daily
1st and 2nd doses in different countries from Ref. 36. The model is
stochastic and transitions among compartments are simulated
through chain binomial processes. We consider individuals who
received one or two vaccine doses, with vaccine efficacy against
infection and death for one and two doses and as a function of the
specific circulating variant of the virus.We also assume that vaccinated
individuals who get infected are less infectious by a factor accounting
for the forward transmission reduction observed in vaccinated
people37. Details of the mathematical definition and computational
implementation of the model are summarized in the Methods section
and fully described in the Supplementary Information.

In Fig. 2a, we map the geographical location of the twenty LMIC
covering all six WHO regions that were selected for modeling. The
selection process was driven by data availability about vaccinations,
genomic information about variants prevalence, access to NPIs proxy

data, and reported deaths. Across the selected countries, we capture a
wide range of vaccination coverage. ByOctober 1, 2021,more than50%
of the populations in Sri Lanka, El Salvador, and Morocco had com-
pleted the initialCOVID-19 vaccination course, compared to fewer than
3% in Ghana, Uganda, and Zambia. Countries such as the Philippines,
Indonesia, Honduras, and Bolivia are in the middle with fractions
between 19% and 24%. We calibrate the model in each country sepa-
rately via an Approximate Bayesian Computation method based on
Sequential Monte Carlo29,30 using as evidence the time series of
recorded deaths in each country. This approach allows us to find the
posterior distributions for a range of parameters such as the effective
transmissibility of the different strains, seasonality, delay between
deaths and their notification, under-reporting of deaths, and infection
fatality rates (IFRs)38 in the different countries as reported in Methods
section. We first use the model to estimate, for each country, the
number of deaths averted by the actual vaccination campaign, relative
to a setting where no vaccines were available (results reported in the
Supplementary Information). The model is run in the period 2020/10/
01−2021/10/01, covering one year of vaccine allocation and distribu-
tion, prior to the emergence of the Omicron variant. We refer the
reader to the Supplementary Information for details about the cali-
brationprocess and an estimate of the impact of the actual vaccination
campaigns in averting deaths.

Counterfactual vaccination scenarios
Weuse themodel to study counterfactual scenarios inwhich (i) the per
capita vaccination rate in the selected countries would have equaled
that of high-income countries, and (ii) vaccination rollout starts at the
same time as in high-income countries, with no change in overall
volume. In administering the extra available doses we assume a pro-
tocol that prioritizes the elderly population hence targeting a reduc-
tion of deaths rather than the reduction of the overall infection
incidence39–41. Our aim is to quantify the untapped benefits of vaccines
in LMIC rather than to study alternative global strategies of allocation
(as done in Refs. 26–28). Hence, we assume a higher (first scenario) or
an earlier (second scenario) availability of doses. For each counter-
factual scenario, we estimate the impactof the changed vaccine rollout
as the percent reduction in deaths (averted deaths) during the simu-
lation period (2020/10/01−2021/10/01) compared to the actual vaccine
rollout (see the Supplementary Information for more details). We
note how the scenariowithout vaccines could be used as an alternative
baseline. The goal is to quantify the impact of vaccine inequities,
hence we opted to select the factual rollout as the baseline.

In Fig. 2b, we report the estimated percentage of deaths averted
and the median absolute numbers of deaths averted per country
assuming the first counterfactual scenario of a US-equivalent vacci-
nation rate. For more than half of the countries, the percentage of
deaths averted exceeds 70%, with peaks above 90% for Afghanistan,
and Uganda. In these countries, the absolute numbers of averted
deaths are staggering, ranging from149,000 (IQR: [122,000−183,000])
in Indonesia to 1700 (IQR: [1100−2600]) in Rwanda. For the other half
of the countries, the percentages of deaths averted are in the 50−70%
range, with absolute numbers ranging from 20,600 (IQR:
[15,400−26,800]) for Mozambique to 2200 (IQR: [1700−2700]) in El
Salvador. In the Supplementary Information we show how analogous
results can be obtained considering vaccination rates of other high-
income countries such as the European Union (EU) and Israel. Indeed,
in both cases we observe a drastic reduction of fatalities. When con-
sidering dose availability of Israel the averted deaths in LMIC span
between 60% to nearly 100%, and from 40% to 90% when EU rates are
considered.

The second counterfactual scenario investigates the impact of an
earlier start of the vaccination campaigns without changes in alloca-
tion volume. In other words, this scenario considers a more equal
timing in the allocation of vaccine doses. We take as a reference point
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the start of the vaccination campaign in the US which took place on
December 14, 2020. Among the countries under study, Indonesia
administered the first doses in mid-January 2021, and Bangladesh,
Egypt and Sri Lanka in late-January 2021. Eight countries started their
vaccination in February: Bolivia and Pakistan in the beginning, El Sal-
vador, Morocco, and Rwanda in the middle, Afghanistan, Honduras,
and Philippines at the end of the month. Seven countries started their
campaigns only in March: Angola, Côte d’Ivoire, Ghana, Mozambique
and Uganda within the first ten days of the month while Kyrgyzstan at
the end of it. Finally, only one of the twenty countries under investi-
gation (Zambia) started vaccinations in April (mid month). Hence, the
delay with respect to the US starting date spans one to four months.
Figure 3 shows how an earlier start would have been beneficial as it
would have found a larger fraction of the population susceptible
before the Delta wave. However, the magnitude of such effects is
heterogeneous and overall smaller when compared to the previous
counterfactual scenario with more vaccine doses. A key factor is the
interplay between the amountof vaccine available and the relative shift
of the starting time. Sri Lanka, El Salvador andMorocco, that achieved

the highest coverage in the group and initiated their campaigns
around two months later compared to the US, would have averted
more than 40% (50%, IQR: [45−56%] forMorocco) of deaths. In the case
of Angola and Zambia, both countries with a very low vaccination rate,
a three/four month head start makes a difference (6400, IQR:
[5000−8600] and 4000 [3100−4800] averted deaths respectively),
but its effects are ultimately diminished by the relatively small number
of administered vaccine doses. In fact, the percentage of averted
deaths is very similar to what we find for Pakistan that had a higher
vaccination coverage but started only about twomonths later than the
US. Similarly, themoderate percentage of averteddeaths for Indonesia
and Bangladesh, which however would have resulted in 38,000 (IQR:
[31,500−45,700]) and 22,000 [15,300−31,300] fewer deaths, is due to
the small difference between the actual and counterfactual start of the
vaccination campaigns.

Estimate of NPIs required to offset vaccine inequity
In the counterfactual scenarios studied above, ourmodeling approach
considers the same level of NPIs implemented in the factual scenario.

Fig. 2 | Counterfactual scenarios - Deaths averted if countries had US-
equivalent vaccination rate. a Countries modeled, their WHO region, and the
percentage of fully vaccinated individuals there as of October 1, 2021. World bor-
ders layer is taken from Ref. 70. b Deaths averted expressed as a percentage with
respect to the actual vaccination rollout (median and interquartile range computed

over 1000 independent model realizations), assuming per capita vaccination rates
equivalent to the United States. Averted deaths are computed over the simulation
period (2020/10/01−2021/10/01). Themedian absolute number of deaths averted is
reported above the inter-quartile range.
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For this reason, we have investigated the extent of additional NPIs that
would be needed to offset the limited vaccine availability in LMIC. In
this third counterfactual scenario, we keep the doses administration as
it unfolded in reality. Then, at week 51 of 2020, the start of the vacci-
nation campaign in the US, we modify the NPIs to make them more
restrictive thus reducing the transmissibility. Since the impact of NPIs
is modulated by their strictness and duration15,42–47, we explore a two-
dimensional phase space inwhich additionalNPIs are introduced forW
weeks (after week 51 of 2020) and decrease transmissibility by X%. It is
important to note how the strengthening ofNPIs could be achieved via
further social distancing in concert with less disruptive measures
like wider face mask adoption (see Supplementary information for
the modeling implementation). In Fig. 4 we show the percentage
decrease in transmissibility that, if achieved for four months, would
avert the equivalent numbers of deaths as achieved by a US-level
vaccination rate. Notably, nearly half of the countries would have
needed reductions of 40% or more during that period. The other half
would need reductions of around 20–30%. These variations to the
transmissibility could be hardly achieved without a significant
strengthening of social distancing measures. Less disruptive policies,
such as face masks, could help but their contribution is strongly
dependent on their adoption and effectiveness48,49. Côte d’Ivoire and
Angola are the countries requiring the strongest additional NPIs to
match the benefit of higher vaccination rates. As of October 1th, 2021,
they vaccinated only 2% and 3% of their population respectively.
Althoughonemight think that the keydriver of the trend is vaccination
coverage, Pakistan, that in the same period vaccinated 13% of the
people, is among the countries requiring the least additional NPIs to
match the benefit of higher vaccination rates. Pakistan experienced a
large epidemic wave in May 2021 and managed a rapid start of the
vaccination campaign. Honduras (which ranked third in terms of
additional NPIs needed) instead started its campaign only a few weeks
later but the initial vaccination rate was very slow (see the Supple-
mentary Information for details). Hence, the starting date and the rate
of vaccination are equally important in defining the effectiveness of
vaccination campaigns. Furthermore, in this counterfactual scenario,
additional NPIs are implemented in different epidemiological con-
texts. The impact of NPIs has been critically linked to their timing in
reference to the disease progression15,42–47. For instance, Ghana
experienced a big wave at the beginning of 2021, while Kyrgyzstan and
Uganda, which are among the countries needing the least additional
NPIs to match the effects of higher vaccination rate, experienced big

waves later, only in the summer of 2021. In Fig. 4b we show a phase
diagram for Pakistan, Philippines, and Ghana which are the countries
respectively in the bottom, middle, and top rank according to the
percentage decrease in transmissibility needed to offset vaccine
inequities. The Figure details the averted deaths (color scale) as a
function of NPIs duration (x-axis) and decrease in transmissibility (y-
axis). Overall, the plot shows that the longer additional NPIs are in
place, the less strict they need to be to avert the same number of
deaths. Furthermore, Pakistan would have required a decrease in
transmissibility of 30% for twomonths tomatch thebenefit brought by
a higher vaccination rate. In contrast, in the case of the Philippines and
Ghana, we would need a 45% and 90% decrease in the same period.
These observations highlight how the effectiveness of the vaccination
campaigns is affectedby the interplay of their start, rate, coverage, and
timing in reference to the disease progression.

Discussion
Global COVID-19 vaccines allocation has been characterized by
extreme inequities. As a result, high and upper-middle income coun-
tries managed vaccination rates and coverage that are much higher
than LMIC. Furthermore, their rollout started earlier, and it had amuch
smaller economic impact (with respect to their GDP and healthcare
expenditures). In this context, we studied the impact of COVID-19
vaccine inequities in twenty LMIC selected from all WHO regions by
quantifying the potential effects of higher or earlier doses availability.
We developed an epidemic model, calibrated to the epidemiological
context of each country, to study counterfactual scenarios where the
per capita vaccination rate in LMIC would have equaled that of high-
income countries. We found that the twenty countries would have
averted more than half (with peaks above 90%) of the deaths that
actually occurred. We also ran a counterfactual scenario assuming a
vaccination rollout start at the same time as in high-income countries,
with no change in allocation volume. Also in this case, we found that a
significant fraction of deaths would have been averted. Finally, we
estimated the strictness of NPIs that each countrywould have to put in
place to offset the lack of vaccines with respect to high-income
countries. Across the different LMIC, we found that stronger and
sustained NPIs would have been necessary. This result, combined with
the difficulty of implementing additional NPIs in these settings,
underlines the largely untapped benefits that vaccines could have
brought to LMIC.Overall, ourfindings are in linewith those reported in
the still small literature focused on COVID-19 vaccine inequities26–28.

Fig. 3 | Counterfactual scenarios - Deaths averted if countries had US-
equivalent vaccination start date.Deaths averted expressed as a percentage with
respect to the actual vaccination rollout (median and interquartile range computed
over 1000 independent model realizations), assuming United States start date of

December 14, 2020. Averted deaths are computed over the simulation period
(2020/10/01−2021/10/01). The median absolute number of deaths averted is
reported above the inter-quartile range.
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Though the differences in the counterfactual scenarios considered
make quantitative comparisons difficult, previous results confirm the
negative effects of vaccine nationalism and of allocation based on
income rather than need26–28.

Our approachcomeswith the limitations ofmodeling studies. The
details about the vaccination campaigns in some of the countries are
limited. For example, information about the types of vaccines admi-
nistered in some cases is missing. The model operates at a national
level thus neglecting geographical heterogeneities that could reveal
yet other layers of inequities, within each country. Although we con-
sider variable IFRs across countries, we do not explicitly account for
comorbidities or limited healthcare access. The model includes the
under-reporting of deaths as a parameter fitted in the whole period
under investigation. Hence, temporal variability in the ascertainment
of deaths is neglected. To address this point, in the Supplementary
Information we present a second model including a time-varying
parameter. The main findings are not affected by this change in the
modeling setup. The transmission rate in each country is fitted, thus
allowing to capture differences in behaviours andmeasures thatmight
affect transmissibility. However, we do not explicitlymodel protection
offered by face masks or by increased hygiene measures. We do not
investigate other counterfactual scenarios based on changes in vacci-
nation protocols, such as for example delaying the time between
doses. This strategy, which aims to prioritize one-dose protection

coverage, has been shown to be effective in the first ten months of the
rollout in the United Kingdom50. Finally, the counterfactual scenarios
do not consider changes in the global allocation of doses, the real
global availability of vaccines, nor the local cost of the supply chain
necessary to receive, store, distribute and administer doses.

The overall picture emerging fromour analysis shows that vaccine
inequity, in both the number of doses available and the timeline of
delivery, drastically reduced the impact of vaccination campaigns in
the group of LMIC studied. The emergence of new variants, featuring
higher transmissibility and immune escape, suggests how vaccine
inequity might become even more critical as we move forward in the
pandemic51. Indeed, the original COVID-19 vaccines have been chal-
lenged by new variants (such as Omicron) when it comes to protection
from infections and mild disease, but they still offer a very significant
protection from severe outcomes. Progress in vaccine availability and
administration in LMIC, also with respect to the administration of
booster doses, would help considerably to mitigate the risks asso-
ciated with highly transmissible new SARS-CoV-2 lineages.

While our results donot account for the constraints in the number
of globally available doses, estimates suggest that hundreds ofmillions
of vaccines have gone wasted in the period of time we considered,
rapidly reaching one billion by July 202252. Vaccine hesitancy, expira-
tion dates, logistic issues, and vaccine nationalism all played a role,
especially in high-income countries53,54. Moreover, the overall number

Fig. 4 | The role of NPIs. a Additional decrease of transmission obtained through
stricterNPIs, put in place for fourmonths, needed tomatch the deaths averted that
the vaccination rate of the US would have allowed (median and interquartile range
computed over 1000 independent model realizations). b For three countries we
show the contour plots of the percentage of deaths averted (median %) with

stricter and/or longer NPIs, relative to the actual vaccination baseline. Percentage
of deaths averted achieved by a US-equivalent vaccination rate is plotted as
reference (red dashed line). The white circle indicates the level corresponding to
stricter NPIs sustained for additional 16 weeks.
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of doses available at any given time is influenced by many variables
such as production choices, supply chain capabilities, vaccination
protocols (e.g., the time between first and second doses)50, and
national/international policies among others. The choices made to
affect these variables evolved over time, clearly showing that alter-
nativemodels are possible. The presented approach and results can be
extended to other countries and are potentially relevant in defining
strategies aimed at minimizing the effect of inequities in vaccine
allocation across countries.

Methods
Data
Data on global vaccine inequities come from the United Nations
Development Programme via their Global Futures Platform18. The data
detailing the timeline of vaccinations, used in the simulations, come
fromOurWorld inData33. The dataset provides the cumulative shareof
people partially and fully vaccinated against SARS-CoV-2 as a function
of time.

Data about demographics come from the United Nation World
Population Prospects55. Epidemiological data are extracted from the
COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University and from official
sources56. Data to estimate the impact of NPIs on transmission
dynamics come from the COVID-19 Community Mobility Report By
Google57. The dataset provides the percentage change in mobility r(t)
on day t. We compute r(t) by using the average of the fieldsworkplaces
percent change frombaseline, retail and recreation percent change from
baseline and transit stations percent change from baseline. We refer the
reader to the Supplementary Information for more details.

Epidemic model
We adopt a SEIR-like stochastic compartmental model. Susceptible
individuals are placed in the compartment S, by getting in contact with
the Infectious (I) they transition to the compartment of the Exposed (E).
Exposed individuals are infected and transition to the compartment I
with rate ϵ. Infectious subjects leave the compartment with rate μ.
Following the literature describing the COVID-19 characteristics58,59, we
set ϵ = 1/4 days−1 and μ = 1/2.5 days−1. We compute the number of deaths
from the daily recovered as follows. Individuals that exit from the I
compartment, can either transition to theRecovered (R) or theDead (D)
compartment. The share of individuals transitioning to the D com-
partment is regulated by the age-stratified Infection Fatality Rate (IFR)
from Ref. 38. To account for delays due to hospitalization and report-
ing, we record the number of deaths computed on the recovered of day
t only after Δ days. Hence, D individuals transition to the compartment
Do (superscript o stands for “observed”) at a rate 1/Δ. Individuals are
divided into 10 age groups (0−9, 10−19, 20−24, 25−29, 30−39, 40−49,
50−59, 60−69, 70−79, 80+). The age-stratified rates of interaction are
defined by the country specific contacts matrix C from Ref. 35. The
model includes a seasonal term to capture modulation of the force of
infection regulated by changes in factors such as temperature and
humidity (see more details in the Supplementary Information)60,61.

The model accounts for vaccinations. We assume that all indivi-
duals except the infectious can receive the vaccine. The per-capita rate
at which susceptible individuals, that received a dose of vaccine, get
infected (i.e., forceof infection) is reducedbya factor (1− VES1). If these
individuals get infected, their IFR is also reduced by a factor 1 −VEM1.
Hence, the overall efficacy of a single dose of vaccine against death is
VE1 = 1 − (1 −VES1)(1− VEM1). The force of infection for susceptible
individuals that received two doses, and the IFR are reduced, respec-
tively, by (1− VES2) and (1 −VEM2), implying an overall efficacy of
VE2 = 1 − (1 −VES2)(1− VEM2). We also assume that vaccinated indivi-
duals that get infected are less infectious by a factor (1 −VEI)37. Since
vaccine protection is not immediate, we introduce a delay of ΔV days
between administration (of both 1st and 2nd dose) and the actual

effect of the vaccine. For example, an individual who received the 1st
dose on day t, will be protectedwith efficacyVE1 only, on average, after
ΔV days. We set ΔV = 14 days. As we do not have detailed information
about the age of individuals receiving vaccines in all the countries
considered, we assume that the rollout proceeds prioritizing the
elderly. This is the strategy followed by the vast majority of govern-
ments worldwide40,62,63. Vaccines are distributed in decreasing age
order until all 50+ individuals are vaccinated, after vaccines are dis-
tributed homogeneously to the age groups 10−50. We inform the
modelwith thenumber of daily 1st and 2nddoses in different countries
fromRef. 36.We setVE1 = 80% (VES1 = 70%),VE2 = 90% (VES2 = 80%), and
VEI = 40%37.

We add specific E and I compartments to account for the intro-
duction andemergenceof a variant of concern. Considering theperiod
under examination and the evidence from genomic surveillance in all
countries under examination we consider the arrival and spread of the
SARS-CoV-2 variant of concern Delta. Looking at genomic sequence
data fromRef. 64–66weget a proxydate for its introduction (seemore
details in the Supplementary Information). We assume that Delta is ψ
timesmore transmissible than the strain circulating previously and has
a shorter latent period ϵ�1

Delta =3 days 67. We also assume that vaccines
have a reduced efficacy against Delta VOC: VEDelta

1 = 70%
(VEDelta

S1 = 30%), VEDelta
2 = 90% (VEDelta

S2 = 60%)37.
The model accounts also for the effects of non-pharmaceutical

interventions (NPIs) on transmission. To this end, we adopt as a
proxy the COVID-19 Community Mobility Report By Google57. This
data provides the percentage reduction of individuals visiting spe-
cific locations on a given day. Here, we derive a single mobility
reduction parameter r(t) by averaging the different fields of the
report, and we convert it into a contacts reduction parameters c(t)
following the relation: c(t) = (1 + r(t) / 100)2. Indeed, under a homo-
geneous mixing assumption the number of contacts scale with the
square of the number of individuals. To account for the modulation
in contacts induced byNPIs in the simulations, the contactmatrixC is
multiplied by this reduction parameter c(t). We refer the reader to
the Supporting Information for more details about the modeling
framework.

Model calibration
The free parameters of the model are calibrated through an Approx-
imate Bayesian Computation based on Sequential Monte Carlo (ABC-
SMC)29,30. The free parameters investigated are:

• the transmission rate β; we explore uniformly values such that
the reproductive number Rt on the first simulation date is
between 0.6 and 2.0;

• the delay in deaths Δ ~U (10, 35)68;
• the seasonality parameter αmin ~U (0.5, 1.0) (0.5 indicates strong

seasonality while 1.0 absence of seasonality);
• the initial number of infected individuals; we explore uniformly

values between 1 and 1000 times the number of cases notified in
the 7 days prior the beginning of the simulation (Inf mult

start). We
divide these individuals in the infected compartments (L, I)
proportionally to the time spent there by individuals (ϵ−1 for L
and μ−1 for I);

• the initial number of recovered; we explore uniformly values
between 1 and 100 times the total number of reported cases up
to the start of the simulation (Recmult

start);
• the relative transmissibility advantage of the Delta VOC

ψ ~U (1.0, 3.0);
• the date of the introduction of the Delta VOC. We consider

values between 45 days before and after the datewhenDeltawas
responsible for at least 5% of sequenced samples according to
the data from Ref. 64;

• the IFR multiplier ~U (0.5, 2.0); this number multiplies the IFR
from Ref. 38;
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• the percentage of deaths reported ~U (1%, 100%).The model is
calibrated separately for the different countries during the per-
iod 2020/10/01−2021/10/01. For each country, we run 20 itera-
tions of the ABC-SMC algorithm using the weighted mean
absolute percentage error (wMAPE) on real and simulated
weekly deaths as distance metric. Full details on calibration
technique and posterior distributions of free parameters are
reported in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for this study is publicly available. Data on vaccinations
can be downloaded at https://ourworldindata.org/covid-vaccinations,
demographic data at https://population.un.org/wpp/Download/
Metadata/Documentation/, mobility data at https://www.google.
com/covid19/mobility/, and epidemiological data at https://github.
com/CSSEGISandData/COVID-19.

Code availability
All codes are available on Github at link https://github.com/ngozzi/
vaccine-lmicand on Zenodo at Ref. 69.
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licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39098-w

Nature Communications |         (2023) 14:3272 10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Estimating the impact of COVID-19 vaccine inequities: a modeling study
	Results
	Quantifying vaccine inequities
	Modeling the vaccination campaigns in LMIC
	Counterfactual vaccination scenarios
	Estimate of NPIs required to offset vaccine inequity
	Discussion

	Methods
	Data
	Epidemic model
	Model calibration
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




