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Epidemic spreading with awareness and different timescales in multiplex networks

Paulo Cesar Ventura da Silva,1 Fátima Velásquez-Rojas,8 Colm Connaughton,3,4 Federico Vazquez,8,9 Yamir Moreno,5,6,7

and Francisco A. Rodrigues 2,3,4,*

1Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
2Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil

3Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
4Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK

5Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain
6Department of Theoretical Physics, University of Zaragoza, 50018 Zaragoza, Spain

7Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin 10126, Italy
8Instituto de Física de Líquidos y Sistemas Biológicos (UNLP-CONICET), 1900 La Plata, Argentina

9Instituto de Cálculo, FCEN, Universidad de Buenos Aires and CONICET, Buenos Aires C1428EGA, Argentina

(Received 11 December 2018; revised manuscript received 25 July 2019; published 24 September 2019)

One of the major issues in theoretical modeling of epidemic spreading is the development of methods to
control the transmission of an infectious agent. Human behavior plays a fundamental role in the spreading
dynamics and can be used to stop a disease from spreading or to reduce its burden, as individuals aware of
the presence of a disease can take measures to reduce their exposure to contagion. In this paper, we propose a
mathematical model for the spread of diseases with awareness in complex networks. Unlike previous models, the
information is propagated following a generalized Maki-Thompson rumor model. Flexibility on the timescale
between information and disease spreading is also included. We verify that the velocity characterizing the
diffusion of information awareness greatly influences the disease prevalence. We also show that a reduction in
the fraction of unaware individuals does not always imply a decrease of the prevalence, as the relative timescale
between disease and awareness spreading plays a crucial role in the systems’ dynamics. This result is shown to
be independent of the network topology. We finally calculate the epidemic threshold of our model, and show
that it does not depend on the relative timescale. Our results provide a new view on how information influence
disease spreading and can be used for the development of more efficient methods for disease control.
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I. INTRODUCTION

Mathematical and computational studies of epidemic mod-
els have proven to be very important for understanding real-
world disease dynamics [1,2]. Currently, one of the main
motivations behind epidemic modeling is the development of
methods and models that allow to control the transmission of
an infectious agent [1,3]. These methods include the optimiza-
tion of more traditional strategies to control an outbreak, such
as vaccination [3,4] or or a quarantine mechanism based on
adaptive connections [5,6], but also novel approaches that take
into account more accurately human behavioral responses.

Modeling the influence of human behavior in disease
spreading is an intense research topic [7–11]. In particular,
individual prevention methods can considerably reduce the
overall incidence of a disease, but the acknowledgment of the
methods and the decision to adopt them depend on behavioral
factors. The latter have been modeled using opinion dy-
namics [12–15], game-theoretical approaches[16–19], spread-
ing processes [20–25], risk perception [26–30], and other
approaches [10].

*francisco@icmc.usp.br

The risk perception approach considers that individuals
become aware of an epidemics by noticing the presence of
infected individuals in their neighboring contacts. Bagnoli and
others [26] showed that individual protection triggered by risk
perception can stop an epidemics from spreading in several
network topologies, including a moment-diverging scale-free
(provided that the perception response is nonlinear). However,
awareness by spreading phenomenon models the word-of-
mouth propagation of an information about the epidemics.
Funk and others [20] showed that, for an SIR epidemics,
the spreading of awareness through individual contacts could
avoid an epidemic outbreak, whereas a global awareness could
only reduce the outbreak size, but not stop it. Wu and others
[27] also studied the influence of global awareness, risk per-
ception and contact-spreading awareness in an SIS epidemics,
showing that the local (but not the global) awareness could
raise the epidemic threshold. These works highlighted the
importance of local information for controlling epidemics.

In more recent works, Granell et al. [21,22] and Wang
et al. [23,24] also studied spreading awareness in SIS and SIR
epidemic models, respectively. In these works, it was shown
that there can be an information outbreak either triggered by
itself or triggered by an epidemic outbreak, thus depicting an
“information without disease” stage on the models’ phase di-
agrams. Due to this state, Granell and collaborators [21] show
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that there is a metacritical point for the epidemic threshold
values, and that a global source of information (regarded as a
mass media campaign) can eliminate this metacritical point,
as it causes the awareness to be always present [22]. Besides,
on the SIR framework, Wang and collaborators [24] show
that there is an optimal information transmission rate that
minimizes the disease spreading.

Most of these works, however, consider that the epidemics
and the awareness propagate and vanish at the same timescale.
This is a limitation, as many real-world phenomena do not
occur at the same rates. For instance, the HIV infection and
renewing cycle has a typical timescale of many years, whereas
the information and awareness about HIV can be spread
and forgotten several times during this period. Moreover,
important discoveries were obtained by flexibilizing relative
timescales between simultaneous processes. For example,
Oliveira and Dickman [31] determined that the competition
between two biological species may be won by that with
a slower birth/death rate under certain environmental cir-
cumstances. Gómez and collaborators [32] showed that the
diffusion on a two-layer network can be possibly faster than
on each individual layer, if the diffusion timescales inside and
between the layers are different. It may, therefore, be of great
value to consider that epidemic spreading and the propagating
awareness about it occur at different timescales.

Moreover, the models for epidemics and awareness pro-
posed until the present use simple models for the spreading of
awareness. Bagnoli [26] considers a fading awareness, which
looses its quality as it propagates and eventually extinguishes.
Granell [21,22] applies a simple SIS epidemic model for the
awareness, in which spreaders stop propagating the informa-
tion by forgetting it (analogous to the disease healing). These
approaches capture the essential phenomenology, but may be
not as accurate in reproducing the real-world behavior, in
which people may know the information but loose the interest
in propagating it. This can be considered using rumor models
[33–35], in which a compartment of individuals called stiflers
is used to represent people who does not want to propagate
the information that they have.

For the modeling of the interaction between epidemics
and awareness, as well as other interacting processes, multi-
layer networks are a very useful tool [36–43]. In particular,
multilayers in which all layers have the same number of
nodes (often called multiplex networks) can be used to model
interacting phenomena that do not share the same contact
structure, so that each layer encodes the contacts associated
to the respective dynamics. Most of the works on disease-
behavior interaction that we mentioned previously on this
paper use multiplexes for their modeling.

Here we explore a model in which two processes coexist:
The spreading of a disease and the dissemination of awareness
of the disease. Our model includes two new ingredients.
First, we increase the complexity of previous models with
respect to the dissemination of information by considering the
dynamics of the Maki-Thompson [44] rumor model—instead
of using the traditional dynamics of disease spreading [21,22].
Second, we introduce a parameter that allows to control the
relative timescales between the disease and rumor propaga-
tion processes. Results for scale-free networks show that the
rumor dynamics can indeed reduce the epidemic prevalence.

However, if we couple the characteristic time for awareness
diffusion with the state of individuals, namely, by considering
that infected individuals take more time to inform about its
own infection, a counterintuitive behavior is revealed: The
prevalence increases with the rate at which individuals be-
come aware, despite the fact that fraction of unaware individ-
uals decreases. The latter mechanism is important, as there are
many diseases to which a similar behavior can be associated—
e.g., HIV transmission, where HIV-positive patients are often
reluctant to voluntarily notify their sexual partners [45]. In
what follows, we present the model as well as some analytical
insights and results from numerical simulations. We round off
the paper by discussing our findings and presenting possible
applications to the modeling of real diseases.

II. THE MODEL

Our model considers the propagation of a disease in a
population, simultaneously to the spreading of information
about it, by which individuals become aware of the disease
and of prevention methods, reducing their contagion proba-
bilities. These two processes run in a double-layer multiplex
network: One layer for the disease spreading and another one
for the information awareness to hold the disease. As of the
definition of a multiplex [36], each layer has the same number
of nodes, and there is a one-to-one link between the nodes
in different layers. In this sense, we identify each pair of
linked nodes from each layer as the same “individual”; the
only difference from one layer to the other one lies in the
structure of connections inside the layers. The links on the
“epidemic layer” represent contacts that can possibly transmit
the disease, whereas links on the “informational layer” rep-
resent pairs of individuals that share information with each
other, like in social online networks.

A. Baseline model

The model for the epidemic spreading adopted here is a
reactive SIS (susceptible-infected-susceptible) compartmental
model [1,2] in which, at each time step �t = 1 of the dynam-
ics, each infected (I) node tries to transmit the disease to each
of its susceptible (S) neighbors on the epidemic layer with
probability β, and then tries to recover with probability μ.

For the spreading of information awareness to prevent the
transmission we use a cyclic Maki-Thomson rumor model
in complex networks [46], which we call UARU (unaware-
aware-stifler-unaware). Notice that the latter R here is used for
the stifler compartment to avoid confusion with the suscepti-
ble (S) state in the SIS model. A stifler is an informed node
who does not propagate the information anymore. When an
aware (spreader) node contacts an unaware (ignorant) neigh-
bor in the informational layer, it tries to pass the rumor about
the disease. If the contacted neighbor, however, is an aware or
stifler node, then the node that makes the contact becomes
stifler. A stifler individual can also forget the information
about the disease transmission, becoming ignorant about the
disease transmission again. We again use a discrete time
approach [47] by considering a reactive formulation in which,
at each time step �t = 1, each aware (A) node first tries to
inform each of its unaware (U) neighbors with probability γ ,
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and then becomes a stifler (R) with probability σ . Besides,
each stifler node becomes ignorant (U) with probability α.

By combining the epidemic and the informational states
of each node, we can describe the overall state of each
individual. In our model, we have six different states, i.e.,
SU (susceptible and unaware), SA (susceptible and aware),
SR (susceptible and stifler), IU (infected and unaware), IA
(infected and aware), and IR (infected and stifler). Using
these overall states, we define the interaction between the
epidemics and awareness by adding two new features. First, a
susceptible node that is informed (aware or stifler) will reduce
its contagion probability by a factor � (with 0 � � < 1) for
each contact, meaning that it will get the disease from each
of its infected neighbors with probability �β (less than β).
Such a feature represents the adoption of prevention methods
against the disease. Second, an additional transition called
self-awareness is considered: If not informed by a neighbor,
then an infected-unaware (IU) node can, during the same
time step, become aware with probability κ , by knowing its
own condition. This process simulates the case in which an
infected subject recognizes the symptoms of the disease and
becomes aware of the infection.

The following reaction equations—representing respec-
tively the Eq. (1) infection of an unaware susceptible, Eq. (2)
infection of an aware susceptible, Eq. (3) infection of a stifler
susceptible, and Eq. (4) healing of an infected node—describe
all possible epidemic transitions (where x is used to represent
an arbitrary informational state):

SU + Ix
β−→ IU + Ix, (1)

SA + Ix
�β−→ IA + Ix, (2)

SR + Ix
�β−→ IR + Ix, (3)

Ix
μ−→ Sx. (4)

The informational transitions—respectively, Eq. (5) in-
formation of an unaware node, Eq. (6) self-awareness of
an infected unaware, Eq. (7) “stifling” of an aware node
by contacting another aware node, Eq. (8) “stifling” of an
aware via contact with a stifler, and Eq. (9) forgetting of
the information—are represented by these equations (x and
y represent arbitrary epidemic states):

xU + yA
γ−→ xA + yA, (5)

IU
κ−→ IA, (6)

xA + yA
σ−→ xR + yA, (7)

xA + yR
σ−→ xR + yR, (8)

xR
α−→ xU. (9)

Figure 1 presents the possible transitions between the six
states, grouped according to the epidemic and informational
dynamics.

The timescale of the model is controlled according to a
defined probability. With probability π , only the rumor tran-
sitions (awareness, self-awareness, stifling and forgetting) can

·

µ

i) Epidemic transitions

ii) Informational transitions

FIG. 1. Schematic illustration showing the states of the nodes
in the network and the associated transition probabilities between
states, indicated by the Greek letters.

happen during the current time step. With the complementary
probability (1 − π ), the epidemic transitions (infection and
recovering) can occur. By setting the value of π , it is possible
to emulate different timescales between the two processes.
For instance, a value of π close to 1.0 means that the rumor
propagates much faster than the infectious agent.

B. Modified model

Besides the baseline model that we have described, we
propose a minor modification that can generate some unex-
pected behaviors. We extend the idea of self-awareness to
stifler nodes, considering that a stifler, which is also infected
by the disease, is less likely to forget the information. That
is, a node who knows about its own infection does not inform
other nodes and also impair the transmission of other nodes,
creating additional stiflers around it. This behavior is approx-
imately observed in the case of HIV transmission, in which
some infected individuals knows about its own infection but
do not voluntarily notify their sexual partners [45], acting
as infected-stiflers. We include this feature by reducing the
probability that an infected-stifler node forgets the informa-
tion by a factor of (1 − κ ) (so that the self-awareness param-
eter also reduces the rate at which infected-stiflers become
infected-unaware). We refer to this version of the model as
modified model, whereas the version without this modification
is referred to as baseline model.

In the following section, we describe our results with both
baseline and modified models.

III. RESULTS

We performed extensive Monte Carlo (MC) simulations
of the dynamics described in the last section, where we
considered a multiplex network composed by two layers
with scale-free organization and N = 1000 nodes each. Each
layer was generated independently by using the configura-
tion model [48] with power-law exponent γsf ≈ −2.5 and
minimum degree kmin = 4, with a resulting average degree
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FIG. 2. Stationary density of infected nodes ρ∗
I (disease preva-

lence) as a function of the disease propagation probability (β), for
different values of γ , �, and π , using the baseline model. For
π = 0.5, the rumor spreading and the epidemic propagation have the
same timescale, whereas for π = 0.1 (0.9) rumor events are slower
(faster) than the events of the epidemic process. The solid lines
are Markov chain calculations (see Appendix), whereas symbols are
results from Monte Carlo simulations. Other parameters of the model
are set to μ = 0.9, α = 0.6, κ = 0.5, and σ = 0.6.

〈k〉 ≈ 7.4 in each layer. The node correspondence between
the two layers is done at random, generating thus no relevant
degree correlation for corresponding nodes in each layer. To
further study the model, we also developed a Markov chain
approach that consists of solving a set of fixed point equations
that provide the stationary fractions of nodes in each state. The
Markov chain method is described in the Appendix at the end
of this paper.

In Fig. 2, the stationary density of infected nodes ρ∗
I

(prevalence) is plotted against the infection probability β, for
different values of the parameters γ (information spreading
probability), � (immunization factor for informed nodes), and
π (relative timescale). For this first analysis, we only used
the baseline model. Symbols represent the results from MC
simulations of the model, while solid lines correspond to the
solution of the Markov chain approach. To calculate stationary

densities by MC simulations, we run the dynamics for T =
1200 time steps, ignore the first 400 time steps and calculate
the average fraction of nodes in the desired state over the
remaining 800 steps. Each data point corresponds to an aver-
age over 103 independent realizations of the dynamics. At the
initial state of each realization, 20% of the nodes are randomly
chosen and assigned the state IA (infected-aware), whereas
the remaining 80% of nodes are set to the SU state (susceptible
unaware). For the Markov chain calculations, initially each
node begins the process with probability pi

IA(0) = 0.2 for
the infected-aware state and pi

SU(0) = 0.8 for the susceptible-
unaware state, with the remaining state probabilities being set
to zero.

Analyzing Fig. 2, we can first check that the information
about the disease helps in both reducing the prevalence and
increasing the epidemic threshold, by comparing curves with
different values for the information spreading probability γ .
Moreover, the prevalence is decreased when the immunity
provided by the awareness is total (� = 0.0) rather than partial
(� = 0.5). However, the prevalence is also increased if the
relative timescale π is greater, i.e., when the transitions of the
rumor process are faster than those of the epidemic process.
This is an intriguing result as, intuitively, we expect that
a faster informational process should be more efficient in
preventing the disease spreading. We believe that an insight
into this counterintuitive effect can be obtained by studying
simpler versions of the present model within a mean-field
approach, which we left for future work.

To investigate in more detail how the variation of the
relative timescales between the two processes affects the
prevalence, we consider the behavior of the infected, aware,
stifler and unaware stationary densities as a function of the
parameter κ (probability of self-awareness for an infected-
unaware node). Figure 3 shows these stationary densities
for two different values of π , yet for the baseline model.
Each curve is normalized by its value when there is no
self-awareness (i.e., κ = 0). We notice that, in both cases,
the self-awareness is beneficial to the disease prevention,
as the densities of aware (A) and stifler (R) nodes in-
crease, thus reducing the density of unaware (U) nodes
and the disease prevalence (I). Figure 3 also shows good
agreement between Markov chain method and Monte Carlo
simulations.

The picture changes if we consider the modified model,
described in Sec. II B. Figure 4 shows the same plot as in
Fig. 3 for the modified model, also with Monte Carlo and
Markov chain simulations. For π = 0.1, as it happens in
the baseline model, both densities of aware and stifler nodes
increase with κ . However, for π = 0.9, when the rumor prop-
agates faster than the disease, the fraction of aware (A) nodes
decreases with κ , whereas the fraction of stiflers (R) increases
very rapidly with κ . This means that the propagation of the
information is hindered by the self-awareness of infected
stiflers, as they resist to forget the information (unaware) and
then become aware (spreaders) again. Notice that, although
the stifler population increases in comparison to the aware
population, the density of unaware nodes still decreases with
κ , meaning that less individuals are unprotected from the
disease. Nevertheless, the prevalence (I) increases with κ in
this case.
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FIG. 3. Stationary densities of nodes in states I (infected), A
(aware), R (stifler), and U (unaware) normalized by their values
when there is no self-awareness (at κ = 0) as a function of κ , for
(a) π = 0.1 (slow rumor spreading) and (b) π = 0.9 (fast rumor
spreading). The baseline model was used for this figure. Squares are
the results of Monte Carlo simulations, whereas the solid lines are
Markov chain calculations (see the Appendix). The dotted lines are
guides to the eyes. Other parameters are set to β = 1.0, μ = 0.9,
γ = 0.5, α = 0.6, � = 0.0, and σ = 0.6.

This is another counterintuitive result, because the disease
prevalence is greater even though the unaware population
is smaller. To understand this, we look at the susceptible
population: If most susceptible individuals are unaware of the
disease, the information is concentrated at infected nodes and
thus is not effective in controlling the disease. In Fig. 5, we
study the relative distribution of the susceptible population
between unaware (SU), aware (SA), stifler (SR), and the com-
bination of the previous two (SA + SR), using the modified
model only. For the case of slower information (π = 0.1),

FIG. 4. Normalized stationary densities vs. κ using the mod-
ified model (see text), for (a) π = 0.1 (fast epidemic spreading)
and (b) π = 0.9 (fast rumor propagation). Squares and solid lines
correspond to MC simulations and the Markov chain approach,
respectively. Parameter values are the same as those described in the
caption of Fig. 3.

the fraction of informed susceptible nodes (SA, SR) increases
with κ , as expected. However, when π = 0.9, the opposite
happens: The fraction of SA and SR decreases and the fraction
of susceptible-unaware (SU) nodes increases, meaning that
the fraction of susceptible nodes that are protected by the
information decreases with κ in this case. Therefore, even
if the unaware population is reduced with κ [as reported in
Fig. 4(b)], the information is actually concentrated at infected
individuals, making the protection inefficient. In other words,
the fraction of informed individuals always increases with κ

but, for large π , susceptible individuals become less informed
as κ increases, and thus the number of infections increases.
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FIG. 5. Stationary densities for the susceptible nodes as a func-
tion of the self-awareness probability κ , normalized by their values
with κ = 0, using the modified model, for different values of the
timescale parameter π . The increasing on SU population with κ for
π = 0.9 helps explaining the behavior in Fig. 4. Other parameters are
set to β = 1.0, μ = 0.9, γ = 0.5, α = 0.6, � = 0.0, and σ = 0.6.

Hence, we conclude that the timescale, controlled by the
parameter π , plays a fundamental role on the prevalence,
meaning that the relative timescale between epidemics and in-
formation determines if the self-awareness is beneficial or not
for the disease prevention. We also study how the parameter π

changes the behavior of the prevalence with κ on the modified
model, by analyzing the prevalence ρ∗

I vs κ curves for eleven
different values of π . Figure 6 shows such curves, normalized
by the value of the prevalence when κ = 0.

By analyzing the plots in Fig. 6, we can conceive the influ-
ence of the timescale. For small π (faster epidemics, slower
information), the prevalence exhibits its normal decreasing
behavior with κ for both baseline and modified models.
However, for larger π (slower epidemics, faster information),

FIG. 6. Normalized disease prevalence ρ∗
I (κ )/ρ∗

I (κ = 0) vs κ for
the (a) baseline and (b) modified models. The values of the timescale
parameter π increase from the darker to the brighter color, showing
how the curves change their behavior with κ as π increases. Other
parameters are set to β = 1.0, μ = 0.9, γ = 0.5, α = 0.6, � = 0.0,
σ = 0.6.

the curves for the modified model flip their slope for larger
κ values, whereas they maintain the same behavior for the
baseline model. This means that, when the informational pro-
cesses are considerably faster than the disease transmission,
the self-awareness process can generate too many stiflers and
impair the information spreading, increasing the prevalence.
For both baseline and modified models, the timescale plays
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FIG. 7. Markov chain calculations of the normalized prevalence
for the modified model, using different pairs of network models
between the configurational scale-free (SF), Erdős-Rényi (ER), and
Watts-Strogatz (WS) models. On the upper plot, the prevalence is
shown as a function of the self-awareness parameter (κ) for a fixed
value of π = 0.9, and on the lower plot it is shown as a function of
π for a fixed value of κ = 0.8. Other parameters are set to the same
values as in Fig. 6.

an important role on determining the effectiveness of the
information on reducing the disease prevalence.

The results presented so far were taken using a pair of
scale-free (SF) networks. One natural question is whether
the observed phenomena are due to the particular topology
that we used. To answer that, we simulated the (modified)
model using combinations of two other topologies: The Watts-
Strogatz (WS)[49] and Erdős-Rényi (ER)[50] models. The ER
layers were generated with connection probability p = 0.008,
which produces an average degree of 〈k〉 ≈ 8 (for N = 1000
nodes). The WS layers were generated with average degree
〈k〉 = 8 and rewiring probability pr = 0.01, which produces
layers with average clustering coefficient C ≈ 0.47 and aver-
age shortest path length l ≈ 5. For the simulations, we used
the following pairs of epidemic and informational (in this
order) layers: ER-ER, ER-SF, ER-WS, WS-WS, SF-WS, and
the previously used SF-SF pair.

Figure 7 shows the results of Markov chain calculations
using other topologies. On the upper plot, we show the
prevalence as a function of the self-awareness parameter κ ,
for a high value of the timescale (π = 0.9, meaning faster
informational processes). On the lower plot, we show the
prevalence as a function of the timescale parameter π for a
fixed value (κ = 0.8) of the self-awareness. All prevalence
values are normalized by the first value of the sequence. For
all pairs of topologies, the basic results that we presented
before—the increasing of the prevalence with π and the
reversed behavior with κ for high values of π are consistently
preserved.

FIG. 8. Phase diagram of the model, showing the phase transition
curve between the healthy and endemic phases for different values of
�. The inset shows the critical epidemic transmission probability β

as a function of the protection factor �, for different values of the
information transmission probability γ . The diagram is the same for
the modified and baseline models, and does not depend on π and κ .
Other parameters are set to μ = 0.9, α = 0.6, σ = 0.6.

IV. EPIDEMIC CRITICAL POINT AND PHASE DIAGRAMS

Following the procedure proposed in Ref. [47], we can
calculate the epidemic critical point for our model. We show
in Appendix B that the phase transition curve between the en-
demic and the healthy state is, for both baseline and modified
models, given by β/μ = [�max(H )]−1, where the elements of
matrix H are defined as

Hi j = [
1 − (

pi
A + pi

R

)
(1 − �)

]
Ai j, (10)

where Ai j is the epidemic layer adjacency matrix and �max

represents the greatest eigenvalue. This result is the same
as in the model from Granell with no mass media [21],
only replacing the probability that node i is simply aware
pi

A by the probability that it is “protected” pi
A + pi

R, whose
value is calculated by solving the awareness equations without
epidemics.

One first notorious fact is that the epidemic critical point
does not depend on the relative timescale π , as it does not
change the individual “forces” of the epidemic and infor-
mational processes. It also does not depend on κ , as self
awareness is irrelevant when the prevalence is very small.

Figure 8 shows the phase transition curves in the β-γ
plane, for four different values of the protection factor �. At
the left of each curve lies the healthy phase (no disease in
stationary state), whereas the endemic phase (ρ∗

I > 0) is at the
right. On the inset, we show how the epidemic critical point
depends on the protection factor �.

One of the main differences to the simpler SIS/UAU model
presented by Granell and others[21] is that the “metacritical”
point is not present, thus resembling the similar model with
mass media presented in [22] by the same authors. This
happens because the rumor model UARU has no phase tran-
sition, i.e., there is always a fraction of nodes that is aware.
Therefore, our SIS/UARU model presents only two phases:
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Healthy and endemic, lacking a phase in which both disease
and information are extinct.

In our model, therefore, the population can be either in-
formed and healthy or informed and endemic. Although in-
formation exists even without disease, the density of informed
individuals is enhanced by the presence of disease (provided
that there is self-awareness), as it can be seen in Figs. 3 and 4.

V. CONCLUSIONS

We have analyzed the effect of information awareness to
prevent the transmission of disease in multiplex networks.
We have considered the Maki-Thompson rumor model for the
propagation of the information, which incorporates a forget-
ting mechanism not included in previous related models. Be-
sides, the rumor and disease spread at the same time but under
different timescales that control the relative speeds of these
two processes. We have verified that the information helps
to reduce the prevalence and increase the epidemic threshold
of the disease. We have also observed that self-awareness,
which keeps infected individuals aware of their condition, is a
very effective mechanism for reducing the disease prevalence.
However, in the case that the information spreads much faster
than the disease, large values of self-awareness can lead to the
counterintuitive result of a higher prevalence. This happens
because the self-awareness can generate such an excessive
number of stiflers that impair the propagation of information,
with the overall effect of increasing the prevalence. Therefore,
the relative timescales between the information and infection
processes determines whether the information awareness is
beneficial or not for the magnitude of the epidemics. In this
way, our work highlights the important role played by infected
individuals who help spreading the information about the
disease, reducing the disease transmission and the outbreak.

Although our results are obtained only by numerical sim-
ulations on multiplex networks, we show that the results
are robust with respect to the topology, suggesting that they
can be extended even for homogeneously mixed populations.
The topology, therefore, may generate quantitative effects,
but not change the qualitative behavior of the model. We
finally investigated the epidemic critical behavior, comparing
it to previous models on the literature. Although the relative
timescale (controlled by π ) has an important influence on the
disease prevalence and its behavior with the model parame-
ters, it does not affect the epidemic threshold.

Our investigations can also be extended by considering
other dynamics for rumor and disease spreading, as well as
networks presenting assortativity and community organiza-
tion. As a general conclusion, this work provides a motiva-
tion for studying other interacting processes using flexible
timescales. It could be of great value for the community to un-
derstand when the results and critical behavior of dynamical
processes are affected or not by timescale differences between
each process.
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APPENDIX A: MARKOV CHAIN APPROACH
FOR THE SIS/UARU MODEL

To predict the behavior of the model in a double-layer
network, we develop a microscopic Markov chain approach
to write dynamical equations for relevant probabilities of
our system. For that purpose, we follow the methodology
described in Ref. [47].

For each node i of the network and for each time stamp t ,
the probabilities that it is in each possible state of the model is
defined as p. Such state can either be from a single process
(e.g., pi

I(t ) is the probability that node i is infected (I) at
time t) or a “composite” state (e.g., pi

SU(t ), pi
IA(t ), etc.). For

convenience, we label the corresponding nodes in different
layers with the same number.

The first step is to build the transition trees for all possible
changes of states and their respective transition probabilities.
For each tree, we represent the root as one of the possible
composite states of a node (SU, SA, SR, IU, IA, and IR) at
time t , and the leaves at each of the possible resulting states
at time t + 1, starting from the state at time t . The branches
represent each of the possible transitions. The probabilities of
such transitions are written above the corresponding branches.

As described previously for the numerical simulations,
we separate the transitions into two groups—the epidemic
and informational—and only one of the transitions groups is
performed in a time step. Figure 9 shows the trees for the
SIS/UARU model. The baseline model corresponds to all the
factors in black. The modified model has the same factors
of the baseline model, except for the IR → IU transition, in
which the correct factors are displayed in red. The modifica-
tion is interpreted as a reduction on the forgetting probability
for IR nodes.

The probability of each event on the informational side of
Fig. 9 is multiplied by π , which is the probability that the
informational group is chosen to be updated in the current
time step. However, probabilities from the epidemic side carry
a factor of 1 − π . Therefore, for instance, the probability
that an infected-aware (IA) node gets healed and becomes
susceptible-aware (SA) is of (1 − π )μ, following the corre-
sponding probability tree on the epidemic group.
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Information (  ) Epidemics ( 1 –  )

FIG. 9. Probability trees with all the possible transitions for each
state. The informational group has an associated probability of π ,
whereas the epidemic group carries the complementary probability
1 − π . For the modified model, the IR → IU transition follows the
factors in red (instead of the ones in black).

The transition probabilities for processes which involve
contact with neighboring nodes, namely qi

U (infection of an
unaware node), qi

A (infection of an aware node), ri
U (awareness

by contacting an aware neighbor), and ri
A (“stifling”—loss of

interest) are defined by the following set of equations:

qi
U = 1 −

∏
j

(
1 − Ai j pj

I β
)
, (A1)

qi
A = 1 −

∏
j

(
1 − Ai j pj

I �β
)
, (A2)

ri
U = 1 −

∏
j

(
1 − Bi j pj

A γ
)
, (A3)

ri
A = 1 −

∏
j

[1 − Bi j
(
pj

A + pj
R

)
σ ], (A4)

where Ai j and Bi j represent the adjacency matrices for
the epidemic and informational layers, respectively. Here, we
point out that our goal is to study the stationary state of
the system, in which all probabilities do not change in time.
Therefore, the time label t of all probabilities defined here
[e.g., pi

SU(t ), ri
U(t )] were removed.

Based on the transition trees drawn in Fig. 9, we can write
down the Markov chain equations for the probabilities of each
node i being in each of the six compartments (SU, SA, SR,

IU, IA, IR) of the model as a fixed point set of equations, in
which the time dependence is already removed:

pi
SU = pi

SU

[
π

(
1 − ri

U

) + (1 − π )
(
1 − qi

U

)]

+ pi
SR[πα] + pi

IU[(1 − π )μ] (A5)

pi
SA = pi

SU

[
πri

U

]

+ pi
SA

[
π

(
1 − ri

A

) + (1 − π )
(
1 − qi

A

)]

+ pi
IA[(1 − π )μ] (A6)

pi
SR = pi

SA

[
πri

A

]

+ pi
SR

[
π (1 − α) + (1 − π )

(
1 − qi

A

)]

+ pi
IR[(1 − π )μ] (A7)

pi
IU = pi

SU

[
(1 − π )qi

U

]

+ pi
IU

[
π

(
1 − ri

U

)
(1 − κ ) + (1 − π )(1 − μ)

]

+ pi
IR[πα(1 − κ )] (A8)

pi
IA = pi

SA

[
(1 − π )qi

A

]

+ pi
IU

[
π

(
ri

U + (
1 − ri

U

)
κ
)]

+ pi
IA

[
π

(
1 − ri

A

) + (1 − π )(1 − μ)
]

(A9)

pi
IR = pi

SR

[
(1 − π )qi

A

] + pi
IA

[
πri

A

]

+ pi
IR[π (ακ + 1 − α) + (1 − π )(1 − μ)]. (A10)

Equations (A6) to (A10) represent the baseline model.
For the modified model, in which the IR → IU has a
modified probability, Eqs. (A8) and (A10) are, respectively,
replaced by

pi
IU = pi

SU

[
(1 − π )qi

U

]

+ pi
IU

[
π

(
1 − ri

U

)
(1 − κ ) + (1 − π )(1 − μ)

]

+ pi
IR[πα] (A11)

pi
IR = pi

SR

[
(1 − π )qi

A

] + pi
IA[πri

A]

+ pi
IR

[
π (1 − α) + (1 − π )(1 − μ)

]
. (A12)

We solve the system of 6N equations (where N is the
number of nodes on the network) by the fixed point method,
in which the left-hand side values are updated by apply-
ing previous values at the right-hand side expressions. As
explained in the main text, the initial conditions are set
to: pi

IA = 0.2, pi
SU = 0.8 and pi

IU = pi
IR = pi

SA = pi
SR = 0,

for i = 0, 1, ..., N − 1. The solutions of these equations are
shown in Figs. 2, 3, and 4 as solid lines, where we can see
a good agreement between the Markov chain predictions and
Monte Carlo simulations.

APPENDIX B: EPIDEMIC CRITICAL POINT

From the Markov chain equations, we can derive the
epidemic critical point between the healthy and the endemic
phases. The basic idea is to analyze the stability of the healthy
solution pi

I = 0, i = 1, 2, ..., N , using a perturbative approach.
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We first add Eqs. (A8)–(A10) to obtain the evolution of the
probability pi

I = pi
IU + pi

IA + pi
IR that node i is infected:

pi
I = (1 − π )

[
pi

I(1 − μ) + pi
SUqi

U

+ (
pi

SA + pi
SR

)
qi

A

] + π pi
I. (B1)

Notice that this equation holds both for the baseline and
modified models, as the informational terms add up to π pi

I
in any case. We now use the following approximation for the
qi

U and qi
A transition probabilities, which is valid when pi

I is
sufficiently small for any node i:

qi
U ≈ β

∑
j

Ai j pj
I (B2)

qi
A ≈ �β

∑
j

Ai j pj
I (B3)

Rewriting equation (B1) with these approximations yields:

pi
I ≈ (1 − π )

⎧⎨
⎩pi

I(1 − μ) + β
[
pi

SU

+ �
(
pi

SA + pi
SR

)]∑
j

Ai j pj
I

⎫⎬
⎭ + π pi

I. (B4)

Sending the terms with pi
I to left-hand side and leaving the

terms with
∑

j Ai j pi
I on the right-hand side, we end up with

the following self-consistent relation for pi
I, which does not

depend on the timescale π :

pi
I ≈ β

μ

[
pi

SU + �
(
pi

SA + pi
SR

)] ∑
j

Ai j pj
I . (B5)

Equation (B5) is a matrix equation of the shape −→p =
(β/μ)H−→p . The trivial solution pi

I = 0 for every node i is
stable on Eq. (B5) if all eigenvalues of the matrix H , with
elements defined as

Hi j = [
pi

U + �
(
pi

A + pi
R

)]
Ai j

= [
1 − (

pi
A + pi

R

)
(1 − �)

]
Ai j . (B6)

Are not greater than μ/β. Noticed that we also ap-
proximated pi

U = pi
SU + pi

IU ≈ pi
SU, and the same for A

and R compartments. Therefore, the expression for the
healthy/endemic phase transition curve is

β

μ
= 1

�max(H )
. (B7)

The values of pi
A and pi

R can be found by solving the
Markov chain equations for the informational model only,
with no interference of the disease.
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