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a b s t r a c t 

Despite the advanced stage of epidemic modeling, there is a major demand for methods to incorpo- 

rate behavioral responses to the spread of a disease, such as social distancing and adoption of preven- 

tion methods. Mobility plays an important role on epidemic dynamics and is also affected by behavioral 

changes, but there are many situations in which real mobility data is incomplete or inaccessible. We 

present a model for epidemic spreading in temporal networks of mobile agents that incorporates local 

behavioral responses. Susceptible agents are allowed to move towards the opposite direction of infected 

agents in their neighborhood. We show that this mechanism considerably decreases the stationary preva- 

lence when the spatial density of agents is low. However, for higher densities, the mechanism causes 

an abrupt phase transition, where a new bistable phase appears. We develop a semi-analytic approach 

for the case when the mobility is fast compared to the disease dynamics, and use it to argue that the 

bistability is caused by the emergence of spatial clusters of susceptible agents. Finally, we characterize 

the temporal networks formed in the fast mobility regime, showing how the degree distributions and 

other metrics are affected by the behavioral mechanism. Our work incorporates results previously known 

from adaptive networks into population of mobile agents, which can be further developed to be used in 

mobility-driven models. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Epidemics are of great concern to humankind. While it is possi- 

le to construct realistic epidemic models with heavy use of data, 

he effect of human behavior, from individual to collective level, is 

rucial to the dynamics but difficult to be incorporated into mod- 

ls. It is known that mobility patterns, as an important part of hu- 

an behavior, strongly influence the spread of a disease, and mo- 

ility data from real world is often incorporated to epidemic fore- 

asting. 

Despite the increasing availability of data from human mobility 

1,2] , there are several situations in which such data is not avail- 

ble. Therefore, the use of synthetic mobility models to feed epi- 

emic modeling [3–14] is a promising, yet understudied topic. Note 

hat in this context, mobility refers to short-range displacement of 

ndividuals - such as walking - and not to the transfer of individ- 
∗ Corresponding author. 
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als from one place to another. Frasca [4] and Buscarino [5] pro- 

osed an SIR model in a population of random walking agents that 

an also perform long-range jumps. They study the relationship 

etween final outbreak size and some average topological proper- 

ies of the underlying time-aggregated network of contacts, such 

s degrees, shortest path lengths and clustering. Interestingly, the 

ong-range jumps cause a small-world effect similar to the Watts–

trogatz model [15] , which seems to explain the increase in the 

utbreak size with the jumping probability. Their work settled the 

ase for epidemic modeling in populations of random walkers. 

One of the major difficulties of working with epidemic spread- 

ng with random walking agents is that the spatial component im- 

oses a temporal correlation to the contacts, which strongly influ- 

nces the epidemic spreading. For very slow mobility, the popula- 

ion can be regarded as a static network, whereas for fast mobil- 

ty the correlations are broken and the system is essentially ho- 

ogeneously mixed. For this reason, despite some insights from 

eaction-diffusion processes [16] , the mid-term between these 

egimes essentially relies on computational Monte Carlo simula- 

ions. It has been shown, for an SIR epidemic model, that the 

https://doi.org/10.1016/j.chaos.2022.111849
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.111849&domain=pdf
mailto:paulo.pc.vs@gmail.com
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ize of the outbreak behaves non-monotonically with the mobility 

peed [ 47 ]. More recently, other works have considered spatial het- 

rogeneity and separate communities [7–9] , heterogeneous inter- 

ction radii [11–13] , different agent’s velocities [6,10] and disease- 

nduced coherent motion [ 48 ]. 

Despite the inherent difficulties, mobile agent models for epi- 

emic spreading can be very insightful, as some models can repro- 

uce features of real world human and animal mobility. Starnini 

nd others [17] modified the basic random walk to consider het- 

rogeneous activity time and attractiveness of the individuals, suc- 

essfully reproducing behaviors of some data sets of the SocioPat- 

erns collaboration [2] . Stehlé and others [18] performed SEIR sim- 

lations using interactions between attendees of a conference, and 

howed that a correct estimation of the epidemic dynamics must 

ccount for the duration of contacts, a feature that is in parts re- 

roduced by Starnini’s model. Another important example is the 

evy walk, a modification of the simple random walk that consid- 

rs heavy-tailed step size distributions. Despite some recent evi- 

ences claim for the use of more complex models [19,20] , Levy 

alks have been widely used to describe animal and human mo- 

ility patterns [21,22] . 

In spite of the importance of mobility models for disease dy- 

amics, little has been done to include behavioral changes into 

uch models. Human responses crucially influence the spread of 

 disease, and there is an intense research devoted to account for 

uch effect into epidemic models, which include responses based 

n risk perception [23–25] , spreading awareness and individual 

revention methods [26–28] , vaccination games [29,30] and others 

31] . 

One particularly popular approach is to consider adaptive con- 

acts in networks, which mimic both the social distancing and 

solation of infected individuals. Gross and others [32,33] pro- 

osed a simple model in which susceptible individuals can ran- 

omly rewire their links that point to infectious nodes, redirecting 

hem to other susceptibles. This generates a dynamic network that 

volves simultaneously to the disease spreading, with susceptibles 

orming highly connected clusters between themselves to exclude 

nfecteds. This behavior produces rich dynamical phenomena such 

s bistability, oscillations and hysteresis. The model later received 

efined analytical treatments [34,35] and motivated a series of sub- 

equent studies [36–39] . In particular, Zhou and others [38] pro- 

osed a variant of the adaptive rewiring model that considers net- 

ork growth and isolation avoidance, showing that the combina- 

ion of these two factors can produce multiple epidemic bursts in 

n SIS model before the disease is eradicated. 

In the present work, we propose to merge the richness of adap- 

ive behavioral responses with the modeling potential of mobile 

gents. We propose a mechanism through which susceptible agents 

an avoid contact with infected agents by performing preventive 

oves. As the model itself considers a very simple adaptive mech- 

nism, in which susceptibles are fully and instantaneously aware of 

he state of their neighbors, the aim of this work is not to provide

esults that are directly applicable to the real world. Instead, our 

oal is to propose the merge between mobility models and adap- 

ive responses, study its basic dynamical properties and motivate 

uture developments. 

We also use a simple semi-analytical approach for the case in 

hich the disease dynamics is slow compared to the agents’ mo- 

ility. While it still relies on computational simulations, it allows 

o easily extract, among other results, the stationary prevalences 

nd the phase diagrams, including the transcritical and saddle- 

ode bifurcations that our model presents. Ultimately, it also pro- 

ides an interpolated functional form for the reduction of contacts 

ue to the adaptive mechanism. This can be applied into the lo- 

al/regional dynamics of more complex models, such as those with 
e

2 
etapopulations [40–45] , to include behavioral responses to epi- 

emic spreading. 

. The model 

.1. Epidemic model 

The epidemic model employed in this work is the reactive 

usceptible-Infected-Susceptible (SIS) with discrete time evolution. 

ach agent can either be susceptible (S) to the disease or infected 

I). At each time step, an infected agent that interacts with a sus- 

eptible one can transmit the disease with probability β . In addi- 

ion, an infected agent can also be healed with probability μ. In- 

ection and healing events are only applied in the next time step, 

o the order of agent visits does not matter, and reinfection after 

ealing in a single time step is not allowed. 

.1.1. Basic mechanism of motion and interaction 

For the baseline population dynamics, we use the simple ran- 

om walk with hard interaction circles, as in references [4–6] , yet 

ith no long-range jumps. A population of N agents is initially dis- 

ributed at random in a square space of length L with periodic 

oundary conditions. At each time step, each agent can perform 

 random move (RM) of fixed length v and uniformly random di- 

ection θ . Thus, the horizontal ( x ) and vertical ( y ) coordinates of

he position of the agent at time t + 1 after a random move are

iven by: 

x (t + 1) = x (t) + v cos (θ ) 
y (t + 1) = y (t) + v sin (θ ) 

(1) 

Each agent has an interaction radius r, meaning that if two 

gents have a spatial distance smaller than r, they interact recip- 

ocally. With this interaction scheme, one can construct a snapshot 

etwork at each time step of the model. 

To avoid any dependency on the implementation, both epi- 

emic and positional state changes are calculated at each time 

tep, but they are only applied after all changes were calculated. 

.1.2. Local reaction mechanism 

We incorporate an adaptive reaction to the local presence of in- 

ected individuals. At each time step, each susceptible (S) individ- 

al chooses, with probability p a , to avoid its interaction with an in- 

ected neighbor by moving away from it, using the following algo- 

ithm: (i) if there is exactly one infected neighbor, the susceptible 

gent moves in its opposite direction with step size v , which we 

all a preventive move (PM). Here opposite direction means that the 

isplacement vector makes an angle of π with the relative position 

ector that goes from the S to the I agent (see Fig. 1 ). (ii) If there

re two or more infected neighbors, the susceptible chooses one 

f them at random and promotes a preventive move away from it. 

iii) If there are no infected neighbors, it simply promotes a ran- 

om move (RM) to a uniformly random direction, as already de- 

cribed. Also, with probability 1 − p a , the susceptible promotes a 

andom move regardless of its infected neighborhood. Fig. 1 illus- 

rates the PM and RM actions, as well as the SIS epidemic model, 

hile Fig. 2 shows the agents’ algorithm for choosing between PM 

nd RM. 

Notice that, also as a simplification, the “awareness radius” of 

he agents is the same as the interaction radius r. Another simpli- 

cation is that every infected individual is immediately perceived 

s such, which can be interpreted, for example, as if the disease 

ymptoms are clear and always display immediately after infection. 

We perform Monte Carlo simulations of the SIS model under 

wo different motion schemes for the mobile agents: (i) simple 

andom walk (RW), for which no reaction mechanism is consid- 

red (i.e., p a = 0 ) and (ii) random walk with local reactions (LR), 
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Fig. 1. Schematic representation of the possible mobility steps and the epidemic model. A susceptible (S) agent can either perform a random move (RM) to a direction 

chosen at random, or a preventive move (PM), in which it chooses one of its infected neighbors (if more than one is present) and moves away from it. 

Fig. 2. Scheme of the decision algorithm for the motion of each agent, at each time step. With the local reaction mechanism, susceptible agents may decide to move away 

from an infected neighbor, if there is one, with probability p a . 
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or which we use p a = 1 , except where explicitly mentioned. We 

lso compare our model with a homogeneously mixed population 

HM) with an average number of contacts per unit time given by: 

 H = 

N 

L 2 
· π r 2 (2) 

Which is the expected average degree of a population of agents 

niformly distributed in space. We call k H the homogeneous degree . 

e can also define the homogeneous reproduction number (i.e., the 

pidemic reproduction number if the nodes were homogeneously 

ixed with k H contacts per time step in average) as: 

 H = λk H (3) 
3 
here λ = β/μ is the infection-to-healing ratio of probabilities. 

able 1 shows the symbols and acronyms used throughout this 

anuscript. 

. Basic results 

We start the analysis by studying the stationary state preva- 

ence ρ∗
I of the system under a fixed initial infected fraction ρI (0) . 

e perform simulations under four different regimes with respect 

o the density of agents and the relative time scale between epi- 

emic and motion dynamics. Henceforth we call slow epidemics to 

hose in which μ � v , while for epidemics with similar time scale 

etween the spreading and motion dynamics we have μ ∼ v . 
In Fig. 3 , we show the stationary prevalence as a function of the 

omogeneous reproduction number R , for ρ (0) = 0 . 30 . In each 
H I 
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Fig. 3. Stationary prevalence as a function of the homogeneous reproduction number R H , for different models of population (HM, RW and LR), under four different regimes: 

(a) low density, slow epidemics; (b) low density, similar time scale; (c) high density, slow epidemics; (d) high density, similar time scale. High (low) density is obtained by 

setting the L = 10 (35) , for which the homogeneous degree is k H = 12 . 57 (1 . 03) . The slow epidemics is performed with μ = 0 . 005 , while the similar time scale regime uses 

μ = 0 . 1 . Other parameters are: N = 400 , r = 1 . 0 , v = 0 . 3 . Different values of R H are obtained by varying the infection probability β . Each curve is averaged over n ex = 50 or 

500 executions for the slow and similar time scale models, respectively. 
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xecution, the model is first simulated for a transient period of t tr 

ime steps, and then for t a v additional steps during which the data 

s collected and averaged. Each point is also an average of a num- 

er n ex of such independent executions. 

First analyzing the low density regime (panels (a) and (b)), we 

otice that the local reaction mechanism (LR) considerably raises 

he epidemic threshold, both with respect to homogeneous mixed 

HM) and random walking (RW) populations. In the high density 

egime (panels (c) and (d)), we notice an abrupt phase transition 

rom healthy to endemic stationary states with the LR population, 

hich is not observed within the other models. Such phenomenon 

as already reported for SIS-like models on adaptive networks 

32,36,37] , and is actually a fingerprint of another important fea- 

ure: a bistable phase caused by a saddle-node bifurcation. 
c

4 
Yet from Fig. 3 , we notice that our LR model deviates from ho- 

ogeneous mixing even in the condition of slow epidemics (panels 

a) and (c)), while the simple random walk (RW) can be reasonably 

escribed by HM in this regime. 

We evaluate the effect of the probability of avoiding infectious 

ontacts p a in Fig. 4 , which shows the prevalence curves at the low 

ensity and similar time scale regime for different values of p a . For 

ntermediate values of the parameter, the curves monotonically fill 

he range between full avoiding mechanism (LR p a = 1 ) and simple 

andom walk (RW, equivalent to LR with p a = 0 ). 

To show that our model presents bistability in the high den- 

ity regime, we plot, in Fig. 5 , the time series of the LR model

or different initial infected fractions ρI (0) , averaged over n ex = 50 

xecutions each, and observe the basins of attraction. The system 

an converge to two different stationary states, depending on the 
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Table 1 

List of symbols. 

Symbol Meaning 

N Number of agents 

N I Number of infected agents 

L Size of the square space 

r Interaction radius of the agents 

v Size of spatial step 

p a Probability of avoiding infected neighbors 

t tr Simulation transient period 

t a v Simulation stationary period (data collection) 

n ex Number of independent executions 

β Infection probability 

μ Healing probability 

λ = β/μ Infection-to-healing ratio 

k H = (N/L 2 ) π r 2 Homogeneous degree 

R H = λ k H Homogeneous reproduction number 

ρI = N I /N Disease prevalence 

ρ∗
I Steady state disease prevalence 

HM Homogeneously mixed population 

RW Random walker agents 

LR Random walk + local reaction agents 

PM Preventive move 

RM Random move 
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Fig. 5. Time evolution of the prevalence, starting from different initial conditions. 

This shows the bistability. The light gray stripe shows the region at which stochas- 

ticity allows the system to go both directions, causing the average curve to lay in 

between them. Parameters are: β = 0 . 0 0 09 , μ = 0 . 0 05 , r = 1 , v = 0 . 3 , N = 1600 and 

L = 20 (thus k H = 12 . 57 ). Each curve is an average over n ex = 50 executions. 
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nitial conditions. For this figure, we use N = 1600 individuals in 

he population to reduce stochastic effects. Yet, the gray-shaded re- 

ion represents the approximate location of an unstable fixed point 

here, due to stochastic fluctuations, each execution of the simu- 

ation can take different courses. 

As reported in previous works with adaptive networks 

32,37,38] , susceptible individuals can form highly connected clus- 

ers due to the behavioral response mechanism. We report such 

eature in our model by noticing that, during transient stages of 

imulations under high density regime, susceptible agents form 

patial clusters that are densely connected due to proximity. 

ig. 6 shows a “snapshot” network of the population during tran- 

ient stage of a typical execution, clearly showing the presence 

f clusters of susceptibles (blue circles), which we call S-clusters . 

he time evolution of this transient behavior can be captured by 

he average degrees (normalized by k H ) among susceptible and in- 

ected agents, as shown in Fig. 7 (a), along with the prevalence (b) 

or a single execution starting with ρI (0) = 0 . 13 . As the simulation

tarts, the degree of susceptible agents (blue curve) quickly raises 

s the S-clusters are formed, whereas the degree of infected agents 

rops. For this particular execution, the avoidance mechanism was 

ble to reduce and eventually eliminate the disease, but the initial 

revalence falls into the shaded region in Fig. 5 , meaning that the 

estiny of the system could have been different. 
ig. 4. Stationary prevalence ρ∗
I as a function of the homogeneous reproduction 

umber R H in the low density and similar time scale regime (as in Fig. 3 b), for 

ifferent values of the avoidance probability p a . Parameters are: μ = 0 . 1 , r = 1 , 

 = 0 . 3 , L = 35 , N = 400 (thus k H = 1 . 03 ). Each curve is an average over n ex = 500 

xecutions. 
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5 
The formation of S-clusters is related to the spatial gaps that 

re left by the infected agents performing simple random walks. 

usceptible agents tend to move into such gaps and form the ob- 

erved clusters, which move and change through time. 

In other works, clusters of susceptibles were observed both 

hen S individuals actively seek connections to other suscepti- 

les [32,35] and when they simply avoid infectious contacts [37] . 

ur model is an example of the latter, reinforcing that the S- 

lusters can occur without explicit preference to susceptibles in the 

ewiring mechanism. 

The S-clusters are transient. If the prevalence at a given time 

nd the disease transmissibility are not high enough, the lack of 

nfective contacts causes the disease to disappear, along with the 

-clusters. However, if the prevalence and/or transmissibility are 

igh enough, the infected agents eventually break the S-clusters 

nd the disease takes over the population, which reaches a steady 

on-clustered regime. The break of the susceptible clusters is sim- 

lar to that observed by Zhou and others [38] during the epidemic 

ursts present in their model. 

Due to this ambiguity of trajectories from the clustered regime, 

t is clear that such clusters are closely related to our model’s 

istability. In the next section, we develop a semi-analytical ap- 

roach that corroborates this hypothesis. 

. A semi-analytic approach for slow epidemics 

For slow epidemic evolution, achieved by sufficiently low val- 

es of β and μ, we can not only approximate the discrete time 

ynamics of the disease to continuous, but also assume that any 

etrics related to the population of agents is a function of the 

revalence, as the population quickly responds to the slow changes 

n epidemic states. With this in mind, the SIS dynamics is given by 

he following rate equation for the overall prevalence ρI : 

˙ I = β l SI (ρI ) − μρI (4) 

here l SI = L SI /N is the number of links L SI that connect suscep- 

ible to infected agents normalized by the population size N, and 

s a function of the prevalence ρI . Effectively, this approximation 

romotes a time scale decoupling of the epidemic and motion dy- 

amics. 

We know no analytical method to estimate the functional form 

f l SI (ρI ) for mobile agents, but we can directly sample it from 

onte Carlo simulations of the population with no epidemic dy- 

amics. That is: each agent receives a given state at the beginning, 
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Fig. 6. Snapshot network of the population with 400 agents after t = 180 steps of a simulation with β = 0 . 001 , μ = 0 . 005 , r = 1 , v = 0 . 3 and k H = 12 . 57 . Red squares 

represent infected agents, while blue circles are susceptible. The average degree of susceptibles is 〈 k S 〉 = 21 . 5 and of infecteds is 〈 k I 〉 = 9 . 4 . The prevalence is around 7% . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 or I, and holds it during the whole simulation. This way, we can 

anually set the number of infected agents N I to achieve the de- 

ired value of the prevalence ρI = N I /N. We calculate l SI at each 

ime step in the stationary state, then average its value over time 

nd over independent executions. This process is repeated for dif- 

erent values of ρI , enough to have a precise shape of the l SI (ρI )

urve, which is then interpolated to obtain a continuous approxi- 

ation. For this work, we apply a spline interpolation of third or- 

er. Fig. 8 shows the data acquired by this method. In the a) panel,

e see how the LR model deviates from the mass-action law used 

or homogeneous mixing [14] . 

Once obtained, the function l SI (ρI ) can be used to determine 

he epidemic dynamics in the slow regime. For instance, the fixed 

oints are the values ρ∗
I 

for which ˙ ρI = 0 in Eq. (4) . This is equiv-

lent to solving the equation: 

∗
I = λl SI (ρ

∗
I ) (5) 

here λ = β/μ is the infection-to-healing rates ratio. In Fig. 8 b), 

he fixed points can be found as the crossings between λl SI (ρI ) 

nd the identity line (gray dashed line). Also according to Eq. (4) , 

he stability of the solution is given by the slope of λl SI (ρI ) at the

xed point: if it is greater than 1 (i.e., the slope of the identity 

ine), the solution is unstable, and, if it is less than 1, it is stable. 
6 
Notice from Fig. 8 b) that each curve represents a different 

hase of the LR model. For λ = 0 . 1 , the only solution is the triv-

al ρI = 0 , i.e., the healthy state. For λ = 0 . 2 , the system presents

wo more solutions, of which one is stable (the one with greater 

I ), while the healthy state remains stable. This characterizes the 

istable phase, obtained after a saddle node bifurcation. Finally, 

or λ = 0 . 4 , the healthy solution is unstable (as the initial slope

f λl SI (ρI ) is greater than 1), characterizing the regular epidemic 

hase. This phase is reached after a transcritical bifurcation. 

To compare the semi-analytical approach with Monte Carlo 

imulations of the epidemic dynamics, we plot the fixed points 

both stable and unstable) obtained from the l SI (ρI ) curves as a 

unction of the disease transmission rate β , rescaled as the ho- 

ogeneous reproduction number R H = βk H /μ. The results are in 

ig. 9 , where fixed points of the semi-analytical approach are rep- 

esented as solid (stable) and dashed (unstable) lines, and the sta- 

ionary prevalences obtained from Monte Carlo simulations are 

epresented as squares (starting from ρI (0) = 0 . 30 ) and circles 

starting from ρI (0) = 0 . 01 ). The region where both the healthy

nd endemic solutions are stable (according to the semi-analytical 

pproach) is shaded in the plot. 

Fig. 9 shows the good agreement between the semi-analytical 

nd Monte Carlo formulations. Notice that, in the bistable region, 
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Fig. 7. Time evolution of the average degree of susceptible (blue) and infected (or- 

ange) agents for a single execution, shown in panel a), along with the prevalence 

in panel b). The degrees are normalized by the homogeneous degree k H . Parame- 

ters are the same as in Fig. 5 , with ρI (0) = 0 . 13 and a single n ex = 1 execution. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 8. Panel a): l SI as a function of the (static) prevalence ρI , for the local reaction 

agents (LR) and for homogeneous mixed populations (HM). Panel b): λ · l SI curve of 

LR model for three values of the infection-to-healing probability ratio λ, along with 

the identity line (gray dashed). We use N = 400 , r = 1 , v = 0 . 25 , and k H = 12 . 57 . 

Fig. 9. Comparison between the fixed points of λ · l SI using the semi-analytical ap- 

proach (solid lines are stable solutions, dashed ones are unstable) and the results of 

Monte Carlo simulations, using ρI (0) = 0 . 3 (blue squares) and 0.01 (red circles) as 

the initial prevalence. We use N = 400 for the l SI curves and N = 1600 for the Monte 

Carlo simulations, r = 1 , v = 0 . 25 , k H = 12 . 57 and μ = 0 . 005 . Each point is an aver- 

age over n ex = 50 executions with t tr = 50 0 0 and t a v = 10 , 0 0 0 . Different values of 

R H are obtained by varying the infection probability β . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 10. Phase diagrams of the mobile agents model with local reaction (LR) mech- 

anism, obtained using the semi-analytical approach. The y axis parameter is the 

agent’s step size v in the upper panel, and the local reaction probability p a in the 

lower panel, while different values of R H are obtained by varying the transmis- 

sion probability β . A dashed line with squares represents a transcritical bifurcation, 

while a dash-dotted line with circles is a saddle-node bifurcation. Other parameters 

are: N = 400 , r = 1 , v = 0 . 3 (lower panel) and p a = 1 (upper panel). 
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7 
he stationary prevalence of the Monte Carlo simulations depends 

n the initial conditions, although there is some disagreement 

t the edges of the bistable region, which may be attributed to 

tochasticity and population’s finite size. 

Using the sampled and interpolated approximation for l SI (ρI ) , 

e can numerically calculate the critical points. In Fig. 10 , we show 

wo phase diagrams: one for the agents’ step size v (upper panel) 

nd another for the local reaction parameter p a , both as a function 

f the homogeneous reproduction number R H . 

As the velocity v increases, the bistable region shrinks and dis- 

ppears, as the fast motion prevents the agents from forming S- 

lusters. For greater velocities, the critical value of R H approaches 

hat of a homogeneously mixed population (i.e., R H = 1 ). From the 

p a phase diagram (lower panel), we infer that the size of the 

istable region grows with the parameter p a that controls the in- 

ensity of the local reaction, as expected. 
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Fig. 11. Degree distributions for snapshots of the dynamic network, averaged over 

time steps and executions, using simulations of the local reaction (LR) model with 

static disease states. We group the degrees according to the state of target nodes: 

susceptibles (a), infecteds (b) and both (c). Each dashed line is the average of the 

distribution with the same color. As a null model, we show a Poisson distribution 

(“x” symbols) that represents homogeneously random interactions in each situation, 

as explained in text. Other parameters are: N = 400 , r = 1 , v = 0 . 3 , p a = 1 , k H = 

12 . 57 and a fixed prevalence ρI = 0 . 2 . 
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Fig. 12. Average degrees normalized by the homogeneous degree k H (a) and other 

metrics (b) as a function of the (static) prevalence ρI , for snapshot networks of the 

LR model with no epidemic dynamics ( β = μ = 0 ). Other parameters are: N = 400 , 

r = 1 , v = 0 . 25 , p a = 1 , k H = 12 . 57 . Moreover t tr = 10 0 0 , t a v = 10 , 0 0 0 , and n ex = 40 . 
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. Characterization of the dynamic network 

We can further study the structure of the networks that are 

ormed by this model in the clustered regime by looking at the de- 

ree distributions. To simplify the execution, we also remove the 

pidemic dynamics for this measurement, so the S and I agent 

tates are static. We consider the connectivity between different 

lasses of agents, so for example k SS is the number of links of a

usceptible agent that point to other susceptibles, k SI is the num- 

er of links of a susceptible that point to infected agents, and so 

n. Also k S and k I are the total degrees of susceptibles and infect- 

ds, respectively. Fig. 11 shows each of these degree distributions, 

rouped by the state of the link targets. As a reference, we also 

lot a Poisson distribution (gray x symbols) f (k ; s ) = e −s s k / k ! with

 = k H (1 − ρI ) (a), s = k H ρI (b) and s = k H (c). These are, in each

ase, the expected degree distributions if the agents were homoge- 

eously distributed at random in the space. Each vertical line also 

hows the average of each distribution of the corresponding color. 
8 
From Fig. 11 .a), we can see how susceptibles are highly con- 

ected to each other, but weakly connected to infected agents, as 

he k SS distribution spans over higher values than the k IS . In panel 

), we see that k II is well described by the equivalent Poisson dis- 

ribution because infected agents perform simple random walks, 

hereas k SI is slightly reduced due to the local reaction mecha- 

ism. Finally, panel c) shows how the overall degree distributions 

re distorted and broadened from the basic Poisson curve, similar 

o the effect observed by Gross and others [32] in adaptive net- 

orks. It also shows that, on average, susceptible agents are more 

onnected than infected ones. 

Yet under the same framework that considers static disease 

tates, we can analyze how the average degrees, as well as some 

ther network metrics, vary with the prevalence, in order to deter- 

ine where the S-clustering regime occurs. Fig. 12 a shows the av- 

rage degrees of susceptible ( 〈 k S 〉 ), infected ( 〈 k I 〉 ) and ( 〈 k 〉 ) agents

f the snapshot network, normalized by the homogeneous degree 

 H , as a function of the prevalence. The peak on the 〈 k S 〉 curve is

 consequence of the S-clusters, and it is also visible in the total 

verage degree 〈 k 〉 . The average degree of infected agents 〈 k I 〉 , on

he other hand, is always smaller than k H , as a consequence of the 

ocal reaction mechanism itself, which reduces the contacts with 

nfected agents. 

In Fig. 12 b), we show the average clustering coefficient C and 

he degree assortativity r deg of the snapshot networks also as a 

unction of the prevalence. The value of C, which is naturally high 

n dense random geometric networks, is enhanced at the range 

n which the S-clusters occur, having a good correlation with the 

 k S 〉 curve. The assortativity r deg is also enhanced by the avoidance 

echanism, displaying a broader peak, which means that the ef- 

ect of the mechanism into the assortativity prevails even when 

he S-clusters are not very expressive. As also reported in Gross 

t al. [32] , the increase in degree correlations may be an effect of 

he segregation between S and I agents, as reported in the degree 

istributions in Fig. 11 . 

We finally notice that the range of unstable prevalences in 

ig. 8 b) is compatible with the region at which 〈 k S 〉 and C have

heir peaks in the plots of Fig. 12 meaning that, as observed, the S- 

lusters are unstable when the epidemic dynamics is active, caus- 

ng the disease to either spread globally by breaking the S-clusters 

r be eradicated, as explained in Section 3 . This reinforces the re- 

ationship between the S-clusters and the model’s bistability. 
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. Conclusions 

We propose a simple mechanism to include a form of behav- 

oral response to epidemics in mobile agents, based on the avoid- 

nce of contacts with infective individuals. We show that, with 

uch mechanism, we can merge the rich dynamical features of 

daptive contacts, initially studied on networks, with the over- 

ooked potential of mobile agents for epidemic modeling. Although 

his work is focused on the high density and slow epidemics 

egime, we show that different outcomes can be obtained in each 

egime. 

For the low density regime, which is often used to repro- 

uce empirical data [17] , the local reaction mechanism consid- 

rably suppresses the infectious contacts and thus the stationary 

revalence, besides increasing the epidemic threshold. This is be- 

ause, when the agents are spatially sparse, the susceptibles easily 

nd the direction to avoid infected agents. These results, however, 

ight be sensibly affected by considering a “watch radius” differ- 

nt from the disease transmission radius, which is proposed as a 

uture work. 

In the high density regime, the stationary prevalence is not 

trongly reduced from the homogeneous mixing scenario, but new 

ynamical features are introduced: the bistability and the clus- 

ers of susceptibles. In the bistable regime, the transient S-clusters 

an either succeed to eradicate the disease or permit it to spread, 

epending on the initial prevalence, disease infectiousness and 

tochastic factors. The bistability is inherited from the adaptive 

ontact changes, but the collective motion of susceptibles between 

he gaps left by infecteds is an interesting feature that is exclusive 

o our spatial model. 

We also apply a simple semi-analytic approach to describe the 

ynamic features of the LR model in the slow epidemics regime, 

ased on simulating the population with static epidemic con- 

itions. Due to spatiotemporal correlations of the random walk 

etwork, this approach is less powerful than those proposed on 

daptive networks [33–35] , being unable to capture higher order 

henomena such as hysteresis and oscillations that are possibly 

resent in our model too. A more powerful analytical approach can 

e built by using simulation bursts [33,46] to capture higher order 

oments. Nevertheless, our simple framework can be generalized 

o a variety of other dynamic population models, provided that the 

pidemic dynamics is slow, and a functional form of the behavioral 

eduction of contacts can be extracted from it. 

Finally, we characterize the networks obtained by snapshots of 

he population with static epidemics in the steady state. With the 

egree distributions and averages, we show how the local reaction 

echanism deviates the behavior from the simple random walk, 

ointing how the infective contacts are avoided while susceptibles 

re joint into highly connected clusters. From a practical point of 

iew, this represents a situation in which space is limited and in- 

ected individuals do not change their behavior, and is not realistic 

ue to several aspects. However, and as our main goal, we seed 

he idea of merging adaptive reactions with mobile agent models, 

alling for further works in the topic. 
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