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Emergent patterns of localized damage as a precursor to catastrophic failure
in a random fuse network
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We study the failure of disordered materials by numerical simulations of the random fuse model. We identify
emergent patterns of localized damage prior to catastrophic failure by statistically averaging the density of damage
around the eventual failure nucleation point. The resulting pattern depends on fracture density and obeys the
same scaling relations as would be expected for the stress field generated by a critical crack nucleating in a finite,
disorder-free effective medium of varying size. The growth of this critical crack absorbs preexisting clusters
according to a well-defined scaling relation. Unfortunately, in single model runs such precursory signals are not
obvious. Our results imply that reliable and accurate prediction of failure in time-independent, microscopically
brittle random materials in a real case is inherently problematic, and degrades with system size.
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I. INTRODUCTION

Finding ways to forecast the failure of materials, engineer-
ing structures, and geosystems is an important open problem
of science and technology. Very often we know with great
confidence that catastrophic failure is bound to occur, but we
do not know exactly when and where. A classical example
are earthquakes where the motion of tectonic plates gives
rise to a slow stress build-up which is ultimately released by
catastrophic fault rupture. Seismic activity is being monitored
with high spatial and temporal resolution, but it is still
unclear how the accumulated data can be used for predicting
large seismic events [1]. In engineering constructions such as
buildings, water dams, or mines [2–4], acoustic monitoring is
used as an empirical method which provides remotely sensed
information on the accumulation of damage. However, again
no method is yet at hand which could reliably and accurately
predict the imminent collapse of structures based on such
data. The reason that leads us to think that a catastrophe will
eventually occur lies in the gradual build-up of stress and
concomitant accumulation of damage before the event. The
key question is then to understand when this slow subcritical
process will give way to a rapid acceleration and localization
of damage, leading to catastrophic failure. A well-explored
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pathway to try to answer this question is to search for
early signatures of imminent failure in the time series of
the precursory activity [5]. Despite the large research effort
devoted to this issue, the outcome is still unsatisfactory, and
it is still not clear whether systematic failure precursors with
deterministic predictive power exist or not.

In this paper, we study damage localization before failure
in a statistical model for the fracture of disordered media.
To this end, we perform extensive simulations of the random
fuse model (RFM) [6,7], probably the simplest model where
disorder, stress enhancements, and stress interactions can
be incorporated. The model has been successfully used to
study fracture size effects arising from a random microcrack
distribution [8–11] and from large notches [12]. In both cases
it is possible to relate the geometrical and statistical properties
of the cracks existing before failure to the actual value of
the fracture stress. Here we consider some related questions:
(i) can we identify localized signatures of the critical crack
before it spreads in a catastrophic manner and (ii) how do these
signatures depend on external and internal system parameters
such as the system size, the applied stress, or the degree of
structural disorder?

II. MODEL

The RFM represents a material undergoing quasibrittle
failure by the electrical analog of a network of fuses. We

042811-11539-3755/2013/87(4)/042811(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.042811


S. LENNARTZ-SASSINEK et al. PHYSICAL REVIEW E 87, 042811 (2013)

FIG. 1. (Color online) Sketch of a fuse network with applied
global current I and voltage U . Initially deleted bonds are indicated
as thick red (dark) lines while the corresponding cracks, i.e., the
barriers to the current, are indicated as dashed blue lines. In the
simulation the applied current is increased, resulting in sequential
breaking of the thick yellow (light) bonds until one crack (the critical
crack) splits the network in two parts.

consider a square lattice of linear size L in the xy plane;
see Fig. 1. The system is bounded in y direction by top and
bottom bus bars that impose a constant voltage, while periodic
boundary conditions are imposed along the x direction.
The fuses all have unit resistance R = 1 and fail at the
critical local current ic = 1. This system is equivalent to a
mechanical system undergoing antiplane shear deformation:
The voltage represents the displacement in the z direction,
V = u(x,y), while the current is related to the antiplane shear
stress components by the relations Ix/L = σxz and Iy/L =
σyz.

To introduce disorder, we delete randomly a fraction f

of the fuses. This introduces random spatial variations in the
current passing each fuse, which are tantamount to a locally
varying effective stress. At every simulation step, we evaluate
all currents i and irreversibly burn the fuse with the highest
current if any i � ic. Due to Kirchhoff’s law, failure of a
fuse results in a current redistribution which affects the whole
lattice as the corresponding lattice Green’s function scales like
G(x,y) ∝ x/r2 [13].

Thus, the correlations are inherently long-range in contrast
to those in cellular automata, where the local stress is only
redistributed to nearest neighbors on failure. Because of
current redistribution, burning of a fuse may result in a
failure cascade as other fuses exceed their critical current.
Damage accumulates as the global current I increases through
a sequence of such cascades until a connected fracture path
disconnects the network in a global or catastrophic failure
event. In the following we denote the fuse where the final
failure cascade starts as the “critical bond” or “nucleation
point,” and the peak global current Ipeak at which this cascade
initiates, divided by the bus bar length L, as the equivalent
“critical stress” or “peak stress” σc = Ipeak/L.

We note that the present system exhibits a second mode
of failure once the dilution fraction f reaches the critical
point f = 0.5 for bond percolation. At the percolation critical
point the system disconnects even without external stress,
and, in the critical region close to this point, the damage
patterns exhibit long-range correlations even in the initial
state. In our investigation, which focuses on emergent damage
patterns caused by the stress-driven correlated growth of
damage clusters from short-range correlated disorder, we
specifically exclude this regime and therefore consider only
dilution fractions f < 0.3, which are sufficiently far from the
percolation limit.

III. NUMERICAL SIMULATIONS

A. Damage pattern and critical crack phantom

To identify localized precursors of failure, we consider
the situation just before the peak global stress. We study the
vicinity of the nucleation point and ask how local damage
patterns there differ from those elsewhere in the system.
Simple inspection of single realizations [see Fig. 2(a)] does
not indicate any conspicuous features that would easily allow
to identify the nucleation point before catastrophic failure. In
particular, this point is not in general adjacent to the largest
damage cluster, nor is it always located in the region of
maximum damage density. Nevertheless, statistical analysis
reveals a distinct pattern. We define an indicator function g(�r)
which has the value g = 1 at the location of a broken bond
and g = 0 at the location of an intact bond. A damage density
function ρ is then obtained by averaging g over an ensemble
of simulations (for our initial dilution disorder, this simply
yields the constant damage density ρ0 = f ). The key step is
now to perform the average conditional on the location of the
critical bond. Let �ri denote the site of the nucleation of the

FIG. 2. (Color online) Damage density ρ (in units of damage
per fuse) around nucleation sites in systems of size L = 512 with
dilution f = 0.1. (a) Single realization with binary color code (dark
blue = intact, white = broken). (b–d) Damage density averaged over
ensembles with increasing number N of realizations, showing the
emergence of a continuous damage distribution. The scale in (d) is
reduced to better show details of the crack phantom pattern.
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critical system-breaking crack in simulation i. We define the
conditional damage density as

ρ(�r) = 1

N

N∑
i=1

g(�r − �ri). (1)

In performing the average, we have considered only simula-
tions where the critical bond was located at distance larger than
L/4 from the upper or lower boundaries of the system. This
ensures that the resulting damage pattern is not influenced by
the presence of the top or bottom surface. Results are plotted
in Fig. 2(b)–2(d). The conditional density pattern reveals an
increased density of broken bonds to the left and right and a
decreased damage density above and below the critical bond.
This procedure of studying localized damage accumulation
in terms of conditional averages is similar to the approach
used in Ref. [12] where damage patterns around preexisting
cracks were studied in order to establish statistical signatures
of the fracture process zone surrounding the crack tips. This
emergent damage pattern also occurs for the critical nucleation
process. Similar to the process zones in Ref. [12], the damage
accumulation zone surrounding the failure nucleation point
becomes visible only after statistical averaging, while it
cannot be identified in a single realization [compare Fig. 2(a)
and 2(d)]. Nevertheless, as we will demonstrate, this zone
exhibits properties similar to a critical crack, here we term it
the “crack phantom.”

To quantify properties of these crack phantoms we fit the
excess damage density ρ(�r) − ρ0 by an empirical function

ρ(�r) − ρ0 = φ(θ ) exp

[
−

(
x2 + py2

ξ 2

)β]
. (2)

The angle-dependent function φ with the symmetry properties
φ(θ ) = φ(−θ ) = φ(θ + π ) accounts for the change in sign of
the excess damage density as we move around the critical
bond. The radial decay of the excess density is described by an
anisotropic, stretched exponential function with characteristic
range ξ . Approximating the angle-dependent function φ by a
fourth-order polynomial in cos2 θ = x2/r2 and performing fits
over the range 0.05 � f � 0.3 and for system sizes 32 � L �
512, we find that the parameter β ≈ 0.33 is approximately
constant over the parameter range. The phantom size increases
with increasing disorder as shown in Figs. 3(c), 3(d) and 4(a),
and with increasing system size as shown in Figs. 3(a), 3(b)
and 4(c). The latter dependency is well described by a
logarithmic function, ξ ∝ log(L) [dotted line in Fig. 4(c)].
In either case an increasing phantom size is accompanied by a
decreasing failure stress [Figs. 4(b) and 4(d)].

B. Relation to the failure stress

To understand the role of the “phantom crack” in more
quantitative terms we investigate how its characteristic size ξ

relates to the failure stress. A scaling relationship connecting
strength with a characteristic length scale is standard in
classical fracture mechanics where the length a of a critical
crack in an otherwise homogeneous system is connected to the
failure stress σc by K∞ = σc

√
πa where K∞ is the fracture

toughness of the material [14]. If we replace a with the
phantom crack size ξ , this allows us to relate the logarithmic

FIG. 3. (Color online) Upper row: Theoretical damage density ρ

(in units damage per fuse) calculated from Eq. (2) using the same
scale as in Fig. 2 for f = 0.1, L = (a) 128, (b) 512. Panel (b) is a best
fit to (d) in Fig. 2. Lower row: normalized density (ρ − f )/(ρmax − f )
for L = 256, f = (c) 0.15, (d) 0.3.

increase of ξ with L [Fig. 4(c)] to the decrease of the failure
stress in proportion with σc ∝ 1/

√
log(L), which was first

demonstrated by Kahng et al. [15] and recently confirmed
over a much wider scale range by Manzato et al. [11]. In order
to understand the dependence of σc on the dilution fraction
f , we need to account for the f dependence of the fracture
toughness, which for a brittle material can be expressed as
K∞ = 2Eγ where E is the elastic modulus of the material
and γ is the specific surface energy. For a straight crack in our
model, γ = (1 − f )/4 while the effective-medium result for
the elastic modulus (the conductivity) is, except for a small
vicinity of the percolation critical point, well described by the
effective-medium result E = (1 − 2f ) [16]. We arrive at

σc(f ) = K∞(f )/
√

πξ (f ), (3)

K∞(f ) ≈ (1 − f )(1 − 2f )/2, (4)

which gives the full line in Fig. 4(b). This theoretical line fits
the data for correlation length very well. When we perform
the same analysis for systems of different size, we find that
strength is overestimated in the regime of small L. This can
be corrected by taking into account the periodic boundary
conditions in our simulations which lead to self-interactions
across the lateral system boundaries, which enhance the stress
concentration associated with the “crack phantoms.” For a
periodic array of mode III cracks with spacing L and length
a, the fracture toughness modifies to K = K∞/κ(a/L) [17]
where

κ(a/L) =
√

L

πa
tan

(
πa

L

)
. (5)

Using this correction factor, we obtain the full line in Fig. 4(d),
which is again in good agreement with the observed strength
data. We conclude that the size of the crack phantom relates
to the failure strength of the disordered system in a similar
manner as the length of a critical crack to the failure strength
of an otherwise homogeneous material: The “phantom” is the
spectre of a nucleating critical crack.
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FIG. 4. (Color online) Dependence of phantom size ξ (a, c) (in units of fuses) and failure stress σc (b, d) (in units ic/L) on dilution fraction
f (a, b) (dimensionless) and system size L (c, d) (in units of fuses); (a, b) system size L = 256, dilution fraction 0.05 � f � 0.3; (c, d) dilution
fraction f = 0.1, system size 32 � L � 512. Dotted line in (c), ξ ∝ log(L); full lines in (b) and (d), Predictions of failure stresses according
to Eqs. (3) and (5), respectively, where K∞ is replaced by K∞/κ(a/L) with κ(a/L) according to Eq. (5).

C. The formation of the final crack

We now turn our attention to the question how the critical
crack relates to the pattern of damage clusters prior to failure.
Clusters are broken bonds (i.e., burned fuses) where the conju-
gate bonds (indicated as dashed lines in Fig. 1) are connected
to each other. They can be envisaged as microcracks. We define
the size s of a cluster as the number of connected conjugate
bonds and determine the numbers Nbefore(s) and Nafter(s)
directly before and after formation of the system-spanning
crack. For large clusters, we find that Nbefore(s) ∝ exp(−s/s1)
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FIG. 5. (Color online) Relative fraction f (s) of absorbed clusters
of size s directly before the peak current, which join the final system-
wide crack. In the inset, the curves have been rescaled by Eq. (7) with
L0 = 512. The quantities s, s̃, L, and L0 are given in units of fuses,
whereas f is a dimensionless quantity.

where s1 ≈ 2. The probability f (s) that a preexisting cluster
of size s is absorbed into the spanning crack is then given by

f (s) = Nbefore(s) − Nafter(s)

Nbefore(s)
. (6)

Figure 5 shows this probability and its system size
dependence. For small and intermediate cluster sizes, the
relative fraction of absorbed clusters increases exponentially,
while it flattens to the asymptotic value f (s) = 1 for very large
clusters. To analyze the observed size dependence we make
the following assumptions: (i) the spanning crack grows by
connecting large clusters, the density of which is described
by N (s)/L2 = exp(−s/s1); (ii) the probability f (s) depends
only on the average number of clusters of size s in the
system: f = f [N (s)]. If these assumptions are fulfilled, the
distributions can be collapsed by rescaling:

s̃ = s − 2s1 ln(L/L0), (7)

where L0 is an arbitrary reference length (inset in Fig. 5 for
s1 = 2). Thus Fig. 5 demonstrate the importance of preexisting
large clusters for the formation of the final system-spanning
crack.

IV. CONCLUSIONS

Our findings demonstrate the importance of localized
damage clusters both for the location of the failure initiation
point and for the subsequent propagation of the critical crack.
Even though failure is not straightforwardly determined by
the largest cluster (the critical bond is adjacent to the largest
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cluster in less than 50% of the simulations we analyzed),
the properties of the large-cluster tail of the cluster size
distribution are crucial for determining both the failure stress
and the critical crack path. In the ensemble average, the
nucleation sites are associated with a characteristic anisotropic
damage pattern where damage is enhanced in the direction
perpendicular and reduced in the direction parallel to the
stress axis. Identifying this localized precursor pattern in the
damage background requires averaging over different disorder
realizations, using a posteriori knowledge of the location of
the nucleation point. While the patterns are conspicuous in
the ensemble average, they can therefore not be used for
predicting failure in individual systems. In addition, the sizes
of the localized precursor features we have been discussing
(largest clusters, “crack phantom”) scale only logarithmically
with system size L, while in comparison the number of bonds
and the overall number of damage clusters in the system scale
with L2. Thus, these features become less and less conspicuous
in the large-system limit. Thus, the subcritical nature of failure
associated with localized nuclei may render predictions based
on such localized signatures an elusive goal in systems with a
large ratio of system size to grain size. This may explain why
precursors observed on a small scale in the laboratory are not
observed systematically as earthquake precursers [18].

Our results have been obtained for two-dimensional random
fuse models which represent an electrical analog of antiplane
shear deformation. One may conjecture that our findings
regarding the existence and scaling properties of “crack
phantoms” carry over to three-dimensional systems, in a
similar manner as Griffith-type scaling relations hold similarly
for linear mode II/III cracks in two-dimensional systems and
for penny-shaped cracks in three-dimensional systems. It will,

however, remain a task for future investigations to verify this
conjecture and to demonstrate general applicability of the
“crack phantom” concept.

We have considered the case in which damage is irreversible
and no healing occurs, while in real faults earthquakes can
occur repeatedly in the same location. The random fuse model
has been modified in the past to describe this behavior by
inducing a permanent deformation after a fuse fails, instead
of removing the fuse completely as in the case studied here
[19–21]. In this cases damage mostly localizes into a shear
band which corresponds to the minimum energy surface. After
localization, power law-distributed avalanches of failure events
occur along the shear band without apparent correlations. The
observed phenomenology it is quite different from the one
discussed here and therefore is not clear if the “crack phantom”
idea can be applied to that case.

All of the results presented here are for an ideal case
where all parameters are known. In real applications such as
earthquake forecasting predictive power is also diminished by
practical limitations in data sampling and resolution [1] and by
systematically increased temporal nonlinearity in acceleration
to system-sized failure as strain rate is decreased to natural
rates due to chemically assisted weakening mechanisms [22].
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