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Online social media has greatly affected the way in which we communicate with each other. However,
little is known about what fundamental mechanisms drive dynamical information flow in online social
systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and
that can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-
dependent) heavy-tailed distributions of meme popularity. The presented framework constitutes a null
model for social spreading phenomena that, in contrast to purely empirical studies or simulation-based
models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time
of users and the connectivity structure of the social network.
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I. INTRODUCTION

Recent advances in communication technologies and the
emergence of social media have made it possible to
communicate rapidly on a global scale. However, since
we receive pieces of information frommultiple sources, this
has also made the information ecosystem highly competi-
tive; in fact, users’ influence and visibility are highly
heterogeneous, and topics strive for users’ attention in
online social systems. Although several studies have
described the dynamics of information flow in popular
communication media [1–5], the main factors determining
the observed patterns have not been identified, and there is
no theoretical framework that addresses this challenge.
Indeed, given the potential for applications—e.g., having
more efficient systems to spread information for safety and
preparedness in the face of threats—a better understanding
of how memes (ideas, hashtags, etc.) emerge and compete
in online social networks is critical.
Information often spreads through a social network as a

cascade: A person adopts a new behavior, installs a new
app, or sends a news item or rumor to his friends (e.g., by
tweeting it on Twitter). The avalanche spreads if the friends
decide to also adopt the new behavior and in turn pass on
the social influence effect to their own friends, who may
further propagate the behavior. Following the usage in the

review [6], we apply the term “social spreading phenom-
ena” to describe such cascading or “viral” propagation [7].
The latter term is used because the description
of information spreading bears some similarity to epidem-
ics of contagious disease; the effects of network structure
on disease contagion have been well studied by physicists
[8] (see Ref. [9] for a recent review). However, unlike
epidemics of a single disease strain, we focus on social
spreading phenomena that occur in the presence of com-
petition between a large number of different items of
similar type. Examples of the types of items include
URLs on Twitter [1,2], apps on Facebook [5,10], or videos
on YouTube [11]. In each of these examples, users make
choices—often influenced by the choices they have seen
their friends make—and the accumulation of many choices
leads to a distribution of popularity of the items: Some
items become extremely popular, while other items remain
obscure.
To enable a succinct general description, we use

Dawkins’s term [12] “memes” because they are all
“elements of a culture or system of behavior passed from
one individual to another by imitation...” [13]. Note that we
do not restrict our study only to very popular memes;
indeed, our interest is in understanding the entire popularity
distributions of memes, from the unpopular to the very
popular. This definition of a meme has also been used by
researchers studying cascades on Facebook [14], the
spreading of news through blogs [15], and the popularity
of hashtags on Twitter [3,16], but it can also be applied to
analyze popularity distributions of offline items (where
copying promotes spreading) such as baby names [17], dog
breeds [18], and even citations (which are a type of
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popularity measure) of scientific papers [19,20]. The
memes in these examples are all relatively simple units
of information that are easily identified in data sets; recent
work has also demonstrated that more complex memes
(represented by the appearance of common phrases, such as
“quantum” or “graphene,” in the scientific literature) can be
recognized by their inheritance patterns in the citation
network [21].
A notable characteristic of many meme popularity

distributions is that they are very fat-tailed: If a power-
law distribution is fitted to the data, then the power-law
exponent τ is typically between 1.5 and 2, which lies
outside the range of exponents produced by models of
cumulative-advantage [22–24] or preferential-attachment
[25] type. The statistical physics of avalanches has been
studied in the context of condensed-matter systems, where
the flip of a single magnetic spin domain can cause its
neighboring domains to also flip and thus initiate a cascade
[26]. If the physical parameters of such a system are tuned
to place it at a critical point [27], the sizes of avalanches are
power-law distributed; the sandpile model of self-organized
criticality (SOC) self-tunes so that the system balances at
the critical point [28]. However, unlike the memoryless
particles or magnetic spins that constitute the microscopic
entities in condensed-matter avalanches, humans absorb
and transmit information on a wide variety of time scales
that range from seconds to weeks [29,30]. Models of social
interaction must therefore include “memory” effects (non-
Markovian aspects) that lead to the emergence of character-
istics that are qualitatively different from those seen in
condensed-matter avalanches. The non-Markovian aspects
of human temporal behavior have attracted considerable
recent attention (e.g., Refs. [31–35]), but we wish to
investigate the effects of memory on popularity avalanches
caused by users choosing between multiple items that they
have seen in the past.
To address this problem, we develop a theoretical

framework that models how users choose among multiple
sources of incoming information and affect the spreading of
memes on a directed social network, like Twitter [1–3]. Our
probabilistic model, in contrast to other studies [3–5,19,36]
that use intensive computational simulations to fit to data,
allows us to get analytical insights into the respective roles
of the network degree distribution, the memory-time
distribution of users, and the competition between memes
for the limited resource of user attention. The model is a
“null model” in the sense that it is analytically tractable, yet
realistic enough to be fitted to empirical data and to
reproduce some important characteristics of the data. We
show that fitting to time-dependent data requires a non-
trivial memory-time distribution, which is not possible with
the toy model of Ref. [37], where users can remember only
one meme. However, the phenomenon of “competition-
induced criticality” that was first identified in Ref. [37] is
shown to be robust to the inclusion of memory times,

heterogeneous user activity rates, and complex network
structures in the more realistic model used here. The current
model requires more sophisticated mathematical analysis
than that of Ref. [37] to deal with the long memory of users,
but it enables us to understand how heavy-tailed distribu-
tions of meme popularity evolve over a range of time
scales, as a few memes “go viral” but the majority become
only moderately popular.
We phrase the model in terms of meme propagation on a

directed social network (like Twitter) and interpret a
“meme” to be any distinct piece of information that is
easily copied and transmitted (e.g., a hashtag or URL
within a tweet). However, it should be clear that the model
and its results can also be extended to the other examples of
viral phenomena discussed above. For the adoption of apps
on Facebook, for example, the memes are the notifications
sent when a user installs an app [10]. If a friend is prompted
by this notification to also install the app, then the meme
propagates on the network and its popularity is measured
by the number of installations of the app. We show that the
crucial property of the model that poises the system at
criticality is the competitive pressure for the limited
resource of user attention, and this property is common
to a broad range of social spreading phenomena that are
characterized by the availability of large time-dependent
data sets.
The remainder of the paper is structured as follows. The

model is introduced in Sec. II; in Secs. III and IV, we derive
and analyze a branching-process description of the model
dynamics. We confirm the results of this analysis using
numerical simulations in Sec. V and then use the analytical
results to fit the model to hashtag popularities extracted
from micro-blogging data in Sec. VI, and to explain novel
features of the time-dependent data. In Sec. VII, we discuss
limitations of the model and possible extensions of it. Note
that Secs. III and IV may be omitted on a first reading
without affecting the understanding of the model and the
main results.

II. MODEL

In online communication platforms like Twitter, users
follow (receive the broadcasts or “tweets” of) other users.
In graph-theoretical terms, these relationships constitute
directed links from the followed node (user) to the follower
(Fig. 1). The network structure is defined by the joint
probability pjk that a randomly chosen node (user) has in-
degree j (i.e., follows j other Twitter users) and out-degree
k (i.e., has k followers), but the network is otherwise
assumed to be maximally random (a configuration model
directed network). The mean degree of the network is
z ¼ P

j;kkpjk ¼
P

j;kjpjk. If we simplify the model by
assuming that all users follow z others—as we sometimes
do to highlight the role of the out-degree distribution—then
pjk can be replaced with δj;zpk, where δj;z is the Kronecker
delta and pk is the out-degree distribution.
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Each user has a “stream” that records all tweets received
by the user, time stamped by their arrival time. We assume
that only a fraction λ of the tweets received are deemed
“interesting” by the user, and only the interesting tweets are
considered for possible retweeting by that user. (Here, we
use the term “retweeting” in a general sense, to include any
reuse of a previously received meme such as a hashtag.
Note that a meme may be retweeted more than once by a

user, unlike the model of Ref. [35]). The activity rate of a
user—the average number of tweets that she sends per unit
time, i.e., the rate of the Poisson process that describes her
tweeting activity—can depend on how well connected the
user is within the social network [3], and we assume it
depends on her in-degree j and out-degree k [her “ðj; kÞ-
class” for short]; this assumption is supported by empirical
evidence from Twitter (see Fig. 6 of Ref. [38]). The user
activity rates βjk give the relative activity levels of users in
the ðj; kÞ class; the rates are normalized by choosing time
units so that

P
jkβjkpjk ¼ 1. If there are N users in the

network, this rate implies that an average of N tweets are
sent in each model time unit. To simplify the analysis, we
sometimes specialize to the case where all user activity
rates are equal: βjk ¼ 1.
When a user decides, at time t, to send a tweet, she has

two options (see Fig. 1): With probability μ, the user
innovates, i.e., invents a new meme, and tweets this new
meme to all her followers. The new meme appears in the
user’s own stream (it is automatically interesting to the
originating user), and in the streams of all her followers
(where it may be deemed interesting by each follower,
independently, with probability λ). If not innovating (with
probability 1 − μ), the user instead chooses a meme from
her stream to retweet. The meme for retweeting is chosen
by looking backwards in time an amount tm determined by
a draw from the memory-time distribution ΦðtmÞ and
finding the first interesting meme in her stream that arrived
prior to the time t − tm. The retweeted meme then appears
in the streams of the user’s followers (time stamped as time
t), but because it is a retweet, it does not appear a second
time in the stream of the tweeting user. The popularity nðaÞ
of a meme is the total number of times it has been tweeted
or retweeted by age a, i.e., by a time a after its first
appearance (when it was tweeted as an innovation) [19].
Figure 2 shows some examples of evolving meme popular-
ities: each panel displays the popularity nðaÞ of a single
meme as a function of its age a.
The model as described is a “neutral model” [39,40] in

the sense that all memes have the same “fitness” [41]: No
meme has an inherent advantage in terms of its attractive-
ness to users. Nevertheless, the competition between
memes for the limited resource of user attention causes
initial random fluctuations in popularities of memes to be
amplified and leads to the variability across memes seen in
Fig. 2 and to popularity distributions with very heavy tails
[17]: heavier, for example, than can be generated by models
of preferential attachment or cumulative advantage type
[22,23,25,42,43]. This “competition-induced criticality”
was studied for a zero-memory [ΦðtmÞ ¼ δðtmÞ] version
of this model in Ref. [37]. Indeed, the results of Ref. [37]
can be obtained as a special case of the model described
here, by setting ΦðtmÞ ¼ δðtmÞ, λ ¼ 1, βjk ≡ 1, and
pjk ¼ δjzpk; numerical simulation results for a closely
related model were first reported in Ref. [3].

(a)

(b)

FIG. 1. Schematic of the model. (a) Timeline of users’ actions
in a typical realization of the model. User A is followed by users
B and C; arrows between nodes denote the direction of informa-
tion transmission. Note that user B also follows many other users,
and so his stream contains more memes than the streams of A or
C. At time tAR, user A retweets a previously seen meme (with
probability 1 − μ, given A is active). She chooses the red meme to
retweet, by looking backwards in her stream a distance deter-
mined by the memory-time distribution Φ (only memes that A
deemed “interesting” are shown in her stream). Her retweet of the
red meme is accepted as interesting (and so inserted into their
stream) by each follower of A with probability λ. At time tCR , user
C retweets the red meme to his followers, thus further increasing
the popularity of the red meme. At time tAI , user A innovates (a
probability μ event, given A is active) by inventing the new blue
meme and broadcasting it to her followers. (b) Branching process
representation (Sec. III) of the popularities of the red meme and of
the blue meme. Each retweet generates new branches of the
process, as the meme is inserted into the streams of followers of
the tweeting user.
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A branching process approximation [35,44] for the
model enables us to understand how the network structure
(via the out-degree distribution pk) and the users’ memory-
time distribution [ΦðtmÞ] affect the popularity distribution
of memes. Defining qnðaÞ as the probability that a meme
has popularity [total number of (re)tweets] n at age a, the
branching process provides analytical expressions that
determine the probability generating function (PGF)
[45,46] of the popularity distribution,

Hða; xÞ ¼
X∞
n¼1

qnðaÞxn: ð1Þ

The details of the derivation and analysis of the branching-
process approximation are given in Secs. III and IV. The
reader who is mainly interested in the applications of

the model may jump straight to Sec. V, while noting that the
most important outcome of the analysis is that in the small-
innovation limit μ → 0, the model describes a critical
branching process, with power-law distributions of popu-
larity (avalanche size) [47–50].

III. DERIVATION OF BRANCHING PROCESS
APPROXIMATION

A. Derivation of governing equations

We define Gjkðτ;Ω; xÞ as the probability generating
function for the size of the “retweet tree,” as observed at
time Ω, that grows from the retweeting of a meme that
entered, at time τ ≤ Ω, the stream of a ðj; kÞ-class user [see
Fig. 3(b)]. To obtain an equation for Gjk, we consider the
stream of a random ðj; kÞ-class user (called “user A”) with a

(a)

(b)

(c)

FIG. 3. Schematic for the derivation of the PGF equations (see Sec. III). (a) The stream of user A, showing only memes that were
deemed interesting by user A. Each color represents a different meme. At time t, user A decides to retweet a meme from the past and
looks back to time r, where she finds meme M (colored red). She sends this meme to her followers (not shown); each follower
independently deems the meme interesting with probability λ. Also shown is a later retweet event, which also copies meme M. (b) The
retweet tree for memeM, seeded at time τ. Each retweet by user A of memeM generates a new branch on this tree; each branch can also
generate further retweets by followers of A, and these subtrees are denoted by squares. (c) Schematic depiction of Eqs. (7) and (16).
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FIG. 2. Examples of the age dependence of meme popularity from numerical simulations of the model. Each panel shows the
popularity of 10 different memes; the memes plotted are chosen at random from those whose popularity at age 100 is of order (a) 102,
(b) 103, or (c) 104. For model parameters, see the caption of Fig. 4(a).
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meme M that entered the stream at time τ (either by
innovation or because it was received from a followed user
and deemed interesting by A); see Fig. 3(a).
The likelihood that meme M is retweeted in the future

depends on how quickly other tweets enter the stream of
user A. In fact, memeM can be considered to “occupy” the
stream for a time interval l stretching from τ until the time
τ þ l when the next interesting meme enters the stream of
user A. New memes enter the stream as a Poisson process at
the constant rate1

rjk ¼ jβ̄λþ μβjk; ð2Þ
so the occupation time l of memeM—the time it occupies
the stream of user A—is an exponentially distributed
random variable with density

PoccðlÞ ¼ rjk expð−rjklÞ: ð3Þ
We note in passing that the mean occupation time

hli ¼
Z

∞

0

lPoccðlÞdl ¼ 1

jβ̄λþ μβjk
ð4Þ

is, for small innovation probabilities μ, inversely propor-
tional to j, the number of users followed. Thus, a user who
follows many others experiences tweets entering his stream
at a higher rate than a lower-j user (compare the streams of
users B and C in the schematic of Fig. 1). Consequently, the
high-j user is less likely to see (and so to retweet) a given
meme than a low-j user. This aspect of the model clearly
reflects empirical data, as seen in Fig. 3 of Ref. [51], for
example.
To determine the size of trees originating from meme M,

we consider that trees observed at a time Ω ≥ τ must be
created by the retweeting by user A, at some time(s) between
τ and Ω, via looking back in her stream to a time r, where r
lies between τ and minðτ þ l;ΩÞ (i.e., r lies within the time
intervalwherememeM occupies the stream). Let us consider
a time interval of (small) length dr, centered at time r, and
calculate the size of the trees that are seeded by a retweet
based on a lookback into this interval, from a time t, with
t > r (see Fig. 3). In each dt interval centered at time t, a tree
will be seeded with probability2

Pseed ¼ ð1 − μÞβjkΦðt − rÞdrdt ð5Þ

and will grow to a tree with size distribution (at observation
time Ω) generated by3

Rkðt;Ω; xÞ ¼ x½1 − λþ λGðt;Ω; xÞ�k; ð6Þ

where

Gðt;Ω; xÞ ¼
X
j;k

j
z
pjkGjkðt;Ω; xÞ ð7Þ

is the PGF for the sizes of trees originating from the
successful insertion at time t of a meme (that is deemed
interesting) into the stream of a random follower.
To calculate the total size of the tree seeded by copying

from the dr interval, we must add the sizes of trees that are
copied into all times t with t > r. Since each copying event
is independent, the total tree size is generated by

Jðr; xÞ ¼
YΩ
t¼r

½1 − Pseed þ PseedRkðt;Ω; xÞ�: ð8Þ

Taking logarithms of both sides of this equation and
expanding to first order in dt gives

log J ¼
XΩ
t¼r

log½1 − ð1 − μÞβjkΦðt − rÞdrdt

× (1 − Rkðt;Ω; xÞ)�

≈ −ð1 − μÞβjk
XΩ
t¼r

Φðt − rÞdrdt(1 − Rkðt;Ω; xÞ)

→ −ð1 − μÞβjkdr
Z

Ω

r
Φðt − rÞ(1 − Rkðt;Ω; xÞ)dt

as dt → 0; ð9Þ

so Jðr; xÞ can be written as

Jðr; xÞ ¼ exp

�
−ð1 − μÞβjkdr

Z
Ω

r
Φðt − rÞ

× (1 − Rkðt;Ω; xÞ)dt
�
: ð10Þ

Recall that Jðr; xÞ is the PGF for trees seeded by copying
from time r. To obtain the total size of all children trees of
meme M, we must consider trees seeded at all possible

1User A follows j users, each of which is assumed to tweet at
the average rate β̄ ¼ P

jkðk=zÞβjkpjk. Each meme sent by these j
users is deemed interesting by A with probability λ, so the rate at
which interesting memes enter the stream of user A is jβ̄λ.
Moreover, user A innovates at a rate μβjk, which gives the second
term of Eq. (2). If either an incoming tweet or an innovation event
occurs, a new meme is inserted into the stream of user A, and the
occupation time of meme M ends.

2The factor ð1 − μÞβjkdt is the probability that a ðj; kÞ-class
user becomes active in the dt interval and copies rather than
innovates; the factor Φðt − rÞdr is the probability that this user
chooses to copy from the dr interval.

3There are k followers of user A, each of whom may deem the
tweet “uninteresting” with probability 1 − λ, or consider it
“interesting”—and accept it into their stream—with probability
λ. The factor of x counts the increase in popularity due to the
tweet event.
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times r from τ to the time minðτ þ l;ΩÞ that marks the end of the occupation of user A’s stream by memeM. Each dr time
interval again independently generates trees with sizes distributed according to Eq. (10), so the PGF for the total size is
found by multiplying together copies of the Jðr; xÞ function for each dr time interval; thus,

PsizeðlÞ ¼
Yminðτþl;ΩÞ

r¼τ

Jðr; xÞ

¼ exp

�
−ð1 − μÞβjk

Xminðτþl;ΩÞ

r¼τ

dr
Z

Ω

r
Φðt − rÞ(1 − Rkðt;Ω; xÞ)dt

�

→ exp

�
−ð1 − μÞβjk

Z
minðτþl;ΩÞ

τ
dr

Z
Ω

r
dtΦðt − rÞ(1 − Rkðt;Ω; xÞ)

�
as dr → 0: ð11Þ

Combining probabilities, by integrating over all possible occupation times l, gives

Gjkðτ;Ω; xÞ ¼
Z

∞

0

PoccðlÞPsizeðlÞdl; ð12Þ

and combining Eqs. (3), (7), and (11) yields an integral equation for G:

Gðτ;Ω; xÞ ¼
X
jk

j
z
pjk

Z
∞

0

dlðjβ̄λþ μβjkÞ exp ½−ðjβ̄λþ μβjkÞl�

× exp

�
−ð1 − μÞβjk

Z
minðτþl;ΩÞ

0

dr
Z

Ω

r
dtΦðt − rÞ(1 − x½1 − λþ λGðt;Ω; xÞ�k)

�
: ð13Þ

Introducing the change of variables a ¼ Ω − τ, ~r ¼ r − τ, ~τ ¼ Ω − t, we rewrite this equation as

GðΩ − a;Ω; xÞ ¼
X
jk

j
z
pjk

Z
∞

0

dlðjβ̄λþ μβjkÞ exp ½−ðjβ̄λþ μβjkÞl�

× exp

�
−ð1 − μÞβjk

Z
minðl;aÞ

0

d~r
Z

a−~r

0

d~τΦða − ~r − ~τÞ(1 − x½1 − λþ λGðΩ − ~τ;Ω; xÞ�k)
�
: ð14Þ

Note that the only appearance of the observation time Ω in this equation is in the first two arguments of the G function; this
reflects the fact that the popularity of memes in this model depends only on their age a (unlike cumulative-advantage
models, which exhibit a dependence also on the global time because early-born items have an “early-mover” advantage
[52]). We therefore compress the notation by defining G in terms only of the age a of the memes: GðΩ − τ; xÞ≔Gðτ;Ω; xÞ,
and Gða; xÞ solves the integral equation

Gða; xÞ ¼
X
jk

j
z
pjk

Z
∞

0

dlðjβ̄λþ μβjkÞ exp ½−ðjβ̄λþ μβjkÞl�

× exp
�
−ð1 − μÞβjk

Z
minðl;aÞ

0

d~r
Z

a−~r

0

d~τΦða − ~r − ~τÞ(1 − x½1 − λþ λGð~τ; xÞ�k)
�
; ð15Þ

with initial condition Gð0; xÞ ¼ 1.
The popularity of a meme, as observed at timeΩ, that is seeded by a single tweet (e.g., by an innovation) at time τ may be

calculated in a similar way to the derivation of Eq. (15); the generating function is of the form

Hðτ;Ω; xÞ ¼
X
j;k

βjkpjkRkðτ;Ω; xÞGjkðτ;Ω; xÞ; ð16Þ

where βjkpjk represents the probability that the seed tweet originates from a ðj; kÞ-class user, Rk is the PGF for the trees
generated from the followers of the user, and Gjk is the PGF for the size of the retweet tree of the meme [see Fig. 3(c)].
Introducing the age a of the meme as before and defining qnðaÞ as the probability that an age-a meme has popularity n, we
have the PGF defined in Eq. (1), which is given by
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Hða; xÞ ¼
X
jk

βjkpjkx½1 − λþ λGða; xÞ�k
Z

∞

0

dlðjβ̄λþ μβjkÞ exp ½−ðjβ̄λþ μβjkÞl�

× exp

�
−ð1 − μÞβjk

Z
minðl;aÞ

0

d~r
Z

a−~r

0

d~τΦða − ~r − ~τÞ(1 − x½1 − λþ λGð~τ; xÞ�k)
�
; ð17Þ

the initial condition is Hð0; xÞ ¼ x [i.e., all memes have
initial popularity 1: qnð0Þ ¼ δn;1].

B. Distribution of response times

It is worth noting that all agents in themodel have constant
activity rates, so the actions of each individual agent con-
stitute a Poisson process. A Poisson process is characterized
by an exponential distribution of interevent times, where
each event corresponds to an innovation or a retweeting
action. This assumption is contrary to studies such as
Refs. [29,30,33–35,53–59], where heavy-tailed distributions
of interevent times are examined. Despite this, in our model
the memory-time distribution ΦðtmÞ directly influences the
waiting times (or “response times”) between the receipt of a
specific meme and the retweeting of it. Indeed, if ΦðtmÞ is a
heavy-tailed distribution, then a meme received by a given
user at time τ will be retweeted by that user at a time t (with
t ≫ τ) with probability proportional to Φðt − τÞ (the exact
relation depends on how long the meme occupies the stream
of the user). Therefore, a heavy-tailed memory distribution
gives rise to a heavy-tailed waiting-time distribution for
individual memes, despite the fact that the activity of each
individual user is described by a Poisson process (cf. the
heavy-tailed waiting-time distributions found in empirical
studies of email correspondence [29,30]). It is clearly
important to distinguish between the distributions of inter-
event times (for actions of users) and of the waiting times
experienced by individual memes; the model assumes each
user has exponentially distributed interevent times, but it can
nevertheless produce heavy-tailed distributions of waiting
times for memes to be retweeted.
In particular, if the memory-time distribution ΦðtmÞ is a

GammaðkG; θÞ distribution [35] as used in Secs. V and VI,
i.e., ΦðtmÞ ¼ f1=½ΓðkGÞθkG �gtkG−1m expð−tm=θÞ, then ΦðtmÞ
is approximately a power law for memory times tm with
tm ≪ θ, with an exponential cutoff at larger times. The
corresponding waiting-time distribution shows a similar
scaling in this range, like the slow decay noted in empirical
response times for Twitter users (e.g., in Fig. 5 of Ref. [51]).
In Sec. VII we consider how the model could be extended
to incorporate bursty (non-Poisson) user activity.

IV. ANALYSIS

A. Criticality of the branching process

A branching process may be classified by the expected
(mean) number ξ of “children” of each “parent”: If this

number (called the “branching number”) is less than 1, the
process is subcritical, and if ξ is greater than 1, the process
is supercritical. Critical branching processes, with an
average of exactly one child per parent, give rise to
power-law distributions of tree sizes and of durations of
growth cascades, and have been used to examine self-
organized criticality in sandpile models on networks
[47,50]. Here, we demonstrate that the general process
derived in Sec. III is a critical branching process in the limit
of vanishing innovation μ → 0.
We identify the parent in the process as a meme that was

accepted into the stream (i.e., deemed interesting) of a
ðj; kÞ-class user at time τ (see, for example, memeM in the
stream of user A, as shown in Fig. 3). The children of this
meme are the retweets of it that are accepted into the
streams of the followers of A at any time t > τ. The PGF for
the number of children of memeM is derived by following
the same steps as in Sec. III but replacing Rk by
ð1 − λþ λxÞk; each power of x then counts a successful
insertion of meme M into the stream of one of the k
followers of A. The resulting PGF, for a meme of age a, is
[cf. Eq. (13)]

Kjkða; xÞ ¼
Z

∞

0

dlPoccðlÞ exp
�
−ð1 − μÞβjk

Z
minðl;aÞ

0

d~r

×
Z

a−~r

0

d~τΦða − ~r − ~τÞð1 − ½1 − λþ λx�kÞ
�

¼
Z

∞

0

dlPoccðlÞ exp
�
−ð1 − μÞβjk

× ð1 − ½1 − λþ λx�kÞ
Z

minðl;aÞ

0

Cða − ~rÞd~r
�
;

ð18Þ

where CðtÞ ¼ R
t
0 ΦðtmÞdtm is the cumulative distribution

function (CDF) for memory times. The expected (mean)
number of children for a meme in the ðj; kÞ-class stream is
determined from the PGF in the usual way [45], by
differentiating with respect to x and evaluating at x ¼ 1;
thus,

ξjk ¼
∂Kjk

∂x
����
x¼1

: ð19Þ

In the limit of large ages, a → ∞, we use the fact that
Cð∞Þ ¼ 1 to obtain
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ξjk ∼ ð1 − μÞβjkλk
Z

∞

0

lPoccðlÞdl as a → ∞

¼ ð1 − μÞβjkλk
jβ̄λþ μβjk

: ð20Þ

Averaging over all ðj; kÞ classes, the effective branching
number ξ of the process is the expected number of children
of a meme that is accepted into the stream of a random
follower:

ξ ¼
X
j;k

j
z
pjkξjk

→
X
j;k

j
z
pjk

βjkλk

jβ̄λ
¼ 1 as μ → 0 ð21Þ

(recall that β̄≡P
j;kðk=zÞβjkpjk).

Thus, we have shown that the branching process under-
lying the model is critical when μ ¼ 0. The occupation time
of a meme in a users’ stream is due to the competition
between neutral-fitness memes for the limited resource of
user attention; this competition ensures that the mean
number of successful retweets (children) generated during
the finite occupation time of the meme is precisely one, and
thus, it induces the power-law distributions of cascade sizes
that are characteristic of critical branching processes
[47,50].
It is worth noting that the result of Eq. (21) can also be

derived in a more heuristic fashion, which enables us to
discuss possible generalizations of the model in Sec. VII.
As above, we want to calculate ξjk, the expected number of
children of a parent memeM that has been accepted into the
stream of a ðj; kÞ-class user, called user A. We consider a
(long) time window of duration W units. During this time
window, a total of approximately ðjβ̄λþ μβjkÞW tweets
have been accepted into the stream of user A [see footnote 1
and Eq. (4)]. When user A decides to retweet during the
time window, one of these memes is chosen for retweeting.
If the times chosen by the user are uniformly distributed
over the window, then the probability that the chosen meme
is meme M is

Pchosen ¼
1

number of memes in stream

¼ 1

ðjβ̄λþ μβjkÞW
: ð22Þ

Alternatively, this result can be calculated by noting that the
average time that a single meme occupies the stream is
given by hli in Eq. (4), so the expected fraction of the total
time that meme M occupies the stream of user A over the
window of length W is hli=W ¼ Pchosen.
Recalling that the activity rate of user A is βjk, the

expected number of retweets by this user during the time
window is

Nretweets ¼ ð1 − μÞβjkW: ð23Þ

Each retweet is broadcast to the k followers of A, each of
whom finds the retweet interesting with probability λ, so the
expected number of children (memes deemed interesting by
followers) per retweet is λk. The expected number of
children of the parent meme M over the time window is
therefore

ξjk ¼ ðnumber of retweets byAÞ
× ðprobability memeM is chosenÞ
× ðchildren per retweetÞ

¼ NretweetsPchosenλk; ð24Þ

which recovers Eq. (20). The expected number ξ of
children of a meme that is accepted into the stream of a
random follower is then calculated as in Eq. (21), giving
ξ → 1 in the μ → 0 limit.

B. An explicit expression for q1ðaÞ
The value q1ðaÞ is the probability that a meme, once

created via an innovation event, is not retweeted by the time
it reaches age a: Recall that the popularity n of a meme is
set to 1 when it is first tweeted (i.e., at birth); subsequent
retweets (if any) increase the value of n above 1. The
probability q1ðaÞ may be calculated explicitly using
Eq. (17):

q1ðaÞ ¼ lim
x→0

Hða; xÞ
x

;

¼
X
j;k

βjkpjk½1 − λþ λGða; 0Þ�k
Z

∞

0

dlPoccðlÞ

× exp

�
−ð1 − μÞβjk

Z
minðl;aÞ

0

Cða − ~rÞd~r
�
; ð25Þ

with Gða; 0Þ given, from Eq. (15), by

Gða;0Þ¼
X
j;k

j
z
pjk

Z
∞

0

dlPoccðlÞ

×exp

�
−ð1−μÞβjk

Z
minðl;aÞ

0

Cða− ~rÞd~r
�
: ð26Þ

If we consider the large-age limit, a → ∞, then we can
approximate the integral of the cumulative distribution
function for memory times as

Z
minðl;aÞ

0

Cða − ~rÞd~r ≈ lCðaÞ; ð27Þ

and the integral over l can be calculated to give the large-a
approximation
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q1ðaÞ ∼
X
jk

βjkpjk
jβ̄λþ μβjk

jβ̄λþ μβjk þ ð1 − μÞβjkCðaÞ
× ½1 − λþ λGða; 0Þ�k; ð28Þ

with

Gða; 0Þ ∼
X
jk

j
z
pjk

jβ̄λþ μβjk
jβ̄λþ μβjk þ ð1 − μÞβjkCðaÞ

: ð29Þ

In the simplified case pjk ¼ δj;zpk and βjk ≡ 1, Eqs. (28)
and (29) reduce to

q1ðaÞ ∼
λzþ μ

λzþ μþ ð1 − μÞCðaÞ
X∞
k¼0

pk

×

�
1 − λþ λ

λzþ μ

λzþ μþ ð1 − μÞCðaÞ
�
k
: ð30Þ

The a ¼ ∞ limit of q1ðaÞ gives the fraction of memes
that are never retweeted and thus have popularity n ¼ 1
forever. The value of q1ð∞Þ is obtained from Eqs. (28) and
(29) by setting CðaÞ to its a → ∞ limit of 1. The approach
of q1ðaÞ towards the value q1ð∞Þ depends, through the
CDF CðaÞ, on the tail of the memory-time distribution Φ. If
the distribution Φ is heavy tailed, there is a non-negligible
probability that a meme may be retweeted even if a very
long time has elapsed since its birth.

C. Mean popularity

The age dependence of the mean popularity (i.e., the
expected number of tweets or retweets for a meme of age a)
is given by

mðaÞ ¼
X∞
n¼1

nqnðaÞ ¼
∂Hða; xÞ

∂x
����
x¼1

: ð31Þ

Differentiating Eq. (17) and setting x ¼ 1 yields an integral
equation for mðaÞ:

mðaÞ ¼
X
jk

βjkpjk

�
1þ λkmGðaÞþ ð1−μÞβjk

×
Z

∞

0

dlðjβ̄λþμβjkÞexp ½−ðjβ̄λþμβjkÞl�

×
Z

minðl;aÞ

0

d~r
Z

a−~r

0

d~τΦða− ~r− ~τÞ½1þ λkmGð~τÞ�
�
;

ð32Þ

where mGðaÞ, defined by mGðaÞ ¼ f∂Gða; xÞ=∂xgjx¼1, is
the solution of the integral equation found by differentiat-
ing Eq. (15):

mGðaÞ ¼
X
jk

j
z
pjk

Z
∞

0

dlðjβ̄λþ μβjkÞ

× exp ½−ðjβ̄λþ μβjkÞl�ð1 − μÞβjk
Z

minðl;aÞ

0

× d~r
Z

a−~r

0

d~τΦða − ~r − ~τÞ½1þ λkmGð~τÞ�: ð33Þ

The order of the time integrals may be swapped using the
identity

Z
∞

0

dl
Z

minðl;aÞ

0

d~r ¼
Z

a

0

d~r
Z

∞

~r
dl; ð34Þ

and the resulting l integral can be performed explicitly:

Z
∞

~r
ðjβ̄λþ μβjkÞe−ðjβ̄λþμβjkÞldl ¼ e−ðjβ̄λþμβjkÞ~r: ð35Þ

As a result, the expressions (32) and (33) can be written as
double convolution integrals. Taking Laplace transforms,
Eq. (32) then becomes

m̂ðsÞ ¼ 1

s
þ zβ̄λm̂GðsÞ þ ð1 − μÞΦ̂ðsÞ

X
j;k

β2jkpjk

×
1
s þ λkm̂GðsÞ
jβ̄λþ μβjk þ s

; ð36Þ

where hats denote Laplace transforms, e.g.,

Φ̂ðsÞ≡
Z

∞

0

e−stΦðtÞdt; ð37Þ

and with m̂GðsÞ given explicitly from the Laplace transform
of Eq. (33):

m̂GðsÞ ¼
ð1 − μÞΦ̂ðsÞPj;k

j
z pjk

βjk
jβ̄λþμβjkþs

s
h
1 − ð1 − μÞλΦ̂ðsÞPj;k

j
z pjk

kβjk
jβ̄λþμβjkþs

i : ð38Þ

If we specialize now to the simplified case where βjk ≡ 1

for all ðj; kÞ classes, and pjk ¼ δj;zpk, we obtain the
simpler expression

m̂GðsÞ ¼
ð1 − μÞΦ̂ðsÞ 1

λzþμþs

s
h
1 − ð1 − μÞΦ̂ðsÞ λz

λzþμþs

i : ð39Þ

Substituting for m̂G into the simplified version of Eq. (36)
yields

m̂ðsÞ ¼ 1

s
þ 1 − μ

s
ðλzþ 1ÞΦ̂ðsÞ

λzþ μþ s − ð1 − μÞλzΦ̂ðsÞ : ð40Þ

Note that, unlike the expression for q1 in Eq. (30), the mean
popularity depends on the out-degree distribution pk only
through the mean degree z, implying that the mean
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popularity is independent of the finer details of the network
structure.
To consider the large-age asymptotics of mðaÞ from

Eq. (40), we use results from renewal theory [35,60]. If the
Malthusian parameter α exists, where α is defined as the
solution of the equation

ð1 − μÞλzΦ̂ðαÞ
λzþ μþ α

¼ 1; ð41Þ

then the large-age, small-μ asymptotic behavior of mðaÞ
can be written as (Theorem IV.4.2 of Ref. [60])

mðaÞ ∼ 1

μ
−
1

μ
e−

μðλzþ1Þ
1þTλz a as a → ∞; μ → 0: ð42Þ

Here, we have used the fact that near criticality (i.e., as
μ → 0), the Malthusian parameter α is determined by
Eq. (41) to be α ¼ −½μðλzþ 1Þ�=ð1þ TλzÞ þOðμ2Þ,
where T ¼ R

∞
0 tmΦðtmÞdtm is the mean memory time.4

Setting a ¼ ∞ in Eq. (42), we obtain the steady-state
value of the mean popularity, mð∞Þ ¼ 1=μ. Although
Eq. (42) is a large-a asymptotic result, we may expand
the exponential term about a ¼ 0, provided that the argu-
ment of the exponential remains small; this is valid for ages
a that obey the constraint a ≪ ð1þ TλzÞ=½μðλzþ 1Þ�.
Taking the μ → 0 limit of Eq. (42) shows that the function
mðaÞ grows linearly with a for ages in this range:

mðaÞ ∼ λzþ 1

1þ Tλz
a: ð43Þ

The preceding analysis all assumes that the seed node
(i.e., the user who first tweets the meme of interest) is
chosen at random from all the network users, with
probability weighted by the user activity rate. It is straight-
forward to repeat the steps of the calculations for the case
where the seed node is known to have k followers and thus
to investigate the importance of the connectivity of the seed
node. Restricting our attention to the simplified case as
above and taking the infinite-age limit, we find that the
expected popularity for a meme that is initiated by a seed
node of out-degree k is

mkð∞Þ ¼ λzþ 1

λzþ μ

�
1þ λð1 − μÞ

μðλzþ 1Þ k
�
: ð44Þ

Note the linear dependence of this expression on the
number of followers k of the seed node: Memes tweeted
by users with a large number of followers are likely to
become more popular than memes seeded by less influen-
tial nodes. This feature of the model matches well to the
observed dependence of the size of information cascades on
the connectivity of the initial seed (e.g., Fig. 2 of Ref. [62]).
Of course, the earlier results for randomly chosen seeds are
recovered by averaging over all possible seed nodes:
mð∞Þ ¼ P

kpkmkð∞Þ ¼ 1=μ.

D. Infinite-age limit of popularity distribution

In the infinite-age (steady-state) limit a → ∞, we assume
Gða; xÞ → G∞ðxÞ, independent of a, and use the fact thatR∞
0 ΦðtÞdt ¼ 1 in Eq. (15) to obtain

G∞ðxÞ ¼
X
jk

j
z
pjk

Z
∞

0

dlðjβ̄λþ μβjkÞ

× exp ½−ðjβ̄λþ μβjkÞl�
× exp ½−ð1 − μÞβjkl(1 − x½1 − λþ λG∞ðxÞ�k)�:

ð45Þ

Calculating the l integral then gives the equation satisfied
by G∞ðxÞ:

G∞ðxÞ¼
X
jk

j
z
pjk

jβ̄λþμβjk
jβ̄λþβjk−ð1−μÞβjkx½1−λþλG∞ðxÞ�k

:

ð46Þ

Similarly, the infinite-age limit for H is given in terms of
G∞ by

H∞ðxÞ¼
X
jk

βjkpjk
ðjβ̄λþμβjkÞx½1−λþλG∞ðxÞ�k

jβ̄λþβjk−ð1−μÞβjkx½1−λþλG∞ðxÞ�k
:

ð47Þ

Note that these steady-state equations are independent of
the memory distribution function Φ. Accordingly, the
asymptotic analysis approach used in Ref. [37] to obtain
the large-n behavior of the popularity distribution qnð∞Þ
may also be applied here; this is based on writing x ¼
1 − w and G∞ ¼ 1 − ϕðwÞ and analyzing the small-w,
small-ϕ asymptotics of Eqs. (46) and (47). We refer to
Ref. [37] for details, and here, we summarize the main
results for the simplified case βjk ≡ 1, pjk ¼ δj;zpk.
(i) Case 1: pk has a finite second moment.
The large-n scaling of the popularity distribution is given

by a power-law with exponential cutoff:

4Note that the Malthusian parameter exists for all the memory-
time distributions considered in this paper (exponential and
gamma distributions). However, if Φ is a subexponential dis-
tribution [60] (such as the log-normal distribution [61]), then the
large-a asymptotics of the mean popularity are related to the
memory-time CDF by

mðaÞ ∼ 1

μ
−
ð1 − μÞðλzþ μÞ

μ2ðλzþ 1Þ (1 − CðaÞ)

instead of Eq. (42).
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qnð∞Þ ∼ An−
3
2e−ðn=kÞ as n → ∞; ð48Þ

where the prefactor A is5

A ¼ zðλzþ 1Þ
λzþ μ

�
2π

�hk2ið2þ λz − μÞ
λzþ μ

− z

��−1
2 ð49Þ

and the cutoff κ is

κ ¼ 2λ2ð1 − μÞ2
μ2ðλzþ 1Þ2

�hk2ið2þ λz − μÞ
λzþ μ

− z

�
: ð50Þ

Note that κ is proportional to 1=μ2 for small μ, so in the
limit of vanishing innovation probability, the exponential
cutoff tends to infinity and the power-law part of the
popularity distribution extends to all n.
(ii) Case 2: pk ∼Dk−γ as k → ∞, with γ between 2 and

3. Immediately taking the μ → 0 limit, we find in this case
that the popularity distribution has a power-law form with
exponent γ=ðγ − 1Þ lying between 3=2 and 2 [47,48]:

qnð∞Þ ∼ Bn−½γ=ðγ−1Þ� as n → ∞ ð51Þ

with prefactor B given by

B ¼ −ðλzþ 1Þ (DΓð1 − γÞ)−½1=ðγ−1Þ�
λΓð 1

1−γÞ

×

�
ðλzÞ2

X∞
n¼1

nγ−1

ðλzþ 1Þnþ1

�−½1=ðγ−1Þ�
; ð52Þ

where Γ is the gamma function.

E. Large-a, large-n asymptotics
of popularity distribution

In Appendix A we consider how the popularity distri-
bution qnðaÞ behaves for large, but finite, ages, focusing on
the case βjk ≡ 1, pjk ¼ δj;zpk for simplicity. The result of
the asymptotic analysis is an expression for the Laplace
transform of the PGF Hða; xÞ that is valid in the a → ∞
limit [see Eqs. (A11) and (A12) for the cases of out-degree
distributions pk that have second moments hk2i that are,
respectively, infinite or finite].

V. RESULTS: NUMERICAL SIMULATION

To confirm the accuracy of the branching-process
approximation and to explore the interactions of the

network structure and the memory-time distribution, here
we compare numerical simulations of the model with
the theoretical predictions of Sec. IV. We generate
configuration-model directed networks with prescribed
out-degree distribution pk. Each one of N users (nodes)
is assigned a random number k (drawn from the distribution
pk) of out links (links to followers). The identities of the k
followers are chosen uniformly at random from the set of
all users; in theN → ∞ limit, this gives a Poisson in-degree
distribution pj which, for sufficiently large z, gives similar
results to using the in-degree distribution pj ¼ δj;z, i.e.,
assuming every user follows exactly z others [37]. Each
user has the same activity rate, so βjk ≡ 1.
Figure 4(a) shows the fraction of memes that have

popularity greater than or equal to n, at age a. Black
symbols are the results of numerical simulations; the
colored curves are determined from the large-a, large-n,
μ ¼ 0 asymptotics of Eq. (A11), using the Laplace trans-
form inversion described in Appendix B. The main figure
in panel Fig. 4(a) shows results for networks with the scale-
free out-degree distribution pk ∼Dk−γ for k ≥ 4 and
exponent γ ¼ 2.5 (with pk ¼ 0 for k < 4); the inset
shows the results for networks with a Poisson out-degree
distribution with mean degree z ¼ 11 matching that
of the scale-free networks. The memory-time distribution
isΦ ¼ GammaðkG; θÞ, with kG ¼ 0.1, θ ¼ 50 for the scale-
free case and kG ¼ 0.1, θ ¼ 5 for the Poisson case; the
mean memory time for this distribution is T ¼ kGθ.
Panels (b) and (c) of Fig. 4 show results for various

memory-time distributions Φ on networks with the same
scale-free out-degree distribution as used in panel (a), and
panels (d) and (e) show the corresponding results for the
Poisson network. Panels (b) and (d) show the fraction
q1ðaÞ of memes that have not been retweeted by age a,
along with the large-a asymptotics of Eq. (30). The age
dependence of q1ðaÞ is qualitatively similar in panels (b)
and (d): Note in both panels that the cases with longer
mean memory time T ¼ 5 (dashed curves) approach their
a → ∞ limit more slowly than the T ¼ 1 cases (solid
curves). However, the limiting value of q1ðaÞ as a → ∞
is different in the two panels, reflecting the effect of the
network structure (out-degree distribution). Using
Eq. (30) [with Cð∞Þ ¼ 1] we obtain q1ð∞Þ ¼ 0.50 for
the scale-free network with λ ¼ 1, whereas q1ð∞Þ ¼ 0.37
for the Poisson network.
The mean popularity mðaÞ of age-a memes is shown in

panels (c) and (e) for the scale-free and Poisson networks,
respectively, and for the same memory-time distributions as
used in panels (b) and (d). In contrast to the results for
q1ðaÞ, we see that the finer details of the network structure
have no effect on the mðaÞ curves: Panels (c) and (e) are
identical because Eq. (40) depends on pk only through the
mean degree z, which is identical for both networks. The
mean memory time T determines the rate of linear growth
of mðaÞ at intermediate ages [see Eq. (43)], while at early

5The values of A, κ, and B reported here are not identical to
those reported in Ref. [37]; this is because of an approximation
made in the analysis of Ref. [37] that is not required here [see
Eq. (S6) of Ref. [37]]. However, the differences are of order
1=ðλzÞ and thus are negligible in the case λz ≫ 1 that is
considered in Ref. [37].
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ages, the gamma memory-time distribution ΦðtmÞ (which
has significant probability mass at low values of tm) gives a
faster-than-linear growth of mðaÞ that is not present for the

exponentially distributed memory times. The large-age
asymptotics are shown in the insets; as discussed in
Sec. IV C, we find mðaÞ → 1=μ as a → ∞. As we show
in Sec. VI below, themðaÞ curves can be fitted to empirical
data on the popularity of Twitter hashtags; note also that the
qualitative features identified here (nonlinear early growth;
linear intermediate-time growth, saturation at later times)
have also been observed in several other measures of
information spread on social networks, such as views of
YouTube videos [63] and the installation of Facebook
apps [5].

VI. RESULTS: TWITTER HASHTAGS DATA

A. Data and model inputs

To test the ability of the model to fit real-world data, we
use a 1-year data set comprised of the popularities of 1.4 ×
105 hashtags related to the 2011 15M protest movement in
Spain, which were tracked over the 1-year period from
March 2011 to March 2012 [64,65]. We use all hashtags for
which we have at least 200 days of data; each curve in
Fig. 6(a) shows the popularity distribution for all hashtags
that have the same age (to the nearest day).
The out-degree distribution pk of the Twitter network is

an important input to the model. We determine the
empirical distribution by randomly selecting 8.2 × 105

Twitter user IDs and recording the number of followers
k of each user. The measured mean number of followers is
z ¼ 703, but the distribution pk is heavy tailed. The CCDF
of the k values is shown in Fig. 5, along with the line
D=ðγ − 1Þk1−γ, with D ¼ 240 and γ ¼ 2.13, which corre-
sponds to an out-degree distribution with the tail scaling as
pk ∼Dk−γ as k → ∞ [66].
The model parameter λ and the memory-time distri-

bution ΦðtmÞ cannot be directly estimated from the data
because in cases where users receive multiple copies of
the same meme (hashtag) prior to retweeting it, it is
impossible to tell which of the received memes “caused”
the retweet. Therefore, we instead use the analytical
results of the model [Eqs. (40) and (A11)] to find
parameter values that fit the model to the statistical
characteristics of the data. Guided by the faster-
than-linear growth of the mean popularity at early ages
a [Fig. 6(c)] and the results of Sec. V, we assume that the
memory-time distribution Φ is a GammaðkG; θÞ distri-
bution, and we fit the parameters kG and θ, as well as the
model parameters μ and λ, to give the results in Fig. 6(c).
Note that a delta-function memory-time distribution, as
used in the toy model of Ref. [37], leads to a purely
linear dependence mðaÞ ∝ a, and so we cannot fit to the
early-time growth of the observed mean popularity.
The data do, however, provide an upper bound on the

value of the innovation probability μ. Recall that μ is
defined as the probability that a tweeted meme (hashtag) is
an innovation, i.e., that the hashtag has never before
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FIG. 4. Numerical simulations of the model, compared with
analytical results. (a) Complementary cumulative distribution
functions (CCDFs) for meme popularity at age a; numerical
simulation results (black) on a network with scale-free out-degree
distribution (pk ∝ k−γ fork ≥ 4with γ ¼ 2.5,meandegree z ¼ 11,
N ¼ 105 nodes), comparedwithasymptoticmodel resultEq. (A11)
(colored curves). The memory-time distribution is Φ ¼
GammaðkG; θÞ with kG ¼ 0.1 and θ ¼ 50, so the mean memory
time is T ¼ kGθ ¼ 5. Inset: As in the main figure but for Poisson
out-degree distribution pk (z ¼ 11) and gamma memory-time
distribution with kG ¼ 0.1 and θ ¼ 0.5. (b) Fraction q1ðaÞ of
memes that are not retweeted by agea, on the scale-free network of
(a) and for various memory-time distributions ΦðtmÞ [red ¼
exponentialwithmeanT; blue=green ¼ Gammað0.1; 10TÞ], using
Eq. (30). Dashed lines show the T ¼ 5 cases; solid lines represent
T ¼ 1. (c)Meanpopularity ofmemesof agea, for the samecases as
in (b), and compared with Eq. (40) (using the numerical Laplace
transform inversion described in Appendix B); the inset shows the
large-a behavior. All panels have μ ¼ 0.02 and (except for green
curves)λ ¼ 1. (d,e)Sameaspanels (b)and(c)butforanetworkwith
Poisson out-degree distribution (mean degree z ¼ 11), with μ ¼
0.02 and (except for green curves) λ ¼ 1.
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appeared in the system. Each innovation event thus
increases the number of distinct hashtags that appear in
the data set by 1, whereas a noninnovative (copying) tweet
will instead increase the number of copies of a hashtag that
is already present in the data set. We can therefore calculate

an upper bound on the empirical innovation probability
from the ratio

~μ ¼ number of distinct hashtags used in the data set
total number of hashtags tweeted by users

¼ 322799

5886837
¼ 0.055: ð53Þ

Note that this upper bound is consistent with the parameter
value of μ ¼ 0.033 that is fitted in Fig. 6. The reason why
Eq. (53) gives an upper bound rather than an exact value for
μ is the finite size of the data set: The data collection started
at a specific point in time; thus, any hashtags that are in fact
copied from tweets received prior to the start date will be
erroneously counted as “distinct hashtags” in the estimate,
thus leading to an overestimate of the true innovation
probability.

B. Results using identical user activity rates

Using the empirical Twitter out-degree distribution pk,
we apply the analytical results of Eqs. (40) and (A11)
(which assume βjk ≡ 1) to fit the model to the data in
Fig. 6. Figures 6(a) and 6(b) show that the model-predicted
age-dependent popularity distributions match reasonably
well to the data, and Fig. 6(c) shows that the age-dependent
mean can be fitted very closely by the model. The data
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collapse seen in Fig. 6(b) is intriguing, and we analyze it
further in Sec. VI C.
Despite these successes, it was not possible to success-

fully fit the q1ðaÞ curve [Fig. 6(d)] using the simplified
version of the model in which all users have the same
activity rates. In Sec. VI D below, we therefore investigate
the effect of heterogeneous activity rates and show that an
improved fit can be obtained using more realistic rates.

C. Analysis of the data collapse in Fig. 6(b)

As shown in Fig. 6(b), the ratio qnðaÞ=mðaÞ is approx-
imately independent of the age a, giving a collapse of
the popularity distribution data (and of the model predic-
tions) onto a single curve. As in Sec. IV E, the large-n
asymptotics of the popularity distribution are found from
the small-w expansion (with w ¼ 1 − x) of hða; xÞ ¼
1 −Hða; xÞ, and for the scale-free out-degree distribution,
we obtain from Eq. (A10) (using the final value theorem for
Laplace transforms) the following asymptotic behavior in
the a → ∞ limit:

hð∞; 1 − wÞ ∼ ðλzþ 1ÞC−½1=ðγ−1Þ�w½1=ðγ−1Þ� as w → 0:

ð54Þ

Understanding the large-a approach to this steady state
(i.e., the case where a is large but finite) is a difficult
problem in asymptotic analysis, involving the double limits
n → ∞ and a → ∞. However, some insight can be
obtained by factoring the function h into a product of its
infinite-age limit hð∞; xÞ and another function h1, with h1
limiting to 1 as a → ∞:

hða; xÞ ¼ hð∞; xÞh1ða; xÞ: ð55Þ

Taking Laplace transforms gives

ĥðs; xÞ ¼ hð∞; xÞĥ1ðs; xÞ; ð56Þ

where

ĥ1ðs; 1 − wÞ ¼ λz(sþ λzþ Φ̂ðsÞ)
sðλzþ 1Þðsþ λzÞ

ðγ − 1ÞλD½1=ðγ−1Þ�½Γð1 − γÞ�½1=ðγ−1Þ�w½ðγ−2Þ=ðγ−1Þ�Φ̂ðsÞ
sþ λz − λzΦ̂ðsÞ þ ðγ − 1ÞλD½1=ðγ−1Þ�½Γð1 − γÞ�½1=ðγ−1Þ�w½ðγ−2Þ=ðγ−1Þ�Φ̂ðsÞ : ð57Þ

In particular, note that ĥ1ðs; 1 − wÞ depends on w only
through the factor w½ðγ−2Þ=ðγ−1Þ�. In the case where γ is very
close to 2, the exponent ðγ − 2Þ=ðγ − 1Þ of the w depend-
ence is close to zero, and the dependence of h1 on w is
therefore very weak. It follows that the rate of approach of
the corresponding distribution qnðaÞ to the steady state
qnð∞Þ does not show a strong dependence on n, and the
CCDFs for various ages appear almost parallel in the log-
log plot of Fig. 6(a) (note γ ¼ 2.13 in the Twitter network).
As we saw in Sec. IV C for the large-age asymptotics of

the mean popularity, the long-time behavior of the popular-
ity distribution may be obtained by examining the linear
(early-age) growth of the inverse transform of Eq. (A11).
The resulting popularity distributions qnðaÞ show (for large
n) a regime of linear-in-age growth, and in the case where
γ ≈ 2, the rate of this growth depends only weakly on n.
Since the mean popularity mðaÞ is also growing linearly
during this age period [see Eq. (43)], the division of the
CCDFs at various ages by the corresponding mean mðaÞ
leads to the collapse of the data onto the single curve that is
seen in Fig. 6(b).

D. Heterogeneous activity rates

Although our analysis methods are quite general, in
order to focus on understanding the combined effects of

memory and out-degree distribution, most of our results
thus far are specialized to the case of uniform user activity
rates, βjk ≡ 1. It is interesting, therefore, to examine the
impact that more realistic heterogeneous activity rates
would have upon the results we have obtained. To this
end, we extend here to the case where the activity rate of a
user depends on its out-degree k while retaining the
assumption pjk ¼ δj;zpk, so that βjk ¼ βk (normalized so
that

P
kβkpk ¼ 1 and with β̄ ¼ P

k
k
z βkpk).

The mean popularity is given in the general case by
Eq. (36). Repeating the asymptotic analysis leading to
Eq. (43) for the μ → 0 limit, we again find linear growth of
mðaÞ with age a, with a slope that generalizes that found in
Eq. (43):

mðaÞ ∼
λzβ̄ þ β2

β̄

Tλzβ̄ þ 1
a as a → ∞; ð58Þ

where we have introduced the notation β2 ≡P
k
k
z ðβkÞ2pk.

If we additionally assume that the user activity rates
saturate to a constant level β∞ at very large k, so βk → β∞
as k → ∞, then we can repeat the asymptotic approxima-
tions of Sec. IV E to determine a generalized version
of Eq. (A11):
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Ĥðs;xÞ∼1

s
−
1

s

λzβ̄(sþλzβ̄þ β2

β̄
Φ̂ðsÞ)ðγ−1Þð1−xÞΦ̂ðsÞ

ðsþ λzβ̄Þ(sþλzβ̄−λzβ̄ Φ̂ðsÞþβ½1=ðγ−1Þ�∞ ðγ−1ÞλD½1=ðγ−1Þ�½Γð1− γÞ�½1=ðγ−1Þ�ð1−xÞ½ðγ−2Þ=ðγ−1Þ�Φ̂ðsÞ)
: ð59Þ

To demonstrate the effect of heterogeneous activity rates,
we consider a model for βk inspired by the data analysis
shown in Fig. 6(a) of Ref. [38] (see Appendix C for details).
Using this heterogeneous activity rate, Fig. 7 shows results
that correspond closely to the homogeneous-activity exam-
ple of Fig. 6. A comparison of panels (d) from both figures
clearly shows that including heterogeneous activity rates
leads to a better fit of the model to the data on the fraction
q1ðaÞ of nonretweeted memes. However, the other results
of the model [panels (a)–(c) of Fig. 7 compared to the same
panels in Fig. 6] are relatively unaffected by the activity
rate, so the good matches between model and data seen in
Fig. 6 are not compromised by including heterogeneity in
activity rates.

VII. LIMITATIONS OF THE MODEL

As we have demonstrated, the analytical tractability of
the null model enables it to be fitted to time-dependent data
on meme popularity. However, we were required to make a
number of assumptions to obtain analytical results, and in
this section, we briefly highlight the most important
assumptions and discuss possible extensions to the model.
The network structure is assumed to be that of a directed

configuration-model graph defined by the joint probability
pjk of a node having in-degree j and out-degree (number of

followers) k. While this joint probability can encode
correlations between the number followed by, and the
number of followers of, a node, it does not incorporate
edge-based correlations, i.e., the probability that a user with
many followers is followed by users who also have high
numbers of followers. It may be possible to extend the
analysis of the model to deal with at least some types of
edge correlation [67,68], but this would be at the cost of
increased complexity of the equations.
A more unrealistic simplification of the configuration

model is the fact that it generates networks that are locally
treelike, with few short cycles. In particular, our model does
not include bidirectional edges (i.e., reciprocated following
relationships, where user A follows user B and B also
follows A), which are quite common in the Twitter network
[69] but which violate the independence assumption of a
branching process. However, numerical simulations in
Ref. [37] using a real Twitter network for a zero-memory
version of the model (Sec. S4 of Ref. [37]) gave quite good
agreement with branching process theory, despite the
presence of a large fraction of reciprocal links in the graph.
The conditions under which tree-based theories give good
approximations for dynamics on nontreelike networks
remains an active area of research [70], and more work
is required for further understanding.
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An important assumption of the null model is that all
memes have equal fitness. This is consistent with random-
copying models of human decision making [36,71], where
the quality of the product—here, the “interestingness” of
the meme—is less important than the social influence of
peers’ decisions [72]. This neutrality of the model is at the
root of the criticality of the dynamical system [39]. A
related (discrete-time) model for the number of citations
gained by scientific papers was analyzed in Ref. [19],
where the authors also extended their neutral model to
include unequal fitnesses of papers. It is likely that our
model could be extended in a similar way to incorporate a
fitness parameter for each individual meme. Based on the
results of Ref. [19], we expect that our main results would
be qualitatively unaffected if the distribution of fitness
values over the set of all memes is strongly peaked (i.e., if
most memes have roughly equal fitness values, with only
the high-fitness outliers demonstrating supercritical popu-
larity growth).
Perhaps the most unrealistic aspect of the current model

is the assumption that all users have constant activity rates,
so their tweeting activity is described by a Poisson process
(see the discussion in Sec. III B). It would be interesting to
relax this assumption, for example, to allow the activity of
users to be described by models such as that of Ref. [73] or
by inhomogeneous Poisson processes: The latter incorpo-
rates time-varying activity rates and thus could model the
24-hour variability in tweeting levels determined by daily
patterns [30]. However, we believe that the near-critical
aspect of the model will not be strongly affected by such
generalizations. To see this, consider the heuristic deriva-
tion of the branching number ξ that was described at the
end of Sec. IVA. Over a sufficiently long time window W,
the expected number of interesting memes received into the
stream of a ðj; kÞ-class user is linear in the number j of
users followed, and this remains true even for inhomo-
geneous Poisson (or even non-Poisson) activities, provided
that the observation window is long enough (e.g., such that
the average rate β̄ of incoming tweets should yield
approximately similar values when time averaged over
disjoint time windows of lengthW). Similarly, the expected
number of retweets by the user during the time window can
be written as in Eq. (23) but with the Poisson rate βjk
replaced by its time-averaged value. The calculations of
Eq. (24) then proceed as before, leading to the conclusion
that the branching number limits to the critical value of 1 as
μ → 0, which implies that non-Poisson user activity rates
(or burstiness) will not affect the criticality of the model,
which is a long-time (i.e., ages of memes limited to infinity)
characteristic. Of course, the short-term behavior of the
model [such as the small-a behavior in panels (b)–(e) of
Fig. 4] would be affected by introducing burstiness;
incorporating such realistic features into the model is left
as a challenge for further work. As a final comment on
this topic, we note that the agreement (in Sec. VI) of our

theoretical results with real data of a spreading process for
which users’ activity rates are not constant also provides
indirect evidence that the phenomenology discussed is
robust to the details of user activity burstiness.
The heuristic calculation of the branching number

considered at the end of Sec. IVA also offers a clue as
to how the model can be extended to the spreading of
information on undirected social networks (as opposed to
the directed networks that we focus on in this paper). Of
particular interest is the spreading of app adoption on
Facebook, for which data were analyzed in Ref. [10] and a
computational model was introduced in Ref. [5]. If the
Facebook update messages that inform all friends of user A
that she has installed a particular app are considered to be
the memes in a version of our model, then the arguments of
Sec. IVA need only slight modifications. The total number
of update messages received in the stream of a user with k
Facebook friends is linear in k [i.e., the j in the denominator
of Eq. (22) is replaced by k], while the expected number of
friends who would be interested in user A’s adoption of the
app is λðk − 1Þ (since one friend out of kmust have adopted
it before A in order to have spread the message to her).
Following very similar steps to calculate the expected
number ξ of children of a meme—see the calculations
leading to Eq. (24)—we find that

ξundirected →
X
k

k
z
pk

βkλðk − 1Þ
kβ̄λ

as μ → 0

¼ 1 −
1

z
: ð60Þ

Although this branching number is less than 1, the mean
number z of friends on Facebook is large (e.g., Ref. [74]
calculated z ≈ 190), so ξundirected is in fact very close to
unity, implying that the information-spread process is close
to criticality. Such a near-critical branching process was
hypothesized in Ref. [5] to explain the observed fat-tailed
distributions of app popularity in Facebook data and the
temporal characteristics of the adoption behavior. The
cascade sizes for other forms of “meme” spreading on
Facebook have also been observed to have fat-tailed
distributions [14]. Other undirected networks to which
the model should be applicable include YouTube [63]
and Digg [2,75].
Finally, our focus here has been on the statistical physics

of the model, but for completeness, we should note the
difficulties inherent in applying the model to data sets
where memes may not be as simple to recognize and track
as hashtags are. In Ref. [21], for example, the process of
extracting memes (representing popular scientific terms)
from data (citation archives of scientific publications) is
explained in detail, and such effort will generally be
required to identify and track the memes to which this
null model might be applied.
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A related question is whether the popularity of online
memes has any implications in terms of mass social
movements in the offline world. This is a complex question
that lies beyond the scope of this paper, but we note that
Fig. 3 of Ref. [76] shows that the usage of hashtags related
to the 15M Spanish protest movement was found to be
closely correlated with the number of protest-related head-
lines in newspapers, at least during the main activity of the
protests. This indicates that online social spreading phe-
nomena can, at least in some cases, give useful information
about real-world social movements and activism.

VIII. DISCUSSION

The extremely wide range of popularities achieved by
items on social media poses many challenges for complex
systems researchers. These include the identification of the
causes [77] and structural features [78] of “viral” propa-
gation, and the prediction of future spreading based on the
content or the early-time growth of memes [4,11,16,79],
each of which is important in the design of more
efficient systems to spread information (e.g., in case of
emergency). We argue that null models are fundamentally
important in this quest—and complement more data-driven
approaches—as they demonstrate, for example, that
extreme popularity can arise purely because of random
fluctuations in the competition between memes for user
attention. While the content of a meme may well be an
important factor in its popularity (or predictability [11]),
definitive statements about the significance of such factors
should be referenced to an appropriate null model.
In this paper, we have introduced and analyzed a null

model of meme spreading that is analytically tractable yet
realistic enough to reproduce several characteristic features
of empirical data. The model is sufficiently general to
incorporate heterogeneous user activity rates and a joint
distribution pjk of the number of users followed j and the
number of followers k, as well as a memory-time distri-
bution Φ that gives non-Markovian dynamics. The
competition-induced criticality phenomenon identified in
a zero-memory model in Ref. [37] is found to be robust to
the generalizations, giving power-law popularity distribu-
tions with characteristic time dependence similar to data
from social spreading phenomena (see Sec. VII for a
discussion of further possible extensions of the model).
The analytical tractability enables fast fitting of the

model to data, as demonstrated in Sec. VI with hashtag
data from Twitter. We find that a simplified version of the
model where users all have the same activity rate can be
fitted to some, but not all, aspects of the data (see Fig. 6).
The aim of a null model is not to perfectly reproduce every
aspect of a data set but rather to help identify which features
of the data can be reproduced using relatively simple
models, thus to highlight aspects where more detailed
modeling (or, perhaps, factors entirely outside the model)
are required to match to data. In this respect, the null model

highlights the fact that heterogeneity in activity rates is vital
to accurately capture the q1ðaÞ curve [compare Figs. 6(d)
and 7(d)], even though the time dependence of the bulk
of the popularity distribution may be described reasonably
well by a model with homogeneous activity rates
[Figs. 6(a)–6(c)].
As noted in the Introduction, and expanded upon in

Sec. VII, our definition of “memes” is sufficiently general
to enable the model to be applied (with minor changes) not
just to the spreading of hashtags or URLs on Twitter but
also to the adoption of apps on Facebook, the popularity of
videos on YouTube, and to a broad range of imitation-
driven spreading dynamics. We anticipate that the analyti-
cal results and potential for fast fitting to data will make this
null model a useful tool for further work, and we hope it
will contribute to the ongoing investigation of the entangled
effects of memory, network structure, and competition on
social spreading phenomena.
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APPENDIX A: CALCULATION
OF THE LARGE-a, LARGE-n ASYMPTOTICS

OF POPULARITY DISTRIBUTION

In this appendix, we consider how the popularity
distribution qnðaÞ behaves for large, but finite ages. To
highlight the effect of the out-degree distribution pk upon
the results, here we restrict our analysis to the case βjk ≡ 1,
pjk ¼ δj;zpk. Taking the μ → 0 limit, Eq. (15) becomes

Gða; xÞ ¼
X
k

pk

Z
∞

0

dlλze−λzl

× exp

�
−
Z

minðl;aÞ

0

d~r
Z

a−~r

0

d~τΦða − ~r − ~τÞ

× (1 − x½1 − λþ λGð~τ; xÞ�k)
�
: ðA1Þ
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Writing x ¼ 1 − w and Gða; xÞ ¼ 1 − ϕða;wÞ, we observe
that the argument of the exponential function vanishes
when w ¼ 0 and ϕ ¼ 0, and so we consider the small-w,
small-ϕ asymptotic behavior by expanding the exponential
term to first order in its argument:

ϕða;wÞ ≈
Z

∞

0

dlλze−λzl
Z

minðl;aÞ

0

d~r

×
Z

a−~r

0

d~τΦða − ~r − ~τÞ

×

�
1 − ð1 − wÞ

X
k

pk½1 − λϕð~τ;wÞ�k
�
: ðA2Þ

We note that retaining only the first-order term in the
expansion of the exponential is an approximation. We
estimate the accuracy of this “one-term expansion” by
comparing the infinite-age limit determined under the
approximation with the corresponding exact values as
given in Sec. IV D.
For the case of a scale-free out-degree distribution with

pk ∼Dk−γ as k → ∞, and γ in the range 2 < γ < 3, the
asymptotic form of the summation term in Eq. (A2) is given
by [37]

1 − ð1 − wÞ
X
k

pk½1 − λϕ�k ∼ λzϕ − Cϕγ−1

þ wþ oðw;ϕÞ as w → 0;ϕ → 0; ðA3Þ

with the constantC given by C ¼ λγ−1DΓð1 − γÞ. Applying
the integral-swapping trick of Eq. (34) allows the right-
hand side of Eq. (A2) to be expressed as a double
convolution integral. Laplace transforming then yields

ϕ̂ðs;wÞ ¼ 1

λzþ s
Φ̂ðsÞL½λzϕ − Cϕγ−1 þ w�; ðA4Þ

whereL denotes the Laplace transform operation applied to
the term in square brackets. In the a → ∞ limit, this
equation is satisfied by the steady-state solution

ϕð∞;wÞ ¼ C−½1=ðγ−1Þ�w½1=ðγ−1Þ�; ðA5Þ

as can be verified using the final value theorem for Laplace
transforms. We note that the corresponding expression for
ϕð∞;wÞ as calculated from the steady state Eq. (46) has an
additional multiplicative factor of Fðλz; γÞ that is absent in
Eq. (A5), where the function Fðζ; γÞ is defined by

Fðζ; γÞ ¼
�
ζ2

X∞
n¼1

nγ−1

ðζ þ 1Þnþ1

�−½1=ðγ−1Þ�
ðA6Þ

(see Fig. 8). If λz ≫ 1, then Fðλz; γÞ ≈ 1, and the one-term
expansion gives results that are very close to the exact
values (at least in the infinite-age limit a → ∞). Moreover,
even if λz is not large (e.g., λz ¼ 0.32 for the model fit to
Twitter hashtags data in Sec. VI), the values of Fðλz; γÞ can
still be close to unity if γ is sufficiently close to 2.
To consider small deviations from the steady state, we

define gða;wÞ by

ϕða;wÞ ¼ ϕð∞;wÞ(1 − gða;wÞ); ðA7Þ

with gða;wÞ → 0 as a → ∞. Assuming that g is sufficiently
small to allow the use of the linearizing approximation

ð1 − gÞγ−1 ≈ 1 − ðγ − 1Þg; ðA8Þ

Eq. (A4) can be solved for the Laplace transform of g:

ĝðs;wÞ ¼ 1

s
sþ λz − λzΦ̂ðsÞ

sþ λz − λzΦ̂ðsÞ þ ðγ − 1ÞC½1=ðγ−1Þ�w½ðγ−2Þ=ðγ−1Þ�Φ̂ðsÞ : ðA9Þ

The Laplace transform of ϕ then follows from Eq. (A7), and a similar asymptotic analysis of Eq. (17) yields

Ĥðs; 1 − wÞ ¼ 1

s
−
λz(sþ λzþ Φ̂ðsÞ)

sþ λz
ϕ̂ðs;wÞ: ðA10Þ

Substituting from Eqs. (A7) and (A9) results in
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FIG. 8. The function Fðζ; γÞ, as defined in Eq. (A6), for values
of γ close to 2. The highlighted points are the parameter values
that are relevant to Fig. 4 (λz ¼ 11, γ ¼ 2.5) and to Fig. 6
(λz ¼ 0.32, γ ¼ 2.13). In all cases of interest, the values of F are
close to 1, so we conclude that the one-term expansion used in
Eq. (A2) gives a good estimate of the exact steady-state solution.
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Ĥðs; xÞ ¼ 1

s

�
1 −

λz(sþ λzþ Φ̂ðsÞ)ðγ − 1Þð1 − xÞΦ̂ðsÞ
ðsþ λzÞ(sþ λz − λzΦ̂ðsÞ þ ðγ − 1ÞλD½1=ðγ−1Þ�½Γð1 − γÞ�½1=ðγ−1Þ�ð1 − xÞ½ðγ−2Þ=ðγ−1Þ�Φ̂ðsÞ)

�
: ðA11Þ

A similar analysis can be performed in the case where the out-degree distribution pk has a finite second moment. We
again utilize a one-term expansion similar to Eq. (A2), but we can also retain a nonvanishing innovation probability μ in this
case. The one-term expansion can be shown to be accurate when λz ≫ 1; this condition is obeyed in all relevant cases we
examine. The resulting large-a asymptotics for the generating functionHða; xÞ are found by inverting the following Laplace
transform:

Ĥðs; 1 − wÞ ¼ 1

s
− ϕð∞;wÞ ð1 − μÞλz(sþ λzþ μþ Φ̂ðsÞ)

sðsþ λzþ μÞ
�

2ð1 − μÞ w
ϕð∞;wÞ Φ̂ðsÞ − μðλzþ 1ÞΦ̂ðsÞ

sþ λzþ μ − ðλzð1þ μÞ þ 2μÞΦ̂ðsÞ þ 2ð1 − μÞ w
ϕð∞;wÞ Φ̂ðsÞ

�
;

ðA12Þ

with ϕð∞;wÞ given by

ϕð∞;wÞ ¼ −μðλzþ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ðλzþ 1Þ2 þ 2λ2ð1 − μÞ2ðhk2i − zÞw

p
λ2ð1 − μÞðhk2i − zÞ : ðA13Þ

APPENDIX B: NUMERICAL INVERSION
OF LAPLACE TRANSFORMS AND PGFS

Many of our results for the popularity distribution qnðaÞ
are expressed in terms of the corresponding PGF Hða; xÞ.
As in Ref. [37], we use the fast Fourier transform method of
Refs. [46,80–82] to numerically invert the PGF at a fixed
age a to produce, for example, the model distributions in
Figs. 6 and 7; see Sec. S2 of Ref. [37] for further details and
links to Octave/Matlab code for implementing the PGF
inversion.

The results of the model for the age dependence of
several quantities are expressed in terms of Laplace trans-
forms. To numerically invert the Laplace transforms, we
use the efficient Talbot algorithm [83], in its simplified
version described in Sec. 6 of Ref. [84]. The Talbot
algorithm is based on a numerical evaluation of the
Bromwich (Laplace inversion) integral, using a cleverly
chosen deformation of the contour in the complex-s plane.
The Laplace inversion of Ĥðs; xÞ to obtain Hða; xÞ at a
desired age a, for example, can be quickly computed using
the 2ML − 1 weights γk and nodes δk defined by [85]

δ0 ¼
2ML

5
; δk ¼

2kπ
5

ðcotðkπ=MLÞ þ iÞ for −ML þ 1 ≤ k ≤ ML − 1;

γ0 ¼
1

2
eδ0 ; γk ¼ ½1þ iðkπ=MLÞð1þ ½cotðkπ=MLÞ2�Þ − i cotðkπ=MLÞ�eδk for −ML þ 1 ≤ k ≤ ML − 1 ðB1Þ

(where i ¼ ffiffiffiffiffiffi
−1

p
) by calculating the sum

Hða; xÞ ¼ 1

5a

�
γ0Ĥ

�
δ0
a
; x

�
þ

XML−1

k¼−MLþ1

γkĤ

�
δk
a
; x

��
:

ðB2Þ

In practice, the precision of the Talbot algorithm is very
high, and only relatively small values ofML are required to
obtain accurate results; we used ML ¼ 25 in the examples
shown.

APPENDIX C: MODEL OF HETEROGENEOUS
ACTIVITY RATES

In the data analysis of Fig. 6(a) of Ref. [38], the average
activity rate (as measured by the number of tweets by a user
in a fixed time period) is found to grow approximately
linearly with the number of followers k of that user, for k
from 0 to about 100. Then, for k values from about 100 up
to the maximum shown in the plot (k ¼ 103), the activity
rate grows as a more slowly increasing linear function
of k. We model these characteristics (which are also seen in
other studies, e.g., Ref. [86]), using a piecewise-linear and
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continuous function of k, assuming a saturation of activity
at very high k, as follows:

βk ∝

8>><
>>:

0.35k if k < 100

35þ 0.044ðk − 100Þ if 100 ≤ k < 104

470.6 if k ≥ 104;

ðC1Þ

where the values are chosen to closely match the linear
growth rates in Fig. 6(a) of Ref. [38], and with the constant
of proportionality being set by the condition

P
kβkpk ¼ 1.
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