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Effect of risk perception on epidemic spreading in temporal networks
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Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous
modeling efforts and analytical and numerical studies, considering host populations with very different structures
and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have
started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of
the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible
precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static
networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between
individuals. We study the resulting model by analytical and numerical means on both simple models of temporal
networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not
affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic
temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant
shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the
awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic

prevalence.
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I. INTRODUCTION

The propagation patterns of an infectious disease depend
on many factors, including the number and properties of the
different stages of the disease, the transmission and recovery
mechanisms and rates, and the hosts’ behavior (e.g., their
contacts and mobility) [1,2]. Given the inherent complexity of a
microscopic description taking into account all details, simple
models are typically used as basic mathematical frameworks
aiming at capturing the main characteristics of the epidemic
spreading process and in particular at understanding if and
how strategies such as quarantine or immunization can help
contain it. Such models have been developed with increasing
levels of sophistication and detail in the description of both the
disease evolution and the behavior of the host population [1,2].

Obviously, the diffusion of the disease in the host population
depends crucially on the patterns of contacts between hosts.
The simplest homogeneous mixing assumption, which makes
many analytical results achievable, considers that individuals
are identical and that each has a uniform probability of being
in contact with any other individual [1,2]. Even within this
crude approximation, it is possible to highlight fundamental
aspects of epidemic spreading, such as the epidemic threshold,
signaling a nonequilibrium phase transition that separates an
epidemic-free phase from a phase in which a finite fraction of
the population is affected [1]. However, this approach neglects
any nontrivial structure of the contacts, while advances in
network science [3] have shown that many networks of interest
have in common important features such as a strong hetero-
geneity in the number of connections, a large number of triads,
community structures, and a low average shortest path length

2470-0045/2018/97(1)/012313(11)

012313-1

between individuals [3,4]. Spreading models have thus been
adapted to complex networks, unveiling the important role of
these properties [5—7]. More recently, a number of studies
have also considered spreading processes on time-varying
networks [8—13], to take into account the fact that contact
networks evolve on various timescales and present nontrivial
temporal properties such as broad distribution of contact
durations [14,15] and burstiness [8,16] (i.e., the timeline of
social interactions of a given individual exhibits periods of
time with intense activity separated by long quiescent periods
with no interactions).

All these modeling approaches consider that the propaga-
tion of the disease takes place on a substrate (the contacts
between individuals) that does not depend on the disease itself.
In this framework, standard containment measures consist
in the immunization of individuals, to effectively remove
them from the population and thus break propagation paths.
Immunization can also (in models) be performed in a targeted
way, trying to identify the most important (class of) spreaders
and to suppress propagation in the most efficient possible
way [17,18]. An important point to consider, however, is
that the structure and properties of contacts themselves can
in fact be affected by the presence of the disease in the
population, as individuals aware of the disease can modify their
behavior spontaneously, adopting self-protecting measures,
such as vaccination or mask-wearing. A number of studies have
considered this issue along several directions (see Ref. [19]
for a review). For instance, some works consider an adaptive
evolution of the network [20] with probabilistic redirection of
links between susceptible and infectious individuals, to mimic
the fact that a susceptible individual might be aware of the
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infectious state of some of his/her neighbors, and therefore
try to avoid contact with them. Such models can lead to a
rich phenomenology, with first order transitions, oscillations,
and hysteresis phenomena. Other works introduce behavioral
classes in the population, depending on the awareness to the
disease [21], possibly considering that the awareness of
the disease propagates on a different (static) network than
the disease itself, and that being aware of the disease implies a
certain level of immunity to it [22,23]. The epidemic threshold
depends then on the topology of the network on which the
awareness propagates.

Alternatively, other works explore scenarios where an
individual takes self-protecting measures that decrease his/her
probability to be infected (such as wearing a mask or washing
hands more frequently): this probability can then depend on
the fraction of infectious individuals present in the whole
population or among the neighbors of an individual. Different
model definitions can lead to contrasting results. For instance,
reducing the probability of being infected according to the
instantaneous fraction of infected neighbors of an individual
leads to a notable increase of the epidemic threshold and a
decay of the prevalence [24]. On the other hand, in Ref. [25],
the epidemic threshold stays unchanged when the infection
probability is reduced according to a local epidemic incidence
obtained by memorizing the past contacts with other infectious
neighbors, although the prevalence is also significantly reduced
in this case. Both these studies consider diseases propagating
on static contact networks and local awareness effects. In
contrast, Refs. [26,27] investigate the case of a temporal
network in which awareness has the very strong and global
effect of reducing uniformly the activity of all individuals and
their numbers of contacts, either because they are infectious
or because of a global knowledge of the overall incidence of
the disease. Under those assumptions of a global, nonlocal
awareness effect, both the epidemic threshold and the disease
prevalence are notably affected.

Here, we consider instead the following scenario: First,
individuals are connected by a time-varying network of con-
tacts, which is more realistic than a static one; second, we
use the scenario of a relatively mild disease, which does not
disrupt the patterns of contacts but which leads susceptible
individuals who witness the disease in other individuals to take
precautionary measures. We do not assume any knowledge
of the overall incidence, which is usually very difficult to
know in a real epidemic, especially in real time. We consider
standard models of infectious diseases and both empirical
and synthetic temporal networks of contacts. We extend the
concept of awareness with respect to the state of neighbors from
static to temporal networks and perform extensive numerical
simulations to uncover the change in the phase diagram
(epidemic threshold and fraction of individuals affected by
the disease) as the parameters describing the reaction of the
individuals are varied.

The paper is structured as follows: in Sec. I we present the
models of synthetic networks and the empirical networks we
will use throughout the work. In Sec. III we detail the epidemic
models we use, and in particular how risk perception is taken
into account through the modulation of the infection parameter.
In Sec. IV we provide a complete analysis of the spreading
processes on the synthetic networks, using an analytical ap-

proach complemented by numerical analysis including finite-
size scaling. Numerical analysis of the spreading processes
on empirical networks are conducted in section Sec. V, along
with a comparison with the results obtained on the synthetic
networks. Finally, Sec. VI concludes the paper, discussing the
results presented and drawing future perspectives.

II. TEMPORAL NETWORKS

We will consider as substrate for epidemic propagation both
synthetic and empirical temporal networks of interactions. We
describe them succinctly in the following subsections.

A. Synthetic networks
1. Activity-driven network model

The activity-driven (AD) temporal network model proposed
in Ref. [28] considers a population of N individuals (agents),
each agent i characterized by an activity potential a;, defined
as the probability that he or she engages in a social act or
connection with other agents per unit time. The activity of the
agents is a (quenched) random variable, extracted from the
activity potential distribution F(a), which can take a priori
any form. The temporal network is built as follows: at each
time step ¢, we start with N disconnected individuals. Each
individual i becomes active with probability a;. Each active
agent generates m links (starts m social interactions) that are
connected to m other agents selected uniformly at random
(among all agents, not only active ones).! The resulting set
of N individuals and links defines the instantaneous network
G,. Atthe next time step, all links are deleted and the procedure
is iterated. For simplicity, we will here consider m = 1.

In Ref. [28] it was shown that several empirical networks
display broad distributions of node activities, with functional
shapes close to power-laws for F'(a), with exponents between 2
and 3. The aggregation of the activity-driven temporal network
over a time-window of length 7 yields moreover a static
network with a long-tailed degree distribution of the form
Pr(k) ~ F(k/T) [28,29]. Indeed, the individuals with the
highest activity potential tend to form a lot more connections
than the others and behave as hubs, which are known to play a
crucial role in spreading processes [7].

2. Activity-driven network model with memory

A major shortcoming of the activity-driven model lies in
the total absence of correlations between the connections built
in successive time steps. It is therefore unable to reproduce a
number of features observed in empirical data. An extension
of the model tackles this issue by introducing a memory effect
into the mechanism of link creation [30]. In the resulting
activity-driven model with memory (ADM), each individual
keeps track of the set of other individuals with whom there
has been an interaction in the past. At each time step ¢ we

"Note that with such a definition, an agent may both receive and
emit a link to the same other agent. However, we consider here an
unweighted and undirected graph, thus in such a case, a single link is
considered. Moreover, in the limit of large N, the probability of such
an event goes to 0.
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TABLE I. Some properties of the SocioPatterns datasets under
consideration: N, number of different individuals engaged in inter-
actions; 7T, total duration of the contact sequence, in units of the
elementary time interval o = 20 s; p, average number of individuals
interacting at each time step; (At), average duration of a contact;
(k) and (s): average degree and average strength of the nodes in the
network aggregated over the whole time sequence.

Dataset N T ¥ (At) (k) (s)
Thiers 180 14026 5.67 2.28 24.66 500.5
SFHH 403 3801 26.14 2.69 47.47 348.7

start as in the AD model with N disconnected individuals,
and each individual i becomes active with probability a;. For
each link created by an active individual i, the link goes with
probability p = ¢;(¢)/[q:(t) + 1] to one of the g;(¢) individuals
previously encountered by i, and with probability 1 — p toward
a never-encountered one. In this way, contacts with already-
encountered other individuals have a larger probability to be
repeated and are reinforced. As a result, for a power-law dis-
tributed activity F(a), the degree distribution of the temporal
network aggregated on a time window 7 becomes narrow,
while the distribution of weights (defined as the number of
interactions between two individuals) becomes broad [30].

B. Empirical social networks

In addition to the simple models described above, which
do not exhibit all the complexity of empirical data, we also
consider two datasets gathered by the SocioPatterns collabo-
ration [31], which describe close face-to-face contacts between
individuals with a temporal resolution of 20 s in specific
contexts (for further details, see Ref. [14]). We consider first a
dataset describing the contacts between students of nine classes
of a high school (Lycée Thiers, Marseilles, France), collected
during 5 days in December 2012 (“Thiers” dataset) [32,33]. We
also use another dataset consisting in the temporal network of
contacts between the participants of a conference (2009 Annual
French Conference on Nosocomial Infections, Nice, France)
during one day (“SFHH” dataset) [10]. The SFHH (Société
Francaise d’Hygiene Hospitaliere) data correspond to a rather
homogeneous contact network, while the Thiers (high school)
population is structured in classes of similar sizes and presents
contact patterns that are constrained by strict and repetitive
school schedules. In Table I we provide a brief summary of the
main properties of these two datasets.

III. MODELING EPIDEMIC SPREAD
IN TEMPORAL NETWORKS

A. Epidemic models and epidemic threshold

We consider the paradigmatic susceptible-infectious-
susceptible (SIS) and susceptible-infectious-recovered (SIR)
models to describe the spread of a disease in a fixed population
of N individuals. In the SIS model, each individual belongs to
one of the following compartments: healthy and susceptible
(S) or diseased and infectious (I). A susceptible individual
in contact with an infectious becomes infectious at a given
constant rate, while each infectious recovers from infection at

another constant rate. In the SIR case, infectious individuals
enter the recovered (R) compartment and cannot become
infectious anymore. We consider a discrete time modeling
approach, in which the contacts between individuals are given
by a temporal network encoded in a time-dependent adjacency
matrix A;;(¢) taking value 1 if individuals i and j are in contact
at time 7, and O otherwise. At each time step, the probability
that a susceptible individual i becomes infectious is thus given
by pi=1-— ]_[j[l — L A;j(t)o;], where A is the infection
probability, and o; is the state of node j (o; =1 if node j
is infectious and O otherwise). We define w as the probability
that an infectious individual recovers during a time step, and we
impose ;< 1 to ensure the equivalence between the discrete
time approach and a continuous-time Markov chain analysis
[34]. The competition between the transmission and recovery
mechanisms determines the epidemic threshold. Indeed, if A
is not large enough to compensate the recovery process (A/u
smaller than a critical value), the epidemic outbreak will not
affect a finite portion of the population, dying out rapidly. On
the other hand, if A/u is large enough, the spread can lead in
the SIS model to a nonequilibrium stationary state, which we
determine with an average over surviving runs, and in which
a finite fraction of the population is in the infectious state.
For the SIR model, on the other hand, the epidemic threshold
is determined by the fact that the fraction roo = Rs/N of
individuals in the recovered state at the end of the spread
becomes finite for A /u larger than the threshold.

To numerically determine the epidemic threshold of the
SIS model, we adapt the method proposed in Refs. [35,36],
which consists in measuring the lifetime and the coverage
of realizations of spreading events, where the coverage is
defined as the fraction of distinct nodes ever infected during the
realization. Below the epidemic threshold, realizations have a
finite lifetime and the coverage goes to 0 in the thermodynamic
limit. Above threshold, the system in the thermodynamic
limit has a finite probability to reach an endemic stationary
state, with infinite lifetime and coverage going to 1, while
realizations that do not reach the stationary state have a finite
lifetime. The threshold is therefore found as the value of
A/ where the average lifetime of nonendemic realizations
diverges. For finite systems, one can operationally define an
arbitrary maximum coverage C > 0 (for instance C = 0.5)
above which a realization is considered endemic, and look for
the peak in the average lifetime of nonendemic realizations as
a function of /.

In the SIR model the lifetime of any realization is finite. We
thus evaluate the threshold as the location of the peak of the
relative variance of the fraction ry, of recovered individuals at
the end of the process [37]; i.e.,

§o - ( oo>2
L o "

I'oo

B. Modeling risk perception

To model risk perception, we consider the approach pro-
posed in Ref. [24] for static interaction networks. In this
framework, each individual i is assumed to be aware of the
fraction of his or her neighbors who are infectious at each time
step. This awareness leads the individual to take precautionary
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measures that decrease its probability to become infectious
upon contact. This decrease is modeled by a reduction of the
transmission probability by an exponential factor: at each time
step, the probability of a susceptible node i in contact with an
infectious to become infectious depends on the neighborhood
of i andis givenby A;(¢) = Ao exp[—Jn;(t)/k;], where k; is the
number of neighbors of i, n;(¢) the number of these neighbors
that are in the infectious state at time ¢, and J is a parameter
tuning the degree of awareness or amount of precautionary
measures taken by individuals.

Static networks of interactions are, however, only a first ap-
proximation and real networks of contacts between individuals
evolve on multiple timescales [15]. We therefore consider in
the present work, more realistically, that the set of neighbors
of each individual i changes over time. We need thus to extend
the previous concept of neighborhood awareness to take into
account the history of the contacts of each individual and
his or her previous encounters with infectious individuals.
We consider that longer contacts with infectious individuals
should have a stronger influence on a susceptible individual’s
awareness, and that the overall effect on any individual depends
on the ratio of the time spent in contact with infectious to
the total time spent in contact with other individuals. Indeed,
two individuals spending a given amount of time in contact
with infectious individuals may react differently depending
on whether these contacts represent a large fraction of their
total number of contacts or not. We moreover argue that the
awareness is influenced only by recent contacts, as having
encountered ill individuals in a distant past is less susceptible
to lead to a change of behavior. To model this point in a simple
way, we consider that each individual has a finite memory
of length AT and that only contacts taking place in the time
window [t — AT,t[, in which the present time ¢ is excluded,
are relevant.

We thus propose the following risk awareness change of
behavior: The probability for a susceptible individual i, in
contact at time ¢ with an infectious one, to become infectious,
is given by

Ai(t) = hoexp[—an;(@)arl, )

where n;(i)ar is the number of contacts with infectious
individuals seen by the susceptible during the interval [ —
AT, t[, divided by the total number of contacts counted by the
individual during the same time window (repeated contacts
between the same individuals are also counted). « is a param-
eter gauging the strength of the awareness, and the case o = 0
corresponds to the pure SIS process, in which A;(¢) = A for
all individuals and at all times.

IV. EPIDEMIC SPREADING ON SYNTHETIC NETWORKS

A. SIS dynamics
1. Analytical approach

On a synthetic temporal network, an infectious individual
can propagate the disease only when he or she is in contact
with a susceptible. As a result, the spreading results from an
interplay between the recovery time scale 1/, the propagation
probability A conditioned on the existence of a contact, and
the multiple time scales of the network as emerging from the

distribution of nodes’ activity F(a). Analogously to what is
done for heterogeneous static networks [6,7], it is possible to
describe the spread at a mean-field level by grouping nodes
in activity classes: all nodes with the same activity a are in
this approximation considered equivalent [28]. The resulting
equation for the evolution of the number of infectious nodes
in the class of nodes with activity a in the original AD model
has been derived in Ref. [28] and reads

t /

’

1’“=1’—M1’+Msf/1—é’da/+m’/1“—ada’,
a a a a N a N

(€)

where [, and S, are the number of infectious and susceptible
nodes with activity a, verifying N, = S, + 1,.

From this equation one can show, by means of a linear
stability analysis, that there is an endemic nonzero steady state
if and only if ((a) + +/{a?))A/ > 1 [28]. Noticing that {a) +
v/ (a?) may be regarded as the highest statistically significant
activity rate, the interpretation of this equation becomes clear:
the epidemic can propagate to the whole network when the
smallest time scale of relevance for the infection process is
smaller than the time scale of recovery.

Let us now consider the introduction of risk awareness in
the SIS dynamics on AD networks. In general, we can write
for a susceptible with activity a

11,—1 11/—1a/ ,
Y () % da' + [ - dd)
(a + (a)) AT

where the denominator accounts for the average number of
contacts of an individual with activity @ in AT time steps. In
the steady state, where the quantities 7, become independent
of ¢, the dependence on AT in Eq. (4) vanishes, since both
the average time in contact with infectious individuals and
the average total time in contact are proportional to the time
window width. Introducing this expression into Eq. (2), we
obtain

)

ni(@)ar =

Aa =X -
oexp( o pra—

which can be inserted into Eq. (3). Setting u = 1 without loss
of generality, we obtain the steady-state solution

ralap +0)

=, 6
P T halap £ 0) ©
where p, = I,/ N,, and we have defined
P = Z F(G)Pa, (7)
0= aF(@)p,. ®)

a

Introducing Eqgs. (5) and (6) into Egs. (7) and (8), and
expanding at second order in p and 6, we obtain after some
computations the epidemic threshold

1

o= ————. )
(a) + v/ (a?)
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Moreover, setting Ag = A.(1 + €) and expanding at order 1 in
€ we obtain

2¢

= 10
Aox + B (10

0

where

£ 4 3a,/(a?) + (a?) + 3d’
T

a+ (a)

3
B = Af(;(% +3(a)/(@) + 4(a2)). (11)

This indicates that, at the mean-field level, the epidemic
threshold is not affected by the awareness. Nevertheless, the
density of infectious individuals in the vicinity of the threshold
is reduced as the awareness strength o grows.

In the case of activity-driven networks with memory
(ADM), no analytical approach is available for the SIS dy-
namics, even in the absence of awareness. The numerical in-
vestigation carried out in Ref. [38] has shown that the memory
mechanism, which leads to the repetition of some contacts,
reinforcing some links and yielding a broad distribution of
weights, has a strong effect in the SIS model. Indeed, the
repeating links help the reinfection of nodes that have already
spread the disease and make the system more vulnerable to
epidemics. As a result, the epidemic threshold is reduced with
respect to the memory-less (AD) case. For the SIS dynamics
with awareness on ADM networks, we will now resort to
numerical simulations.

2. Numerical simulations

To inspect in detail the effect of risk awareness on the SIS
epidemic process, we perform extensive numerical simula-
tions. Following Refs. [28,38], we consider a distribution of
nodes’ activities of the form F(a) o a™” for a € [¢,1], where
€ is a lower activity cutoff introduced to avoid divergences
at small activity values. In all simulations we set € = 1073
and y = 2. We consider networks up to a size N = 10° and a
SIS process starting with a fraction I,/ N = 0.01 of infectious
nodes chosen at random in the population. To take into account
the connectivity of the instantaneous networks, we use as a
control parameter the quantity 8/u, where 8 = 2(a)A is the
per capita rate of infection [28]. Notice that the average degree
of an instantaneous network is (k), = 2(a) [29]. With this
definition, the critical endemic phase corresponds to

—C) (12)

v @+ V(e

In Fig. 1 we first explore the effect of the strength of
risk awareness, as measured by the parameter «, in the case
AT = 00, i.e., when each agent is influenced by the whole
history of his/her past contacts, a situation in which awareness
effects should be maximal. We plot the steady-state average
fraction of infectious nodes p = )", p, F(a) as a function of
B/ for three different values of «, and evaluate the position
of the effective epidemic threshold, as measured by the peak of
the average lifetime of nonendemic realizations; see Sec. IIL A.
Figures 1(c) and 1(d) indicate that the effect of awareness in
the model (¢ > 0), with respect to the pure SIS model (¢ = 0)
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FIG. 1. Effect of the strength of risk awareness on the SIS
spreading on AD and ADM networks with AT = oo. (a) Average
lifetime of nonendemic runs for AD network, (b) average lifetime
of nonendemic runs for ADM networks, (c) steady-state fraction of
infectious for AD, (d) steady-state fraction of infectious for ADM.
Vertical lines in subplots (a) and (b) indicate the position of the
maximum of the average lifetime. Model parameters: 1 = 0.015,
y =2,e =103, AT = o0, and network size N = 10°. Results are
averaged over 1000 realizations.

is to reduce the fraction p of infectious individuals for all
values of B8/u, and Figs. 1(a) and 1(b) seem to indicate in
addition a shift of the effective epidemic threshold to larger
values. This effect is more pronounced for the ADM than for
the AD networks. As this shift of the epidemic threshold is
in contradiction, at least for the AD case, with the mean-field
analysis of the previous paragraphs, we investigate this issue
in more details in Fig. 2, where we show, both for the pure
SIS model (¢ = 0) and for a positive value of «, the average
lifetime of nonendemic realizations for various system sizes.
Strong finite-size effects are observed, especially for the model
with awareness (a > 0).

In Fig. 3, we plot the fitting of the values of the effective
threshold (8/u). (the position of the lifetime peak) with a
law of the form (B/w)en = (B/M)c.0o + ANT", typical of
finite-size scaling analysis [39]. In the thermodynamic limit of
(B/)e.0o = 0.37(3) for the pure SIS model on AD networks,
(B/)e.c0 = 0.34(2) for AD with o = 10 (SIS model with
awareness), (B/)c.co = 0.29(3) for ADM with o = 0 (pure
SIS model), and (8/u)c.c0 = 0.29(2) for ADM with o = 10.
We notice here that the extrapolations for « = 0 are less
accurate and thus with larger associated errors. Nevertheless,
with the evidence at hand, we can conclude that, within error
bars, the risk perception has no effect on the epidemic threshold
in the thermodynamic limit, in agreement with the result from
Eq. (12), that gives a theoretical threshold (8/u). = 0.366
for the AD case. It is however noteworthy that the effective
epidemic threshold measured in finite systems can be quite
strongly affected by the awareness mechanism, even for quite
large systems, and in a particularly dramatic way for ADM
networks.
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FIG. 2. Analysis of finite-size effects. We plot the average lifetime
of nonendemic realizations of the SIS process, for different system
sizes and 2 different values of «. (a) ADM networks and o = 0.
(b) ADM networks with @ = 10. (c) AD networks. Vertical lines
indicate the position of the maximum of the average lifetime. Model
parameters: i = 0.015,y =2, ¢ = 1073, and AT = co. Results are
averaged over 1000 realizations.

We finally explore in Fig. 4 the effect of a varying memory
length AT, at fixed risk awareness strength «. In both AD
and ADM networks, an increasing awareness temporal window
shifts the effective epidemic threshold towards larger values,
up to a maximum given by AT = oo, when the whole system
history is available. For the ADM networks, this effect is less
clear because of the changing height of the maximum of the
lifespan when increasing AT. For AD networks, this result
is apparently at odds with the mean-field analysis in which
AT is irrelevant in the stationary state. We should notice,
however, that for AT — oo, the critical point is unchanged in
the thermodynamic limit with respect to the pure SIS dynamics.
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Given that for AT — oo the effects of awareness are the
strongest, we expect that a finite AT will not be able to change
the threshold in the infinite network limit. We can thus attribute
the shifts observed to pure finite-size effects. Note that this
effect is also seen in homogeneous AD networks with uniform
activity a (data not shown), observation that we can explain as
follows: when AT is small, the ratio of contacts with infectious
n;(i)ar recorded by an individual i can differ significantly
from the overall ratio recorded in the whole network in the
same time window, which is equal to (n;(i)ar) = p (for a
uniform activity). Mathematically, we have

(i) = Ao {exp(—an(ar)) > ho exp(—a p),  (13)
by concavity of the exponential function. Thus, even if locally
and temporarily some individuals perceive an overestimated
prevalence of the epidemics and reduce their probability of
being infected accordingly, on average the reduction in the
transmission rate would be larger if the ensemble average were
used instead of the temporal one, and thus the epidemics is
better contained in the former case. As AT increases, the
temporal average n;(i)a7 becomes closer to the ensemble
one p and the effect of awareness increases. When AT is
large enough compared to the time scale of variation of
the network 1/a, the local time recording becomes equiva-
lent to an ensemble average, and we recover the mean-field
situation.

B. SIR dynamics
1. Analytical approach

Following an approach similar to the case of the SIS
model, the SIR model has been studied at the heterogeneous
mean field level in AD networks, in terms of a set of equa-
tions for the state of nodes with activity a, which takes the
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form [40]
I,
AR =Ié—y,lé—i—ka(Nu—Ili—R;)/ﬁada/

Il a
N
where N, is the total number of nodes with activity a, and
1, and R, are the number of nodes with activity a in the
infectious and recovered states, respectively. Again, a linear
stability analysis shows the presence of a threshold, which

takes the same form as in the SIS case:
By 24 (15)
wo a) 4+ {a?)
The same expression can be obtained by a different approach,
based on the mapping of the SIR processes to bond percol-
ation [41].

Since the SIR model lacks a steady state, we cannot apply
in the general case the approach followed in the previous
section. The effects of risk perception can be however treated
theoretically for a homogeneous network (uniform activity) in
the limit AT — oo, which is defined by the effective infection
probability

+A(Ny— 1, —R))

a

da', (14)

A(t) = Ao exp [—%/0 ,o(t)dr]. (16)

Even this case is hard to tackle analytically, so that we consider
instead a modified model defined by the infection probability

A(t) = Ao exp [—a/ p(t)dr]. (17
0

In this definition the fraction of infectious seen by an individual
is no longer averaged over the memory length but rather
accumulated over the memory timespan, so that we expect
stronger effects of the risk perception with respect to Eq. (16),
if any. The fraction of susceptibles s = S/N and the fraction
of recovered r = R/N in the system obey the equations

ds

7 —o p(t) s(t) e~ WK, (18)
dr
7l wo(t), (19)

where in the first equation we have used the second equation to
replace for p(t)drt in A(t) by [r(¢) — r(0)]/w [with the initial
conditions r(0) = 0].

Setting u = 1 without loss of generality, the final average
fraction of recovered individuals after the end of an outbreak
is given by

Ao _
roo = 1 — s(0)exp I:—;(l —e ‘”""):|. (20)

Close to the threshold, i.e., for ro ~ 0, performing an ex-
pansion up to second order and imposing the initial condition
0(0) =1 — s(0) = 0, we obtain the asymptotic solution
N 2
~ hola + 20)

which leads to the critical infection rate Ay = 1. This means
that, as for the SIS case, the risk perception does not affect
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FIG. 5. Effect of the local risk perception on the SIR spreading
on AD networks and ADM networks. We plot r,, and o,/c™
for different values of «. (a) o,/0,"™ on AD network, (b) o, /o™
on ADM network, (¢) ro, on AD network, and (d) r,, on ADM
network. Vertical lines in subplots (a) and (b) indicate the position
of the maximum of the order parameter variance. Model parameters:
AT = oo, u = 0.015, y =2, € = 1073, and network size N = 10°.
Results are averaged over 1000 realizations.

the epidemic threshold at the mean field level, at least for
a homogeneous network. The only effect of awareness is a
depression of the order parameter 7, with «, as observed also
in the SIS case. The same conclusion is expected to hold for the
original model of awareness, with an infection rate of the form
Eq. (16) as in this case the dynamics is affected to a lower
extent. In analogy, for the general case of an heterogeneous
AD network, with rate infection given by Eq. (2), we expect the
effects of awareness on the epidemic threshold to be negligible
at the mean-field level.

On ADM networks, the numerical analysis of the SIR model
carried out in Ref. [38] has revealed a picture opposite to
the SIS case. In an SIR process indeed, reinfection is not
possible; as a result, repeating contacts are not useful for
the diffusion of the infection. The spread is thus favoured by
the more random patterns occurring in the memory-less (AD)
case, which allows infectious nodes to contact a broader range
of different individuals and find new susceptible ones. The
epidemic threshold for SIR processes is hence higher in the
ADM case than in the AD one [38].

2. Numerical simulations

To study the effects of risk perception on the dynamics of
a SIR spreading process in temporal networks we resort again
to numerical simulations. In Fig. 5 we compare the effects
of the risk perception mechanism given by Eq. (2) for AD and
ADM networks. The spread starts with a fraction py = Iy/N =
0.01 of infectious nodes chosen at random in the population
and the activity distribution is the same as in the SIS case. In
the present simulations the memory span AT is infinite and
we compare the results obtained for two different values of
the awareness strength o. We see that the effective epidemic
threshold is increased for the ADM network, whereas it seems
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FIG. 6. Effect of the initial density of infectious on the SIR model
on AD networks for different values of the awareness strength o and
the initial density of infectious individuals py. Model parameters:
AT = oo, u = 0.015, y =2, € = 1073, and network size N = 10°.
Results are averaged over 1000 realizations.

unchanged for the AD network and around a value of 8/u =
0.35, an agreement with the theoretical prediction quoted in
the previous section.

The SIR phase transition is rigorously defined for a van-
ishing initial density of infectious, i.e., in the limit p(0) — 0
and s(0) — 1, as can be seen at the mean-field level in the
derivation of Eq. (21). In Fig. 6 we explore the effects of
the initial density pg = Ip/N of infectious individuals on the
effect of awareness on AD networks. For large values of
oo = Iy/N, the awareness (¢ > 0) can significantly decrease
the final epidemic size, as already observed in Fig. 5. This
effect can be understood by the fact that, for large py, more
individuals are aware already from the start of the spread and
have therefore lower probabilities to be infected. At very small
initial densities, on the other hand, r,, becomes independent
of «. This is at odds with the result in Eq. (21), which,
however, was obtained within an approximation that increases
the effects of awareness. The milder form considered in Eq. (2)
leads instead to an approximately unaltered threshold, and to
a prevalence independent of «.

For ADM networks, Fig. 7 shows the variance of the order
parameter for two different values of «. As in the SIS case, we
see that an apparent shift of the effective epidemic threshold
is obtained, but very strong finite-size effects are present even
at large size, especially for ¢ > 0. The difference between the
effective thresholdsato > O and @ = O decreases as the system
size increases, but remains quite large, making it difficult to
reach a clear conclusion on the infinite size limit.

V. EPIDEMIC SPREADING ON EMPIRICAL
SOCIAL NETWORKS

As neither AD nor ADM networks display all the complex
multiscale features of real contact networks, we now turn to
numerical simulations of spreading processes with and without
awareness on empirical temporal contact networks, using the
datasets described in Sec. II B.
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FIG. 7. Finite scale effects in the SIR process on ADM. We plot o,
for different network sizes and two values of «. Vertical lines indicate
the position of the maximum of the order parameter variance. Model
parameters: py = 1/N, AT =00, 1 =0.005 y =2, e =1073.
Results are averaged over 10° realizations.

A. SIS dynamics

As we saw in Sec. IVA, the susceptibility defined to
evaluate the epidemic threshold of the SIS process is subject
to strong finite-size effects. Since the empirical networks used
in the present section are quite small, we choose to focus only
on the main observable of physical interest, i.e., the average
prevalence p in the steady state of the epidemics.

As we are interested in the influence of the structural
properties of the network, we choose to skip the nights in
the datasets describing the contacts between individuals, as
obviously no social activity was recorded then, to avoid unde-
sired extinction of the epidemic during those periods. To run
simulations of the SIS spreading, we construct from the data
arbitrarily long lasting periodic networks, with the period being
the recording duration (once the nights have been removed).
For both networks we define the average instantaneous degree
(k) = ﬁ > k; where the sum runs over all the time steps of

the data, and k, is the average degree of the snapshot network at
time t. We then define 8/ = A(k)/u as the parameter of the
epidemic. For each run, a random starting time step is chosen,
and a single agent in the same time step, if there is any, is
defined as the seed of the infection (otherwise a new starting
time is chosen).

In Fig. 8, we compare the curves of the prevalence p of the
epidemics in the stationary state on both empirical networks,
and for increasing values of the memory length AT. We can
see that an important reduction of the prevalence is occurring
even for AT = 1. This is due to the presence of many contacts
of duration longer than AT (contrarily to the AD case): the
awareness mechanism decreases the probability of contagion
of all these contacts (and in particular of the contacts with very
long duration, which have an important role in the propagation)
assoonas AT > 1,leading to a strong effect even in this case.
At large values of the control parameter 8/u, the effect of
the awareness is stronger for increasing values of the memory
length AT, as was observed in Sec. IV A. At small values of
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FIG. 8. Steady-state fraction of infectious for the SIS process on
both empirical networks, for two values of o and different values
of AT. Model parameters: u = 0.001 for Thiers and u = 0.005 for
SFHH. Results are averaged over 1000 realizations.

B/ on the contrary, the awareness is optimum for a finite
value of AT, and the knowledge of the whole contact history
is not the best way to contain the epidemics. While a detailed
investigation of this effect lies beyond the scope of our work,
preliminary work (not shown) seem to indicate that it is linked
to the use of the periodicity introduced in the data through the
repetition of the dataset.

B. SIR

In this section we study the impact of the awareness on
the SIR spreading process running on the empirical networks.
In particular, we study the effect of self protection on the

1- Oooo 0000008 nnnunnnunnnnnnnn *
. ° of %0 Oopg -
o ¢ %2 %0 Oopgg
. 0.75 o nﬁoo oooo Dnnnnuﬁn
g R %00 %0006 oo :
- o 0.
L osf0 ¢ .o °°°°°°°OOoooo 000000000000000
© 0000
L onn OOoooooooooooo
0.25n —
o 4
Oii T S NS N U N
0.5 0 AT=0 0009
00
F o AT=1 oo°°°°°°
041 AT =10 0000 o
L O AT=w 000°°° 000090
T, 03 000 £09°° .
L o® ooo 4
o RS
(3 0
0.2~ o o0 -
L o° o R ]
o 3
A o o =]
’ r 00° <><>o<><>° nnnnnﬂnunnnnnu 1
0“ggaaanogﬁaﬁﬁsonnnﬂnnugDDDDDDDUDDDDE
1 2 3 4 5 6

pru

FIG. 9. Effect of the risk perception for different values of AT
on the SIR spreading on SFHH network. (Top) Normalized standard
deviation o, /0,"**. (Bottom) Order parameter r.,. Model parameters:
= 0.005, o = 200. Results are averaged over 10* realizations.
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fraction of recovered individuals 7, in the final state, and on the
effective threshold evaluated as the peak of the relative variance
of 7o defined in Eq. (1). In Figs. 9 and 10 we plot ¢, and 7o,
for different memory length AT, for the SFHH conference and
the Thiers highschool data, respectively. We first notice that a
notable effect appears already for AT = 1, similarly to the SIS
process. However, we see that r, is monotonously reduced as
AT grows and that the effective threshold is shifted to higher
values of §/u, also monotonously. It is worth noticing that
the timescale of the SIR process is much smaller than the one
studied in the SIS process because the final state is an absorbing
state free of infectious agents. The lifetime of the epidemic in
this case is of the order of magnitude of the data duration, so
that the periodicity introduced by the repetition of the dataset
is not relevant anymore. Overall, we observe for both networks
an important reduction of outbreak size when people adopt a
self protecting behavior, as well as a significant shift of the
effective epidemic threshold.

VI. CONCLUSION

The implementation of immunization strategies to contain
the propagation of epidemic outbreaks in social networks
is a task of paramount importance. In this work, we have
considered the effects of taking protective measures to avoid
infection in the context of social temporal networks, a more
faithful representation of the patterns of social contacts than
often considered static structures. In this context, we have
implemented a model including awareness to the propagating
disease in a temporal network, extending previous approaches
defined for static frameworks. In our model, susceptible indi-
viduals have alocal perception of the overall disease prevalence
measured as the ratio of the number of previous contacts with
infectious individuals on a training window of width AT.
An increased level of awareness induces a reduction in the
probability that a susceptible individual contracts the disease
via a contact with an infectious individual.
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To explore the effects of disease awareness we have consid-
ered the paradigmatic SIS and SIR spreading models on both
synthetic temporal networks, based in the activity driven (AD)
model paradigm, and empirical face-to-face contact networks
collected by the SocioPatterns collaboration. In the case of
network models, we consider the original AD model, and a
variation, the AD model with memory (ADM), in which a
memory kernel mimics some of the non-Markovian effects
observed in real social networks.

In the case of synthetic networks, analytical and numerical
results hint that in AD networks without memory, the epidemic
threshold on both SIS and SIR models is not changed by
the presence of awareness, while the epidemic prevalence is
diminished for increasing values of the parameter o gauging
the strength of awareness. In the case of the ADM model
(temporal network with memory effects) on the other hand,
awareness seems to be able to shift the threshold to an increased
value, but very strong finite-size effects are present: our results
are compatible with an absence of change of the epidemic
threshold in the infinite-size limit, while, as for the AD case,
the epidemic prevalence is decreased.

In the case of empirical contact networks, we observe in
all cases a strong reduction of the prevalence for different
values of o and AT, and an apparent shift of the effective
epidemic threshold. These empirical networks differ from the
network models from two crucial points of view. On the one
hand, they have a relatively small size. Given that important
finite-size effects are observed in the models, especially in
the one with memory effects, one might also expect stronger
effective shifts in such populations of limited size. On the
other hand, AD and ADM networks lack numerous realistic
features observed in real social systems. On AD and ADM
networks, contacts are established with random nodes (even
in the ADM case) so that the perception of the density of

infectious by any node is quite homogeneous, at least in the
hypothesis of a sufficiently large number of contacts recorded
(i.e., at large enough times, fora AT >> 1). This is not the case
for the empirical networks, which exhibits complex patterns
such as community structures, as well as broad distributions
of contact and inter-contact durations, specific time-scales
(e.g., lunch breaks), correlated activity patterns, etc. [42]. This
rich topological and temporal structure can lead to strong
heterogeneities in the local perception of the disease. In this
respect, it would be interesting to investigate the effect of
awareness in more realistic temporal network models.

Notably, the awareness mechanism, even if only local and
not assuming any global knowledge of the unfolding of the
epidemics, leads to a strong decrease of the prevalence and to
shifts in the effective epidemic threshold even at quite large
size, in systems as diverse as simple models and empirical
data. Moreover, some features of empirical contact networks,
such as the broad distribution of contact durations, seem to
enhance this effect even for short-term memory awareness.
Overall, our results indicate that it would be important to take
into account awareness effects as much as possible in data-
driven simulations of epidemic spread, to study the relative
role of the complex properties of contact networks on these
effects, and we hope this will stimulate more research into this
crucial topic.
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