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Edge‑colored directed subgraph 
enumeration on the connectome
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Michael Mitzenmacher1 & Hanspeter Pfister1

Following significant advances in image acquisition, synapse detection, and neuronal segmentation 
in connectomics, researchers have extracted an increasingly diverse set of wiring diagrams from 
brain tissue. Neuroscientists frequently represent these wiring diagrams as graphs with nodes 
corresponding to a single neuron and edges indicating synaptic connectivity. The edges can contain 
“colors” or “labels”, indicating excitatory versus inhibitory connections, among other things. By 
representing the wiring diagram as a graph, we can begin to identify motifs, the frequently occurring 
subgraphs that correspond to specific biological functions. Most analyses on these wiring diagrams 
have focused on hypothesized motifs—those we expect to find. However, one of the goals of 
connectomics is to identify biologically‑significant motifs that we did not previously hypothesize. 
To identify these structures, we need large‑scale subgraph enumeration to find the frequencies of all 
unique motifs. Exact subgraph enumeration is a computationally expensive task, particularly in the 
edge‑dense wiring diagrams. Furthermore, most existing methods do not differentiate between types 
of edges which can significantly affect the function of a motif. We propose a parallel, general‑purpose 
subgraph enumeration strategy to count motifs in the connectome. Next, we introduce a divide‑and‑
conquer community‑based subgraph enumeration strategy that allows for enumeration per brain 
region. Lastly, we allow for differentiation of edges by types to better reflect the underlying biological 
properties of the graph. We demonstrate our results on eleven connectomes and publish for future 
analyses extensive overviews for the 26 trillion subgraphs enumerated that required approximately 
9.25 years of computation time.

After more than a dozen years of tedious image acquisition and manual reconstruction, Caenorhabditis elegans 
(C. elegans) became the first species to have a nearly complete mapping of its neuronal wiring diagram in  19861. 
This first connectome contained 302 neurons and approximately 5000 chemical synapses. For over twenty more 
 years2, and continuing  still3,4, a significant amount of research has dissected the connectome of C. elegans, 
improving its accuracy and gleaning additional insights. Building on these successes, recent rapid advancements 
in image acquisition  techniques5–7 paired with automatic neurite  segmentation8,9 and synapse  prediction10,11 
methods have enabled the extraction of more complex partial connectomes from more sophisticated species 
with nearly two and three orders of magnitude more neurons and synapses,  respectively12. As these automated 
processes further improve, requiring less human correction and verification, we can expect more diverse animal 
connectomes at an even larger  scale13–16.

Two significant goals for analyzing connectome structures are to generate more faithful models of the brain 
and improve artificial  intelligence17–19. To this end, researchers often represent these connectomes as graphs 
where vertices represent neurons, and neurons that share a synaptic connection receive a directed weighted edge 
between the corresponding  vertices12. Furthermore, the graph’s edges can have labels, which we will refer to as 
colors. Edge colors indicate a specific connection type, e.g., excitatory or inhibitory. After graph construction, 
one of the primary goals is to identify motifs, small reoccurring subgraphs that correspond to specific biologi-
cal functions, hidden within the graph (Fig. 1A). A significant amount of existing literature on motif discovery 
for these connectomes has focused on finding specific motifs of known biological importance within the wir-
ing  diagram12,20,21. However, an open goal for exploring the connectome is to identify motifs whose biological 
significance was previously  unknown21.

One approach to finding these motifs is to enumerate all subgraphs in the wiring diagram to identify those 
frequently occurring subgraphs. Subgraph enumeration is a computationally expensive task for two reasons. 

OPEN

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. 2Computer 
Science Laboratory, SRI International, Washington, DC, USA. 3Department of Computer Science, Boston College, 
Chestnut Hill, MA, USA. 4Department of Computer Science, Boston University, Boston, MA, USA. 5ISI Foundation, 
Turin, Italy. *email: bmatejek@seas.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15027-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11349  | https://doi.org/10.1038/s41598-022-15027-7

www.nature.com/scientificreports/

First, the number of subgraphs rapidly expands as the subgraph size k increases and the possible set of connected 
vertices expands. Second, once enumerating a given subgraph, we need to determine its canonical labeling since 
two subgraphs can have different adjacency matrices and yet belong to the same equivalence class. For example, 
Fig. 1B shows six subgraphs that have different adjacency matrices and yet belong to the same equivalence class; 
in the figure, the six subgraphs have an edge-preserving bijection that transforms the vertices from one instance 
into the other. In Fig. 1B, we color the nodes to help indicate the bijections between the six graphs. Therefore, 
during subgraph enumeration, we determine the canonical labeling of every subgraph to guarantee that each 
subgraph uniquely maps to its equivalence class to ensure proper counting. The canonical labeling of a graph is 
the adjacency matrix of all subgraphs in the equivalence class that has the smallest value when written as a string 
(Fig. 1B, bottom right). There are no known polynomial-time algorithms to retrieve the canonical labeling from 
a  subgraph22. Unfortunately, it is not feasible to count all unique adjacency matrices and determine equivalence 
classes as a post-processing step. There are 2k2 total possible adjacency matrices for a directed graph (noting that 
self-loops are possible) for a subgraph of size k. Compounding these two issues, we must get the canonical labe-
ling for each enumerated subgraph. We propose a parallel subgraph enumeration technique that builds on the 
existing Kavosh  algorithm23 (Fig. 2, left). Our method divides the input graph using simple features about the 
vertices into a set of batch jobs with relatively equal computation times. We reduce the “wall time” over sequential 
computation needed for one representative dataset by 10× , as we explain further in “Methods”.

Subgraph enumeration becomes infeasible even with parallelization for dense graphs with high average 
degrees. The size of the available extracted wiring diagrams has dramatically increased in the last decade, and 
future connectomes will only further increase the number of neurons and  synapses15. For enumerating larger 
subgraph sizes, we can first cluster the graph into communities and then perform subgraph enumeration within 
each community (Fig. 2, center). This two-step divide-and-conquer approach allows us to increase the size of 

Figure 1.  Motifs in the wiring diagram. (A) These four subgraphs that appear in the connectome have 
specific biological functions. Although the biological significance of these motifs was previously hypothesized, 
enumerating all subgraphs can identify additional essential motifs. (B) Here, we see six isomorphic subgraphs 
of size 3. The node colors do not represent labels but rather correspond to the bijection that preserves edges. The 
boxed subgraph is the canonical form where the string (bottom right) corresponding to the adjacency matrix 
(bottom left) is minimized.

Figure 2.  Subgraph enumeration for large-scale connectomes. We propose three improvements on existing 
subgraph enumeration strategies to improve throughput and better capture the underlying biology. First, 
we parallelize an existing subgraph enumeration strategy to work on a distributed cluster. For each job, we 
enumerate a subset of vertices, indicated here by color. Second, we first cluster the vertices into different 
communities for larger connectomes and perform subgraph enumeration within each community. Lastly, we 
add edge colors to the graph to match the diversity of the synaptic connections.
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explored subgraphs by significantly reducing the search space. We use an automatic graph clustering algorithm 
that produces communities of approximately equal size. However, future users could designate communities 
using existing biological knowledge about the different regions of the brain. Although this approach will miss 
subgraphs spanning two or more communities, we will still find potentially significant motifs within clusters 
and later can differentiate motifs between brain regions.

Some existing subgraph enumeration strategies allow one to distinguish vertices by “color” or “label”. Some 
analyses on the connectome have used these algorithms to distinguish between different types of  neurons20,24,25. 
However, few enumeration strategies immediately allow for edge colors without some manipulation. In the 
wiring diagram, however, edges can correspond to different types of connections with opposite functionalities 
(e.g., excitatory synapses stimulate and inhibitory synapses suppress) (Fig. 2, right). Identical motif topologies 
with different connections can produce wildly different neural behavior (Fig. 1A, feed-forward versus regula-
tor). Thus, we need to differentiate between edge types during subgraph enumeration to better match the input 
graph’s actual biological realities. Although our algorithm allows for the differentiation of either vertex or edge 
types, we do not discuss vertex coloring since it is already prevalent in the existing literature.

We present four contributions for large-scale subgraph enumeration specifically tailored to connectomic 
graphs. First, we parallelize an existing subgraph enumeration strategy to significantly reduce the wall time 
needed to enumerate all subgraphs by balancing the computation time fairly on a distributed computing cluster. 
Second, we implement a two-step subgraph enumeration strategy that first clusters the input graph into com-
munities and then enumerates subgraphs within each community. We automatically determine these clusters 
in this implementation; however, this method easily extends to other clustering techniques, including manual 
labelings based on the underlying biology (e.g., by brain region). Third, we extend the subgraph enumeration 
task to include edge colors to represent the biologically diverse set of possible connections better. We demon-
strate our results on three datasets containing eleven connectomes from two different animal species: C. elegans 
and Drosophilia. As our fourth contribution, we provide extensive analysis of the subgraphs found across both 
species; to facilitate further analyses, we make all data and code publicly available, including the summaries of 
all unique subgraphs found and their corresponding counts, totaling over 26 trillion subgraphs requiring 9.25 
years of computation time.

Related work
Subgraph enumeration tasks typically fall into two categories: subgraph-centric, also referred to as motif-centric, 
or network-centric26. Subgraph-centric algorithms take as input a query subgraph and identify all occurrences 
of that particular  subgraph27–29. These algorithms can efficiently find all occurrences of a given subgraph and 
use symmetry-breaking conditions to reduce complexity significantly. However, these algorithms require query 
subgraphs and do not efficiently enumerate all subgraphs, which may be more beneficial in determining the 
biological importance of all subgraphs. Network-centric algorithms exhaustively enumerate all subgraphs in a 
given network for a given subgraph  size23,30,31. These methods enumerate each subgraph once and determine its 
canonical labeling using Nauty or a similar  tool22. In this way, these algorithms incrementally determine the 
number of occurrences for each unique subgraph. Analytic methods count the total number of occurrences of 
each subgraph type without enumerating all subgraphs by constructing a matrix of linear equations that encode 
connectivity  information32,33. However, computational restrictions limit these methods to k ≤ 626. G-Tries rep-
resent a middle approach to network- and motif-centric  methods34,35. This suite of methods constructs a tree of 
subgraphs, where the tree leaves represent the complete set of subgraphs to enumerate.

As noted above, complete subgraph enumeration is a computationally expensive task as the number of sub-
graphs grows quickly as k increases. Furthermore, there are no known polynomial-time algorithms for producing 
the canonical labeling of a general  subgraph22. Approximate counting algorithms reduce the search space by 
traversing to a new vertex with a fixed  probability36 or searching a compressed  network37, among other solutions. 
However, these strategies can miss subgraphs, which, although very rare, would seldom appear in a random 
network, and therefore could indicate a biologically important motif (e.g., a large clique). There is a significant 
amount of research into distributing computation for exact subgraph enumeration. These methods typically look 
for asymmetrical search spaces induced at each  vertex38 or  edge39.

Early research into motifs in neural wiring diagrams typically focused only on small motifs of two or three 
 neurons40. Furthermore, these early discoveries typically concerned a few neuron types in specific regions of 
the brain. Research into motifs in the wiring diagram of C. elegans has focused primarily on small motifs 
between four or fewer  neurons2,25. Varshney et al. found similar motifs in the C. elegans worm as to those found 
in the mammalian  neocortex2,40. Cook et al. compare the relative frequency of all possible subgraphs of sizes 
two and three between the two specific sexes of the C. elegans  worm3. Scheffer et al. consider both small and 
large motifs of the fruit fly Drosophila melanogaster, with attention to neuron  type20. The authors confirm some 
of the traditional results from previous works for small motifs, such as the over-representation of reciprocal 
 connections20,41. Others have also observed these frequently occurring motifs in the connectomes of mammals 
and worms. Scheffer et al. also search for families of large motifs, such as large cliques where all possible edge 
connections are  present20. However, in both the small and large cases, the authors focus primarily on motifs 
previously theorized to be critical instead of exploring all possible subgraphs to find new motifs. More recently, 
Matelsky et al. published DotMotif, a motif-centric connectome subgraph search and query tool that allows for 
node and edge attribute  constraints42.
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Results
This section provides summaries and insights on the subgraphs in these connectomes and quantitative statistics 
on the number of subgraphs and the computation time. To encourage further analyses by others in the field, we 
provide complete summaries of all subgraph counts for all connectomes. These summaries cover over 26 trillion 
subgraphs over the eleven connectomes and required over 9.25 years of computation time.

Datasets. 
We perform motif discovery on three classes of datasets containing eleven connectomes, ten from C. elegans, and 
one from Drosophila melanogaster. Table 1 summarizes each of the eleven connectomes, which are all publicly 
available.

Our first two datasets contain one complete connectome from each of the two biological sexes of C. elegans: 
hermaphrodite and male. The two sexes have 302 and 385 neurons for the hermaphrodite and male, respectively. 
These two datasets also include muscles, end-organs, and glial cells leading to 473 and 598 nodes in the graph 
for the two sexes. Cook et al. produced the first male connectome and provided an analysis of the differences 
between the two  sexes3. In their analyses, they focus on subgraphs of sizes two and three only. We extend these 
analyses by exploring larger subgraphs than initially considered. We also enumerate all subgraphs with three 
possible edge colors: chemical synaptic connections, gap junction (electrical), or both. We refer to the male and 
hermaphrodite connectomes from this dataset as C. elegans AM and C. elegans AH for adult male and adult 
hermaphrodite, respectively.

Our next eight datasets come from a longitudinal study of the developmental growth of C. elegans published 
by Witvliet et al.4. These eight partial connectomes contain 225 neurons, each with increasing numbers of 
synapses based on the specimen’s age. Six of these connectomes come from adolescent worms, and the oldest 
two are adults. These datasets only contain chemical synapse information, so there are no unique edge types. 
Likewise, we refer to these datasets as C. elegans D[1–8] with the number indicating the specimen’s relative age.

The Drosophila dataset is the largest publicly available proofread connectome with over 21,000 neurons and 
four million synaptic  connections12. We define three synaptic connectivity levels between two neurons: weakly, 
moderately, and strongly connected. Weakly connected neurons share three or fewer synapses, moderately con-
nected neurons share more than three but fewer than ten synapses, and strongly connected neurons share ten 
or more synapses. Based on the authors’ discussion on the precision of synapse  detection12, we prune our graph 
to contain only synaptic connections that are moderately or strongly connected. Removing these edges reduces 
the number of edges in our graph from 3,550,404 to 841,720. Compared to mammalian brain samples, the EM 
imagery does not provide enough detail to differentiate excitatory and inhibitory  connections12. Therefore, our 
edges do not reflect that distinction.

Motifs. Figure 3 shows the relative proportion of size three motifs for both the developmental growth con-
nectomes and the two sexes of C. elegans. The distribution of subgraphs between the specimens in each grouping 
of datasets is remarkably similar for both subgraphs of size three with a minimum cosine similarity of 0.977 for 
the developmental series and a cosine similarity of 0.995 for the sexes comparison. This surprised the authors, 
as these similarities cannot be explained entirely by the multiple connectomes sharing an abundance of joint 
edges. For C. elegans AH and AM, the two connectomes share 449 neurons, muscles, end-organs, and glial cells, 
leaving 24 and 149 unique cells for the hermaphrodite and male, respectively. The two specimens have 3572 
equivalent edges among the shared nodes, leaving 3325 and 4153 unique edges for each sex. We cannot compare 
the developmental series with the two other adult worms for two reasons. First, the developmental growth series 
are only partially connectomes with only 225 neurons each. Second, C. elegans AH and AM contain muscles and 
end-organs in addition to all of the neurons in the brain.

We provide a more thorough summary of the five most frequent subgraphs of sizes four and five in Fig. 4. We 
note that the same motifs frequently appear between specimens in the two longitudinal studies. There are only 
7 and 6 unique motifs of sizes 4 and 5 for the developmental series over the entire dataset. However, many (but 

Table 1.  Connectome datasets. We enumerate subgraphs on eleven connectomes from two different species. 
Two of the adult C. elegans connectomes also contain end-organs and muscles.

Species Age Sex Neurons Edges Edge types

Caenorhabditis elegans Adult Hermaphrodite 473 6897 Chemical/electrical/both

Caenorhabditis elegans Adult Male 598 7725 Chemical/electrical/both

Caenorhabditis elegans 0 h Hermaphrodite 225 775 N/A

Caenorhabditis elegans 5 h Hermaphrodite 225 986 N/A

Caenorhabditis elegans 8 h Hermaphrodite 225 1006 N/A

Caenorhabditis elegans 16 h Hermaphrodite 225 1101 N/A

Caenorhabditis elegans 23 h Hermaphrodite 225 1504 N/A

Caenorhabditis elegans 27 h Hermaphrodite 225 1524 N/A

Caenorhabditis elegans Adult (50 h) Hermaphrodite 225 2193 N/A

Caenorhabditis elegans Adult (50 h) Hermaphrodite 225 2189 N/A

Drosophila melanogaster Adult Female 21,739 841,720 Moderate/strong
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Figure 3.  Subgraph distributions of size three. The distributions of subgraphs of size three are similar in the 
C. elegans developmental (left) and the C. elegans sexes (right) datasets (cosine similarities > 0.977 and 0.995, 
respectively). Note that these datasets are not comparable to one another since the datasets differentiating the 
two sexes include muscles, non-muscle end organs, and glial cells.

Figure 4.  Most frequent motifs of size 4 and 5. Here, we summarize the five most common motifs of sizes four 
and five for the eleven connectomes. Within each of the three datasets, motifs with the same color and letter 
designation are identical.
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not all) of these motifs represent a purely linear connection with varying directional and bidirectional edges. 
Subgraph enumeration cannot determine which motifs occur more frequently than random as that requires a 
random graphical model to serve as a null hypothesis. We can, in part, explain the higher percentage of recipro-
cal edges in the male/hermaphrodite longitudinal study from the inclusion of electrical synapses, which allow 
for a bidirectional flow of current.

Component analysis. Kavosh parallelization. Subgraph enumeration for even moderate k on the larger 
Drosophila dataset is simply infeasible without parallel processing. We enumerate all subgraphs of size five on 
this dataset in under 7 days when running on ∼ 150 CPUs. Without parallelization, that enumeration would 
take 2.77 years (Table 5). Even on the much smaller C. elegans datasets, enumerating subgraphs of size 7 on 
C. elegans AH takes 17.95 days of CPU time. Although the amount of total CPU time is similar using a naïve 
enumeration ordering as to the ordering described in Algorithm 1, the maximum time spent for a single vertex 
decreases significantly on the Drosophila dataset from 9820.40 to 74.12 s ( 13.23× ). When running on 250 CPUs, 
our algorithm reduces the wall time by 11.10× and the idle CPU time by 47.99× (Table 2).

Community‑based enumeration. A divide-and-conquer approach to subgraph enumeration can significantly 
reduce the total computation time required on a given dataset. The number of subgraphs found decreases, par-
ticularly for larger values of k (Table  3). These decreases correspond to subgraphs that span more than one 
community. In going from one to five communities, the number of subgraphs decreases by 55%, with a similar 
reduction in total computation time. Although this is a significant decrease in enumerated subgraphs, the rela-
tive proportions of the motifs found remain relatively stable, as described by the cosine similarity metric, which 
compares the distances between the two distributions of motif counts. Despite this reduction, we can still iden-
tify significant motifs per community. This trade-off between exhaustive enumeration and quicker processing is 
a necessity moving forward.

Although the Drosophila dataset is the largest connectome to date, another most likely will surpass it within 
the next half-decade. A divide-and-conquer approach can avoid enumerating subgraphs that span multiple 
communities and focus only on those tightly connected regions of the brain. Furthermore, we believe this 
methodology extends well to connectomes with predefined communities such as different brain regions. In these 
instances, one could perform intraspecimen comparisons between the motifs found in different communities.

Edge coloring. Adding edge colors increases the amount of computation time required for subgraph enu-
meration. However, differentiating edges by color is critical for these biological graphs where two edges can 
have markedly different properties. Table 4 gives a brief overview of the increase in running time when adding 

Table 2.  Parallelization computation improvements. We can significantly reduce the wall time required 
when enumerating subgraphs over a compute cluster by relabeling the vertex indices, as described later in the 
“Methods”. We reduced the maximum time for enumerating from a root vertex from just under three hours to 
slightly more than 1 min on the Drosophila dataset. The new enumeration order reduces the idle CPU time by 
over 665 h (97.9% decrease). The distribution of individual times for the naïve method is highly skewed to the 
right; 5% of nodes account for over 62% of computation time.

Naïve Algorithm 1

Mean time 8.21 s 8.54 s

Median time 0.92 s 5.80 s

Maximum time 9820.40 s 74.12 s

Wall time 175.20 min 15.78 min

Idle CPU time 680.44 h 14.18 h

Table 3.  Divide-and-conquer subgraph enumeration. A divide-and-conquer approach can significantly 
decrease the total amount of computation time required when enumerating very large connectomes, although 
at the expense of total subgraphs enumerated. These results come from k = 4 on the Drosophila dataset.

No. communities No. subgraphs Total time Cosine similarity

1 36,041,949,778 51.54 h 1.0000

5 16,111,511,700 23.49 h 0.9577

10 10,660,308,898 15.66 h 0.9207

15 8,103,662,469 11.37 h 0.8693

20 6,340,790,895 8.85 h 0.8244

25 4,563,678,610 6.41 h 0.7946

30 3,819,932,809 5.39 h 0.7915
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edge colors to the connectome. Typically, enumerating subgraphs with edge colors increases execution time by 
2− 2.5×.

Enumerated subgraph dataset. We publish exhaustive summaries of the subgraphs found over the 
eleven connectomes to encourage further analyses. For C. elegans AH and AM datasets, we found all subgraphs 
3 ≤ k ≤ 7 with and without edge colors. For the C. elegans D[1–8] datasets, we found all subgraphs 3 ≤ k ≤ 7 
(no edge colors available). Finally, for the Drosophila dataset, we enumerated subgraphs of 3 ≤ k ≤ 5 with and 
without edge colors. These datasets contain summaries of over 26 trillion subgraphs across all of the connec-
tomes, which required over 9.25 years of total computation time. We hope that this readily available dataset will 
encourage additional longitudinal studies across species, sexes, and developmental stages in the future.

Computational complexity. Time. Subgraph enumeration is a computationally expensive task, as we 
see the number of subgraphs quickly explode in the Drosphila dataset (Table 5). Although enumerating sub-
graphs of size three takes less than 10 min, the total CPU time required balloons to 2.77 years. Comparatively, 
we enumerate subgraphs for all of the C. elegans connectomes considerably quicker. The most time-intensive 
enumeration for these specimens was for subgraphs of size seven for the adult hermaphrodite (473 vertices, 6897 
edges), requiring 17.95 days computation time. We significantly decrease the wall time required by distributing 
computation across a compute cluster. For the Drosophila dataset, we compressed the 2.77 years of computation 
time to less than 7 days using ∼ 150 nodes.

Memory. One of the most significant benefits of the Kavosh algorithm is its memory  efficiency23. Empirically 
we found that our parallel implementation requires less than 800 MB of RAM for each generated process for sub-
graphs with six or fewer vertices. Our methods require more RAM for larger subgraphs, although all processes 
required less than 3 GB.

Discussion
Twelve years of onerous work yielded the first connectome in 1986 with 302 neurons and over 5000 synapses. 
Since then, advancements in image acquisition, neural reconstruction, and synapse detection have significantly 
reduced the amount of time needed to extract these wiring diagrams. A recent dataset of a fruit fly contains over 
21,000 neurons and 800,000 moderate and strong synaptic connections. We expect similar growth in the future 
as neuroscientists reconstruct brain tissue from even more evolved species such as bumblebees, shrews, and 
even humans. One goal of extracting these wiring diagrams is to create more faithful models of the brain and 
advance artificial intelligence. Thus, we will need to identify the motifs in these wiring diagrams that correspond 
to biologically essential functions.

Subgraph enumeration on these dense connectomes is a computationally expensive process that becomes 
infeasible even for small wiring diagrams with < 1000 nodes. We present a novel subgraph enumeration strategy 
for large connectomes that enables us to find frequent motifs. We parallelize our method to work across a dis-
tributed cluster and, when needed, use a two-step enumeration method that first divides the wiring diagram into 
communities. Building on previous enumeration strategies, we include methods for differentiating edge types 
to resemble the underlying biology better. We evaluate our methods on eleven connectomes from two species 
and provide summaries to the over 26 trillion enumerated subgraphs. Ten of these connectomes come from two 
existing longitudinal studies on C. elegans3,4. We hope that our published motifs will encourage further analysis 
into these eleven connectomes and longitudinal studies across brain regions within a specimen and even across 

Table 4.  Edge-coloring increased computation costs. Adding edge colors dramatically increases the running 
time for subgraph enumeration.

Dataset

No color/edge color

3 4 5 6 7

Drosophila 566.63/1053.48 s 2.15/4.39 days 2.77/6.12 year N/A N/A

C. elegans AH 0.37/0.77 s 14.75/31.78 s 727.96/1607.75 s 9.53/21.76 h 17.95/42.48 days

C. elegans AM 0.38/0.72 s 13.18/29.61 s 593.57/1296.49 s 7.13/16.38 h 12.54/30.11 days

Table 5.  Computational complexity. The number of subgraphs, and the corresponding amount of time needed 
for enumeration, greatly increases as k increases on large connectomes.

Motif size No. subgraphs CPU time

Drosophila

3 126,610,248 9.44 min

4 36,041,949,778 2.15 days

5 12,522,283,314,604 2.77 year
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different species. Some motifs are known to occur in high frequency across brain regions and animal species, 
such as the feed-forward loop and the reciprocal  connection3,20,40. We hope that publishing enumerated subgraphs 
in variable wiring diagrams will enable the discovery of other biologically essential motifs that span species and 
offer additional insights into the brain’s inner workings.

As connectomes continue to increase in the number of neurons and synaptic connections, we will need to 
explore new ways to enumerate subgraphs efficiently. By dividing the brain into individual regions with shared 
functionality, we can perform intraspecimen longitudinal studies while significantly reducing the computation 
time for enumeration. Eventually, however, we may need to consider approximate counting methods that sample 
subgraphs randomly to produce estimates for the motif counts. Although these methods may miss important yet 
rare motifs, such as fully connected cliques, they will reduce computational costs while still producing extensive 
summaries of the frequently occurring subpatterns in the brain.

Methods
Connectomes as graphs. We construct a graph G(V, E) from each connectome. Each neuron or cell rep-
resented in the connectome corresponds to a single vertex in the graph. Each vertex receives a unique index, 
although these indices do not contain biological significance. Edges in the graph indicate a synaptic connection 
between two cells. The edges can receive labels (or colors) that can correspond to synaptic strength (moderate 
or strong) or connection type (excitatory/inhibitory or chemical/electrical). We use k to refer to the size (i.e., the 
number of vertices) of a subgraph throughout the remaining sections.

Kavosh subgraph enumeration. We extend the Kavosh algorithm to enumerate all subgraphs in our 
 connectomes23. This algorithm is extremely fast and easily parallelizable. The Kavosh algorithm begins with the 
vertex v with the smallest index and enumerates all subgraphs of size k for which v belongs. The algorithms then 
updates v to be the vertex of the next smallest index, enumerates all subgraphs similarly, and so on. At any point, 
the algorithm ignores any neighbors of v that have a smaller index than v to avoid counting the same subgraph 
multiple times since each subgraph has a unique lowest-indexed vertex. This pruning does not miss subgraphs; 
every subgraph has a lowest value vertex v0 , and the subgraph will be found only during the enumeration rooted 
at v0 . The number of enumerated subgraphs grow quickly (Table 5) as k increases. Therefore, we cannot store 
each subgraph as a tuple of vertices as the disk storage quickly becomes too onerous.

Kavosh parallelization. Since the Kavosh algorithm enumerates all subgraphs rooted at a given vertex, 
we can divide subgraph enumeration tasks by vertex. We do not need to worry that this division will overcount 
individual subgraphs since a subgraph is only enumerated if the root vertex has the smallest index. Therefore, we 
can spawn off as many enumeration threads as vertices and guarantee complete enumeration with no subgraph 
duplication. However, given the large number of vertices, it is more practical to group together vertices into 
batch jobs.

The running time to enumerate all subgraphs from a given vertex varies greatly (Fig. 5A). In one large-scale 
connectome with over 20,000 neurons, enumeration of subgraphs of size 4 for some vertices took three or more 
hours. However, enumeration concluded for 95% of neurons in under 30s. Although such disparities do not 

Figure 5.  Enumeration times and neighborhood sizes. (A) There is a non-linear relationship between the 
number of neighbors and the running time required. We can reduce running time variance by reducing 
neighborhood size variance. (B) Although immediate neighborhood size is a good indicator of the number of 
enumerated subgraphs, there is little correlation between the extended neighborhood size and the number of 
subgraphs.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11349  | https://doi.org/10.1038/s41598-022-15027-7

www.nature.com/scientificreports/

significantly influence the total CPU time required, they can drastically alter the “wall time” required when run-
ning on a distributed cluster. In most large-scale wiring diagrams, the neuron indices are typically random—an 
artifact of the automatic reconstruction methods that gradually agglomerate an  oversegmentation8,9. Even with 
species with highly stereotyped connectomes, like C. elegans, we can merely assign a new “enumeration index” to 
each vertex that substitutes the given neuron index. Therefore, we selectively choose the “enumeration indices” 
for each vertex to reduce computation time variance.

For each vertex v, the number of neighbors of v with a larger enumeration index strongly indicates the number 
of subgraphs rooted at that vertex, and consequently, the running time required to enumerate from v (Fig. 5A). 

Intuitively, we know that if there are n neighbors of v with a higher index, at a minimum, there are 
(

n

k − 1

)

 

subgraphs contained within the immediate neighborhood alone. We only consider the neighborhood of vertices 
with larger enumeration indices because Kavosh does not enumerate subgraphs rooted at v that include vertices 
with lower-valued indices. When we use the pre-existing neuron indices as the enumeration index, a few unlucky 
neurons have a low index and an exceptionally high degree. These corresponding vertices dominate the computa-
tion time. Therefore, we greedily generate the vertex indices using Algorithm 1. In summary, we assign an 
enumeration index of 0 to the vertex v0 that has the smallest edge degree. We then decrement v0 ’s neighbors’ 
degrees; enumeration from those vertices will not consider subgraphs that include v0 . Next, we choose the vertex, 
v1 , with the lowest remaining edge degree, and similarly update the remaining vertices’ neighborhoods. We 
continue this process until each vertex has an enumeration index.

One might expect that we could gather more information about the possible running times by considering 
second-order neighborhoods that include neighbors of neighbors. However, we found little correlation between 
the number of subgraphs to enumerate and second-order neighborhoods. Intuitively, vertices on the periphery of 
a large clique will have a small first-order neighborhood and a substantial second-order neighborhood (Fig. 5B, 
purple vertex). However, the number of subgraphs rooted at the peripheral vertex will be significantly less than 
its neighbor since every subgraph from the peripheral vertex must also include its neighbor. Previous research 
has noted the existence of over ten such cliques with twenty or more neurons in the Drosophila  connectome20.

Community‑based enumeration. Even with smarter parallelization strategies, enumerating all sub-
graphs for even k = 5 becomes quickly infeasible for large-scale connectome graphs. For a representative con-
nectome with approximately 22,000 neurons and 820,000 edges, subgraph enumeration started at 9.44 min and 
2.15 days for motifs of size three and four, respectively, but 2.77 years for motifs of size five (Table 5). Considering 
that identifying motifs often requires subgraph enumeration on randomized graphs of a similar size, this compu-
tational cost becomes overbearing even across a large distributed compute cluster. Therefore, we allow users to 
cluster the vertices in the graph into communities and perform subgraph enumeration within each community. 
A downside of using clustering is that we miss enumerating subgraphs that span more than one community. 
However, we can still identify the frequently occurring motifs within clusters and contrast subgraph counts 
between different clusters.

For graph clustering, we use the METIS algorithm, which divides an input graph into a predetermined num-
ber of  clusters43. This algorithm has the desirable property of producing relatively evenly sized communities. 
Other such algorithms provide unequal clusters, which significantly reduces the effectiveness of the divide-
and-conquer strategy. Although we use an automatic clustering technique, future analyses could segment the 
connectomes based on biological priors such as brain regions. With a divide-and-conquer clustering approach, 
future research could contrast subgraph distributions based on the brain regions themselves.

Edge coloring. In the innermost loop of subgraph enumeration, we must identify each subgraph’s canonical 
form to classify a given collection of connected vertices correctly. Although it is not known if the graph isomor-
phism problem is NP-Complete, there are currently no polynomial time algorithms, and the current best prov-
able complexity is exp

(

O (
√

n log n)
)

44. Many motif discovery algorithms use the nauty library for graph 
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isomorphism. This highly optimized library returns the canonical labeling of a vertex-colored  graph45. However, 
nauty does not currently support edge colors without some manipulation of the input, requiring an expansion 
of the graph size to O

(

n log d
)

 , where d is the number of possible edge  colors22. Thus, although many motif 
discovery algorithms allow for vertex colors, they typically do not consider different colored edges. However, 
different edge types are essential for brain networks and differentiate between excitatory and inhibitory connec-
tions and chemical and electrical (gap junction) synapses. Additionally, some pairs of neurons will have multiple 
pathways between them (e.g., chemical synapses and gap junctions). We can assign a new edge color to indicate 
neurons that have multiple types of connections. Although the Kavosh algorithm does not natively support 
edge colors, the nauty documentation briefly discusses how to add edge  colors22. We modify the enumerated 
subgraphs before generating the canonical labeling based on the nauty documentation.

Implementation details. We implement our subgraph enumeration algorithm in C++ and provide a 
Python wrapper. We use the nauty22 library to generate canonical labelings for each enumerated subgraph. 
We ran timing analysis on a distributed cluster with Intel E5-2695 v2 processors at 2.40 GHz 12 core, with 90 
gigabytes of RAM. All code and enumerated subgraph results are publicly available at rhoana.org/subgraph_
enumeration.

Data availibility
We publish the eleven connectomes analyzed on our webpage (rhoana.org/subgraph_enumeration), as well as 
a link to the motif summaries. Note, the number of nodes and edges on the male/hermaphrodite longitudinal 
study differ from the original publication of these  datasets3. Our connectomes come directly from the adjacency 
matrices in Supplementary Information 5, corrected version July 2020. These datasets contain extrapolated 
information from other C. elegans specimens for cells missing from the reconstruction of Cook et al.
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