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Dislocation assemblies exhibit a jamming or yielding transition at a critical external shear stress value

� ¼ �c. Here we study the heterogeneous and collective nature of dislocation dynamics within a crystal

plasticity model close to �c, by considering the first-passage properties of the dislocation dynamics. As

the transition is approached in the moving phase, the first-passage time distribution exhibits scaling, and a

related peak dynamical susceptibility ��
4 diverges as ��

4 � ð�� �cÞ��, with � � 1:1. We relate this

scaling to an avalanche description of the dynamics. While the static structural correlations are found to be

independent of the external stress, we identify a diverging dynamical correlation length �y in the direction

perpendicular to the dislocation glide motion.
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The mechanical behavior of crystalline solids subject to
an external shear stress � is controlled by a finite yield
stress �c: For stresses below it, only elastic or reversible
deformation of the material takes place, while sustained
plastic or irreversible deformation mediated by dislocation
motion is observed for �>�c. The basic phenomenology
of two states with different rheology is similar also for
many amorphous materials ranging from foams to amor-
phous and granular media, even though the microscopic
mechanisms responsible for a transition to ‘‘flow’’ are not
yet well understood. The concept of jamming has been
introduced to comprehend the observed phenomenology:
In a finite region of the parameter space (spanned by
control variables such as temperature, density, and an
external force), due to a ‘‘cage effect,’’ or self-induced
constraints on the motion of the system constituent parti-
cles, the phase space dynamics gets restricted, i.e., jammed
[1–4]. For two-dimensional ensembles of crystal disloca-
tions, a yielding transition at a finite �c has been estab-
lished, even in the absence of any external sources of
disorder [5]. The crucial mechanism here is the generation
of effective disorder in the local stress field, due to con-
strained dislocation motion by the combined effect of the
slip geometry and the long-range anisotropic dislocation-
dislocation interactions. These are also manifest in the
formation of metastable structures such as dislocation di-
poles and walls.

On approaching the jamming transition from the moving
phase, the dynamics generally becomes increasingly het-
erogeneous. A growing dynamical correlation length char-
acterizing spatial and temporal correlations has been
observed for granular systems [6,7], as well as on ap-
proaching the glass transition of molecular liquids and
colloidal suspensions [8]. In this work, we consider dis-
location jamming in a similar vein. Known features of the
2D discrete dislocation dynamics (DDD) model studied

here are a relaxation of the strain rate or an Andrade law:
Close to � ¼ �c, it follows a power law _�� t��, � � 2=3
[5]. The steady state strain rate displays a nonlinear rheo-
logical behavior, _�� ð�� �cÞ�, with � � 1:8 [5]. The
model also reproduces the experimentally observed scale-
free size distributions of avalanches of plastic deformation
[9]. Similar DDD models are used also in many materials
science applications [10]. The question is now whether one
can establish the jamming or yielding transition as a
second-order phase transition. This would imply the exis-
tence of a length scale, the correlation length, diverging at
the transition point. The dislocation system nonequilibrium
transition is particular, since the temperature is included
only indirectly via the dislocation mobility and is thus
irrelevant.
The avalanches exhibited by dislocation assemblies [9]

are suitable candidates for fundamental ‘‘dynamical het-
erogeneities’’ or localized events. We define appropriate
statistical quantities to characterize the dynamics via time-
dependent first-passage probabilities, which measure the
likelihood that a dislocation becomes liberated from the
confining stress field over an observation scale. The first-
passage distributions are found to display scaling close to
the transition, and, analogously to other jamming systems,
the peak value of a dynamical susceptibility and a dynami-
cal correlation length grow on approach and diverge at
� ¼ �c. At the same time, static correlations describing
the dislocation structures are found to be virtually inde-
pendent of the external stress. We also connect the results
to an avalanche description of the dynamics.
The DDDmodel represents a 2D cross section (xy plane)

of a 3D single crystal with a single slip geometry [5,9,11].
The dislocations are straight parallel edge ones, with the
dislocation lines along the z axis. The N pointlike disloca-
tions glide along directions parallel to their Burgers vectors
~bn ¼ snb ~ux, with sn ¼ �1 and ~ux the unit vector in the
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x direction. Equal numbers of dislocations with positive
and negative Burgers vectors are considered. Dislocation
climb is excluded for simplicity. The dislocations interact
with each other through their anisotropic long-range stress
fields, �sð~rÞ ¼ Dbxðx2 � y2Þ=ðx2 þ y2Þ2, where D ¼
�=2	ð1� 
Þ, with � the shear modulus and 
 the mate-
rial’s Poisson ratio. The dynamics is taken to be over-
damped with a linear force-velocity relation, with the
equations of motion

��1
d vn

b
¼ snb

�X
m�n

sm�sð~rnmÞ þ �

�
; (1)

where vn is the velocity of the nth dislocation, �d is the
dislocation mobility, sn is the sign of the Burgers vector of
the nth dislocation, and � is the applied external shear
stress. The long-range interaction forces are computed by
imposing periodic boundary conditions in both x and y
directions. The equations of motion are integrated numeri-
cally with an adaptive step size fifth-order Runge-Kutta
algorithm in dimensionless units by measuring lengths in
units of b, times in units of 1=ð�dDbÞ, and stresses in units
of D. If the distance between two dislocations of opposite
sign gets smaller than 2b, they are removed, a process
reminiscent of the annihilations occurring in real crystals.
The simulations are started from a random initial configu-
ration of N0 dislocations within a square cell of linear size
L. The system is first let to relax with � ¼ 0, until it
reaches a metastable dislocation arrangement. During
this relaxation, a significant fraction gets annihilated. We
take L ¼ 200b and 300b, with N0 ¼ 1600 and 3600, re-
spectively. After the relaxation, the external stress is
switched on, and the evolution of the system is monitored.
For �>�c � 0:025 [12], the system eventually reaches a
steady state, with the strain rate _��P

nbnvn fluctuating
around a constant mean value. The steady state consists of
N � 375 dislocations for L ¼ 200b and N � 850 for L ¼
300b [13].

To characterize the heterogeneous dynamics we first
consider the first-passage time (tfp) distribution of disloca-

tions in the moving steady state. tfp is defined as the time at

which a dislocation first moves across a distance l from
some initial position and thus becomes liberated from a
confining stress field at this scale. Given the nonlinear
stress dependence of the steady state strain rate [5], the
mean first-passage time is expected to behave like htfpi �
l=hvi � lð�� �cÞ��. Assuming �tfp � htfpi, one can

write

Pðtfp; l; �Þ ¼ 1

lð�� �cÞ��
F
�
tfp � lð�� �cÞ��

lð�� �cÞ��

�
: (2)

Figure 1 shows a data collapse according to Eq. (2) with
� ¼ 1:8, in good agreement with the scaling of strain rate
with the applied stress [5]. The scaling function F ðxÞ
exhibits a maximum and a tail, which does not contribute
much to the typical escape characteristics.

A cumulative version of PðtfpÞ is the instantaneous self-
overlap order parameter [7] Qtðl; �Þ ¼ 1=N

PN
n¼1 wn,

where wn ¼ 1 if the displacement of dislocation n remains
less than l across the time interval t ! tþ � and equals 0
otherwise. The first two moments

Qðl; �Þ ¼ hQtðl; �Þi; (3)

�4ðl; tÞ ¼ N½hQtðl; �Þ2i � hQtðl; �Þi2� (4)

ofQtðl; �Þ (calculated from sample-to-sample fluctuations)
are then used to characterize the dynamics. As is custom-
ary for similar problems, we consider here only samples
that are still active at the observation time [14]. By con-
struction, Qðl; �Þ decays from one to zero as a function of
�, while the four-point dynamic susceptibility �4ðl; �Þ ex-
hibits a peak at an intermediate � ¼ ��4 and vanishes for
both early and late times; see Fig. 2.Q� ¼ Qðl; ��4Þ � 0:5 is
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FIG. 1 (color online). Scaled first-passage time distributions
according to Eq. (2), for various � and l, with � ¼ 1:8.
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FIG. 2 (color online). Top: The average self-overlap order
parameter Qðl; �Þ for various values of � as a function �, for
l ¼ 1. Bottom: The corresponding four-point dynamic suscepti-
bilities �4ðl; �Þ. The inset shows evidence of a data collapse of
�4ð�Þ, obtained by rescaling the data with the scaling forms of
htfpi and ��

4, with � ¼ 1:1 and � ¼ 1:8.
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nearly a constant. The peak value ��
4 of �4ðl; �Þ depends on

the proximity of the critical stress �c and has been argued
to be related to the typical number of particles (here dis-
locations) in a correlated fast-moving domain or heteroge-
neity [7].

In the simulations, we observe a growing ��
4 as �c is

approached from above, with an apparent divergence at
� ¼ �c � 0:025; see Fig. 3. For external stresses � �
0:07, the stress dependence of ��

4 can be characterized by
a power law ��

4 � ð�� �cÞ��, with � � 1:1. This result
does not exhibit any significant l dependence. The scaling
of ��

4 can be connected to the avalanche dynamics close to
the transition by directly computing the variance of Qðl; �Þ
at ��4. Consider the distribution of avalanche sizes s with a
�-dependent cutoff: PðsÞ ¼ s��f½s=ð�� �cÞ��. By as-
suming that the number of dislocations n swept to a
distance l during an avalanche obeys hni � hsi and using
the condition Mhni ¼ N=2 (arising from the observa-
tion that Q� � 0:5) to estimate the number M of indepen-
dent avalanches occurring up to the delay time ��4, we
obtain ��

4 ¼ Nð�Q�Þ2 � Nð ffiffiffiffiffi
M

p hni=NÞ2 � hni=2� ð��
�cÞ�ð2��Þ. As hni grows on approaching �c, the number
M of heterogeneities contributing to ��

4 decreases: An
estimate for L ¼ 300b leads to M � 19 for � ¼ 0:06
andM � 6 for � ¼ 0:037. As the avalanche size exponent
is close to the mean field � � 1:5 [11], � � 1 would
indicate  � 2, again consistent with the mean-field-like
scenario [15]. Incorporating a frictional stress �P to model
the Peierls barrier (relevant for bcc metals), the same
results hold qualitatively true up to a �P comparable to
the yield stress �c. The yield stress for �P > 0 is simply
shifted such that �̂c ’ �c þ �P [16].

To further explore the possibility of identifying a diver-
gent nonequilibrium correlation length, we consider the

conditional probability gdð~r; lÞ ¼ P½wðl; ��4; ~rÞ ¼
0jwðl; ��4; 0Þ ¼ 0� that a dislocation at a position ~r has

moved at least a distance l up to a delay time ��4, given
that a dislocation at the origin has done so. gdð ~r; lÞ provides
a measure of the spatial structure of the typical heteroge-
neities contributing to ��

4. Figure 4(a) and 4(b) shows

examples of this dynamical correlation function for stress
values � ¼ 0:06 and � ¼ 0:04, respectively. We focus
here for simplicity on the case l ¼ 1. Notice that closer
to jamming, correlations clearly extend further in the y
direction, while we could not identify a clear trend in the x
direction. At the same time, the static density-density
correlation function gð ~rÞ, computed from snapshots of
the dislocation configurations in the steady state, does
not show any significant dependence on � [17,18]. To
estimate the dynamical correlation length, we fitted an
exponential function expð�y=�yÞ to the gdð ~rÞ data aver-

aged over a narrow strip along the y direction [19]. This
leads to a divergent stress dependence of �y � ð��
�cÞ�
y , with 
y � 1; see Fig. 5. A similar analysis in the

x direction is less conclusive. Because of the tendency of
dislocations to form wall-like structures, the statistics is
significantly worse in the x direction, and no clear trend is
visible for the evolution of �x with � (inset in Fig. 5): �x

appears to have a relatively large stress-independent value
around �x � 35b [20]. In 3D DDD simulations [21], ava-
lanches have been observed to be characterized by a la-
mellar shape, something that could be related to this large
value of �x. Indications of similar anisotropic avalanches
have been observed in a continuum model of yielding [22].
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FIG. 3 (color online). The peak value ��
4 of the dynamic

susceptibility as a function of the distance from the critical stress
for different system sizes L and length scale parameters l. The
solid line corresponds to a power law ��

4 � ð�� �cÞ��, with

� ¼ 1:14. The inset shows the same data as a function of � with
a linear scale.

FIG. 4 (color online). The dynamic and static correlation
functions (L ¼ 300b and l ¼ 1). In (a) and (b) we show the
dynamic correlation functions gdð~r; l ¼ 1Þ for � ¼ 0:06 and
� ¼ 0:04, respectively. (c) and (d) show the static correlation
function gð~rÞ for the same stress values [� ¼ 0:06 in (c) and
� ¼ 0:04 in (d)].
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Notice also that the observed scaling of �y is consistent

with the mean field cutoff scaling of the avalanche size
distribution, assuming that �y measures the linear size of a

typical avalanche in the y direction.
In summary, we have shown that the dislocation jam-

ming transition is accompanied by a divergent dynamic
susceptibility and a divergent correlation length. This scal-
ing, which we relate to the avalanche dynamics of the
system, is purely dynamical in nature: The static correla-
tion function characterizing the dislocation structures does
not exhibit any significant dependence on �. The observed
exponent values � � 
y � 1 indicate that the heterogene-

ities are compact and characterized by a single diverging
correlation length in the y direction, thus clearly demon-
strating that the dislocation jamming transition is indeed a
true nonequilibrium second-order phase transition. It
would be interesting to test similar avalanche-based ideas
also for plasticity of amorphous solids [23]. Notice that,
despite similarities with other relevant systems such as
granular media, there are also significant differences: In
the dislocation system the dynamics stops due to the for-
mation of various metastable dislocation structures (di-
poles, walls, and more complicated multipolar structures)
arising from the combination of anisotropic long-range
dislocation-dislocation interactions and restricted disloca-
tion motion along a single slip direction. On the other hand,
e.g., in granular systems, jamming takes place when grains
get stuck by short-range contact forces within cages
formed by their nearest neighbors, a process that is not
accompanied by any large scale grain structures. The ob-
servation that in the present case the results seem to be
independent of l close enough to the transition suggests
that, contrary to many other systems where l needs to be
tuned to a specific value related to an underlying ‘‘cage
size,’’ such a typical microscopic length does not exist
here. This indicates that the same scale-free property

would apply also for the force landscape experienced by
the dislocations, with the first-passage properties related to
the time it takes for the force landscape to deform on the
observation scale, due to the avalanche dynamics.
D. J. Durian and M. Zaiser are thanked for useful com-

ments. We acknowledge the support of the Academy of
Finland (via a postdoctoral grant and via the Center of
Excellence program) and the European Commissions
NEST Pathfinder program TRIGS under Contract
No. NEST-2005-PATH-COM-043386. M.-C.M. acknowl-
edges the support of the Ministerio de Educación y Ciencia
(Spain) under Grant No. FIS2007-66485-C02-02 and the
Generalitat de Catalunya and the Ministerio de Educación
y Ciencia (Programa I3).

[1] Jamming and Rheology, edited by A. J. Liu and S. R.
Nagel (Taylor & Francis, London, 2001).

[2] G. Biroli, Nature Phys. 3, 222 (2007).
[3] C. S. O’Hern et al., Phys. Rev. Lett. 88, 075507 (2002).
[4] Jamming, Yielding and Irreversible Deformation in

Condensed Matter, edited by M. C. Miguel and J.M.
Rubi, Lect. Notes Phys. Vol. 688 (Springer, Berlin, 2006).

[5] M. C. Miguel et al., Phys. Rev. Lett. 89, 165501 (2002).
[6] A. S. Keys et al., Nature Phys. 3, 260 (2007).
[7] A. R. Abate and D. J. Durian, Phys. Rev. E 76, 021306

(2007).
[8] L. Berthier et al., Science 310, 1797 (2005).
[9] M. C. Miguel et al., Nature (London) 410, 667 (2001).
[10] L. Nicola, E. Van der Giessen, and A. Needleman, J. Appl.

Phys. 93, 5920 (2003).
[11] M. C. Miguel et al., Mater. Sci. Eng. A 309–310, 324

(2001).
[12] In Ref. [5], �c � 0:01, but here we employ periodic

boundary conditions in both x and y directions, increas-
ing �c.

[13] Because of the scale-free dislocation interactions, our
results hold also for other dislocation densities.

[14] M.M. de Oliveira and R. Dickman, Phys. Rev. E 71,
016129 (2005).

[15] M. Zaiser, B. Marmo, and P. Moretti, Proc. Sci.,
SMPRI2005 (2005) 053.

[16] L. Laurson, M.C. Miguel, and M. J. Alava (to be pub-
lished).

[17] M. Zaiser, M. C. Miguel, and I. Groma, Phys. Rev. B 64,
224102 (2001).

[18] We consider the pair correlation of dislocations irrespec-
tive of the sign of their Burgers vector, while in Ref. [17]
dislocations of the same and different signs were consid-
ered.

[19] Different strip widths and averaging over a narrow angle
yield similar results.

[20] Note that we use periodic boundary conditions and that �x

is not much smaller than L=2.
[21] F. F. Csikor et al., Science 318, 251 (2007).
[22] M. Zaiser, Adv. Phys. 55, 185 (2006).
[23] A. Lemaitre and C. Caroli, Phys. Rev. Lett. 103, 065501

(2009).

1.010.0
σ-σ

c

10

100
ξ y

L=200b
L=300b
PL fit with ν

y
=1.06

0.035 0.04 0.045
σ

20

40

60

ξ x

FIG. 5 (color online). Main figure: The dynamic correlation
length �y in the y direction, exhibiting a power law divergence

close to �c. Inset: The dynamic correlation length �x in the x
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