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We present a modeling framework for dynamical and bursty contact networks made of agents in social
interaction. We consider agents’ behavior at short time scales in which the contact network is formed by
disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated
to being part of a group or vice versa. Different distributions of contact times and intercontact times between
individuals are obtained by considering transition probabilities with memory effects, i.e., the transition prob-
abilities for each agent depend both on its state �isolated or interacting� and on the time elapsed since the last
change in state. The model lends itself to analytical and numerical investigations. The modeling framework can
be easily extended and paves the way for systematic investigations of dynamical processes occurring on rapidly
evolving dynamical networks, such as the propagation of an information or spreading of diseases.
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Recently, technological advances have made possible the
measure of social interactions in groups of individuals, at
several temporal and spatial scales and resolutions showing
that human activity obeys scaling law and statistical features
which reveal long time correlations and memory effects. Evi-
dence comes from data on email exchanges �1–3�, mobile
phone communications �4,5�, spatial proximity �6–9�, web
browsing �10�, and even face to face interaction �11–13�. In
this respect the traditional framework of models used for risk
assessment and communication, which describe human ac-
tivity as a series of Poisson distributed processes, needs to be
changed in favor of new models which take into account the
occurrence of burstiness in many aspects of human activity.

Social interactions give rise to social �14,15� and collabo-
rative �16� networks characterized by a complex evolution.
In these networks, links are constantly created or terminated
and the social network of an individual evolves at different
levels of organization. After the pioneering papers on com-
plex networks showing that many social networks are small
world and display heterogeneous degree distributions �17�
and that these network topologies strongly influence the dy-
namics taking place on the networks �18�, a number of pa-
pers have been devoted to modeling the dynamics of social
interactions. Issues investigated in this context are in particu-
lar community formation �19,20� and the evolution of adap-
tive dynamics of opinions and social ties �21–24�.

The evidence coming from the analysis of social contact
data calls for new frameworks that integrate these models
with the bursty character of social interactions. The duration
of contacts between individuals or groups of individuals dis-
plays indeed broad distributions, as well as the time intervals
between successive contacts �6,11,12,25�. Such heteroge-
neous behaviors have strong consequences on dynamical
processes �4,26� and should therefore be correctly taken into
account. It is therefore necessary to introduce this fundamen-
tal aspect on human activity in models of social interactions,
possibly reconstructing then social networks by aggregating
the network of contacts over a certain period �26–28�. The
modeling literature in this area being still in its infancy
�25,29–32�, it is important to develop simple, generic, and

easily implementable models of dynamical networks which
reproduce the empirical facts observed in contact duration
and intercontact intervals.

In this Rapid Communication, we take a step in this di-
rection, focusing on short time scales such as the ones in-
volved when people interact in social gatherings �e.g., scien-
tific conferences�. We define a simple agent-based model for
rapidly evolving sparse dynamical networks aimed at de-
scribing the dynamics of human social interactions in the
context of small discussion groups. In particular we are in-
terested in investigating basic mechanisms which could be
responsible for various contact duration distributions. The
model is kept simple so that it can be easily simulated. It is
accessible to analytical investigations in a certain number of
cases. It can also be easily extended or modified. For in-
stance, the population of agents is considered homogeneous
�i.e., every agent is assumed to have the same dynamical
parameters� and an extension to heterogeneous populations
can easily be envisioned.

The dynamical network under study is formed by discon-
nected groups of agents which evolve by successive merg-
ings and splittings. In particular at each time step an agent
can either leave or remain in its group or introduce an iso-
lated agent to its group. The general formulation of the
model allows us to describe a variety of behaviors of the
dynamical networks. In particular, the duration of contacts
between individuals can display either narrow or broad dis-
tributions. A narrow distribution is for instance obtained by
simply assuming that each agent leaves a group or invites a
new agent in its group with a time-independent probability.
On the contrary, broad distributions of contact durations,
similar to those observed in empirical studies �6–8,11,25�,
are obtained through a reinforcement dynamics of the inter-
action that can be summarized as “the longer an agent inter-
acts with a group, the less it is likely to leave the group; the
more the agent is isolated the less likely it is to interact with
a group.” This dynamics, reminiscent of the preferential at-
tachment in the context of complex networks �33�, could be
argued to stem from Hebbian-like mechanisms at the under-
lying cognitive level. In general, for both narrow and broad
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distributions of interaction times, larger groups are found to
be less stable than smaller ones. This is also observed in the
data �11� and can be simply explained: the lifetime of a
group depends on the decisions of all its members. In a first
approximation these decisions correspond to independent
events, therefore groups with more agents become less
stable. Interestingly, our model also exhibits a dynamical
transition toward the formation of large size group. This tran-
sition supported by some measurements in animal behavior
�34,35� is not observed in human behavior and corresponds
thus to parameter values where the model loses its applica-
bility to the description of human social interactions. Note,
nevertheless, that the formation of large social organizations
and cities demonstrates that in humans large group formation
occurs at a different level of organization.

The model we propose considers a fixed population of N
agents, interacting in a limited space, as, for example, in a
conference venue �8,9,11–13�. Therefore, in a first approxi-
mation we neglect the spatial dispersion of the agents and
assume a well mixing dynamics. Each agent can either be
isolated or belong to a group with other agents, and the
groups define an instantaneous contact network. During the
dynamics, agents can join other agents or on the contrary
leave the group they belong to. More precisely, each agent i
is characterized by two variables: the number pi of other
agents with which it is in contact �i.e., its degree in the net-
work� and the time ti at which pi last evolved. At each time
step t, an agent i is chosen at random. If i is isolated �pi
=0�, i changes its state with probability b0f�t , ti�. In this case,
another isolated agent j is chosen with a certain probability
��t , tj�, and i and j form a pair �pi→1, pj→1 and ti→ t, tj
→ t�. If on the other hand i is part of a group G of size greater
than one �i.e., i has degree p�0�, a change in state occurs
with probability b1f�t , ti�. When this occurs, agent i can ei-
ther leave the group �probability �� or introduce an isolated
agent in the group �probability 1−��. If i leaves the group G
and becomes isolated, pi→0, and pj→p−1 ∀ j�G \ �i�, and
as a consequence of this event the time of the modified nodes
is reset to t, i.e., t�→ t ∀ � � G. If i introduces to the
group an isolated agent j, chosen again with probability
��t , tj�, then p�→p+1 ∀��G� �j� and each agent � in
G� �j�, changing state at time t, sets t�→ t. The parameters
b0 and b1 determine the tendency of the agents, respectively,
isolated or in a group, to change their state, while � controls
the tendency either to leave groups or on the contrary to
make them grow. The model’s dynamical behavior depends
also on the functions f and �.

In order to make contact with empirical data, the main
quantities of interest concern the time spent by agents in
each state, the duration of contacts between two agents and
the time intervals between successive contacts of an agent.
We can gain insight into these properties by writing rate
equations for the evolution of the number Np�t , t0� of agents
which are at time t in state p since t0:

�tN0�t,t0� = −
N0�t,t0�

N
b0�f�t,t0� + ��t,t0��r�t� + �1 − ����t���

+ �
p�1

�p,0�t��t,t0
,

�tN1�t,t0� = − 2
N1�t,t0�

N
b1f�t,t0� + ��0,1�t� + �2,1�t���t,t0

,

�tNp�t,t0� = − �p + 1�
Np�t,t0�

N
b1f�t,t0� + ��p−1,p�t� + �p+1,p�t�

+ �0,p�t���t,t0
, p � 1,

where �p,q�t� is the average number of agents going from
state p to state q at time t, and

r�t� =

�
t�

N0�t,t��f�t,t��

�
t�

N0�t,t����t,t��
, �1�

��t� =

�
p�1,t�

Np�t,t��b1f�t,t��

�
t�

N0�t,t��b0��t,t��
, �2�

where in the sums t�	 t. These equations can be simplified
and solved in certain cases, and the distribution Pp�
� of
�normalized� times 
= �t− t0� /N in which an agent remains in
a given state p can then be deduced. Let us for definiteness
assume that f and � are stationary functions so they depend
only on t− t0; it is then natural to look for a stationary state,
reached at large enough times, such that �, r, ��p,q� are con-
stants and Np�t , t0�=Np�t− t0�. If for instance f is a constant,
it is easy to see that the �Np�p�N decay exponentially with
time so that the �Pp�
��p�0 are as well exponentially decay-
ing functions.

We consider the more interesting case of f and � decay-
ing with t− t0: the more an agent is in a state, the less prob-
able it becomes to change state, as previously described in
the self-reinforcement mechanism. For sake of simplicity, we
focus on the case f =�, so that r=1, which allows us to
simplify the computations �36�. Computations can be carried
out completely for instance in the case f�t− t0�=��t− t0�
= �1+
�−1, where 
= �t− t0� /N. The choice of this scaling is
consistent with the scaling of email communications and
other human activity �2,10�. In particular, Np�t� for p�1 is
readily seen to decay as a power law with exponent �p
+1�b1. More involved computations are needed to obtain the
decay exponent of N0. Writing ��p,q� as functions of
�Np�p�N, f and �, we can obtain recurrence relations for
��p,0�p�0 and deduce �= �2�−1�−1 so that

P0�
� � �1 + 
�−1+b0�3�−1�/�2�−1�, �3�

Pp�
� � �1 + 
�−1+�p+1�b1, p � 1. �4�

The previous analytical results are obtained under the condi-
tions b1�1 /2, ��1 /2, and b0� �2�−1� / �3�−1�, which de-
termine the phase diagram of the model: outside these
boundaries, the hypothesis of stationarity is violated.

It is also possible to compute the average state of the
agents in the stationary state as
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�p	 =
�1,0

2�
�
i�1

i�i + 1�
�i + 1�b1 − 1


1 − �

�
�i−1

, �5�

where

�1,0 = � 1

2
b0 −
2� − 1

3� − 1
� +

1

2�
�
i�2

i

ib1 − 1

1 − �

�
�i−2


−1

.

For �→0.5+ the average group size �p	 diverges indicating
that, in this limit, the nonstationary state is dominated by the
formation of a large group of size O�N�.

We have performed numerical simulations of dynamical
networks generated by the present model, with different f , �,
values of the parameters b0, b1, �, and sizes N. We will here
show the simulations corresponding to f =�= �1+
�−1 in or-
der to compare with the analytical predictions presented
above. We first show in Fig. 1 the average agent state as a
function of the different parameters, recovering the behavior
predicted in Eq. �5�. The average state increases with b0,
decreases with �, and presents a nonmonotonous behavior
with b1. Figure 2 displays the distributions �Pp�0�p�4 of time
spent in the various states. These distributions are power
laws, in perfect agreement with the analytics. We also note
that, for f =�= �1+
�− with �1, �Pp�
��p�N can be shown

analytically to become either stretched exponentials �	1�
or power laws ��1�, and we have also checked this behav-
ior numerically. The broadness of the distributions is there-
fore not limited to the particular case described above but is
quite robust with respect to changes in the microscopic rules.

In Fig. 3, we also show the distribution of contact dura-
tions between two agents �which is different from P1: two
agents remain in contact when they are joined by a third but
leave the state p=1�, of triangle durations, and of the time
intervals between the starting times of two successive con-
tacts �11�. This last quantity is highly relevant in the context
of causal processes, as it gives the time scale on which an
agent can propagate an information or a disease after receiv-
ing it. All these distributions are broad, similarly to empirical
observations �11,25�.

Let us finally mention that, when considering parameter
values outside the validity of the stationary state analytical
computations, different scenarios are observed, depending on
�: if ��0.5, the average state slowly decreases �toward 0 if
b0	0.5, and 1 if b1	0.5� while, for �	0.5, a large cluster
appears, with size is proportional to N, and lasting on a di-
verging time scale. Interestingly, even in this nonstationary
case, the shape of the distributions Pp�
� may remain station-
ary �not shown�. This is particularly relevant as most empiri-
cal data are necessarily obtained in nonstationary environ-
ments.

In this Rapid Communication, we have proposed a mod-
eling framework for dynamical networks in the context of
interacting social agents. Both broad and narrow distribu-
tions can be obtained, corresponding to different social situ-
ations. The present framework can be developed in several
research directions. First, many variations in the microscopic
rules may be thought of and implemented, in order to model
more precisely mechanisms of social contacts in various con-
texts or even of animal behavior. For instance, merging and
splitting of groups could be introduced, as well as heteroge-
neity between agents to take into account different propensi-
ties to interact or to create groups. Moreover, it will be in-
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FIG. 1. Average state �p	 in the stationary state for different sets
of parameters and a population of N=2000 agents. �a� b1=�=0.7;
�b� b0=�=0.7; �c� b0=b1=0.7. In �c� we observe the divergence of
the average group size as �→0.5+. The lines show Eq. �5�.
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FIG. 2. �Color online� Distribution Pp�
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an agent does not change connectivity p. N=10 000, b0=b1=0.7,
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FIG. 3. �Color online� Distributions of �a� duration of a contact
between two agents; �b� time intervals between the beginnings of
successive contacts of an agent A with two different agents B and
C; �c� duration of a triangle. b0=0.7, �=0.8, b1=0.6 and 0.9. N
=1000, T=105N.
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teresting to investigate how the properties of the interaction
durations shape the resulting aggregated networks on various
time scales. Finally, model dynamical contact networks can
be used as a support for the simulation of dynamical pro-
cesses taking place on dynamical networks, such as informa-
tion spreading in a conference: the spreading process, al-
though taking place on an extremely sparse network which is
at any time formed of disconnected groups, may overall con-
cern the whole population of agents, thanks to the dynamics
of the agents who move from one group to another. The fact

that the various network characteristics �such as the broad-
ness of the distribution of contact durations and intercontact
times� can be controlled by changing the model’s parameters
will then make it possible to understand better the effect of
these characteristics on the dynamical processes under scru-
tiny.
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