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ABSTRACT
Several recent advancements in Machine Learning involve black-
box models: algorithms that do not provide human-understandable
explanations in support of their decisions. This limitation ham-
pers the fairness, accountability and transparency of these models;
the field of eXplainable Artificial Intelligence (XAI) tries to solve
this problem providing human-understandable explanations for
black-box models. However, healthcare datasets (and the related
learning tasks) often present peculiar features, such as sequential
data, multi-label predictions, and links to structured background
knowledge. In this paper, we introduceDoctor XAI, a model-agnostic
explainability technique able to deal with multi-labeled, sequential,
ontology-linked data. We focus on explaining Doctor AI, a multi-
label classifier which takes as input the clinical history of a patient
in order to predict the next visit. Furthermore, we show how exploit-
ing the temporal dimension in the data and the domain knowledge
encoded in the medical ontology improves the quality of the mined
explanations.
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1 INTRODUCTION
The recent availability of large amounts of electronic health records
(EHRs) provides an opportunity for low-cost access to rich longitu-
dinal clinical data. EHRs are usually noisy, sparse, fragmented, have
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high dimensionality and nonlinear relationships among variables
[48]. The ability of Deep Learning techniques [26] to model such
highly nonlinear relationships enables them to have good predictive
performance without the need for feature engineering. This has
led to many successful applications of such technologies to clinical
tasks based on EHR data [42, 49]. Deep Learning techniques have
been proven useful for information extraction from clinical notes
[21], patients and medical concept representation learning [35],
outcome prediction [9, 12, 29, 38, 42] and new phenotype discovery
[8, 25]. Some of these works focus on developing predictive models
able to forecast any future diagnosis. Most of these models take as
input the clinical history of the patient and output the set of future
diagnoses [9, 31]. This kind of versatile models, able to tackle mixed
scenarios, can be extremely useful in day-to-day clinical practice.
However, the complexity of Deep Learning models hinders the
straightforward understanding of the rationale behind their deci-
sions [20]. This lack of interpretability prevents the deployment
of such models in real-world healthcare scenarios. For instance, it
was proven that biases in the data [7] and adversarial examples
[15] can easily mislead such black-boxes. Furthermore, being able
to understand the reasoning behind the model’s predictions would
increase the healthcare professionals’ trust in such a technology
and would increase its acceptance and use [14]. Recently, being
able to explain the reasoning behind machine learning decisions
also became a legal requirement prescribed by Art. 22 of the GDPR
(General Data Protection Regulation) [34]. Indeed, GDPR requires
the data processor to provide to the data subject meaningful in-
formation about the logic involved, as well as the significance and
the envisaged consequences of such processing for the data subject in
case of a decision based solely on automated processing which might
produce legal effects concerning him or her1.
In this paper, we introduce Doctor XAI, a novel explainability
technique able to deal with multi-labeled, sequential, ontology-
linked data. Doctor XAI is a post-hoc interpretability method that
focuses on local explanations, i.e., it explains the rationale behind
the classification of a single data point. It is also model-agnostic, as
it produces explanations whose computation is not based on the
black-box inner parameters or structure. In this regard, Doctor XAI
is similar to other black-box-agnostic techniques [17, 36, 39, 40].
However, to the best of our knowledge, ours is the first agnostic
XAI technique applicable to sequential and ontology-linked data
classification. The mining of sequential data is of pivotal impor-
tance in healthcare since this format is how typically the clinical
history of the patient is represented. Furthermore, the presence of
an ontology associated with the data is widespread in the medical
and biological fields [5, 43]. Given a patient whose clinical history
classification needs an explanation, Doctor XAI first generates a

1Art. 13 paragraph 2f, Art. 14 paragraph 2g, Art. 15 paragraph 1h
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local synthetic neighborhood around the selected patient exploiting
the semantic information encoded in the ontology and uses the
black-box model to label it. Then it transforms the clinical history
of such synthetic patients into a format suitable to train a decision
tree. This transformation allows taking the sequential nature of
the data into account. Finally, Doctor XAI trains a decision tree on
the labeled synthetic neighborhood, and it extracts an explanation
in the form of a decision rule. We applied Doctor XAI to explain
the decisions of Doctor AI [9], a recurrent neural network which
takes as input patients’ sequential EHR data and predicts the next
visit set of diagnoses. We compared the quality of the explana-
tions provided by Doctor XAI against those of the same technique
without the ontological information. We show how exploiting the
semantic information encoded in the ontology increases the per-
formance of the explainability technique across all the evaluated
metrics. We want to highlight that, even if our system deals by
design with sequential, multi-labeled, ontology-based data, none of
these features is strictly necessary: Doctor XAI can be used with
datasets displaying any combination of the three aforementioned
features, by exploiting only the corresponding specific modules.
The contribution of this paper is twofold:

• We propose an agnostic explainability technique able to
tackle the sequential data classification explanation problem.

• We show how exploiting the semantic information present
in the medical ontology increases the quality of explanation.

The paper is structured as follows: Section 2 reviews related work
on the topics of explainable artificial intelligence, machine learning
for sequential healthcare data and ontology use inmachine learning;
Section 3 introduces the algorithmic building blocks of our XAI
technique as well as the pipeline as a whole; Section 4 presents
experimental setups and results; Section 5 ends the paper with the
conclusions and directions for future work.

2 RELATEDWORK
2.1 Doctor AI
Doctor AI [9] is a Recurrent Neural Network (RNN) with Gated
Recurrent Units (GRU) that predicts the patient’s next visit time,
diagnoses and medications order. We focus here only on the diag-
nosis prediction task of the model. The authors trained their model
on 260.000 patients of the EHRs database of Sutter Health Palo
Alto Medical Foundation. The multi-hot input vector representing
the diagnoses at each time-step of patient clinical history is first
projected in a lower-dimensional space and then received as in-
put by a stack of RNN layers implemented using GRUs. Finally, a
Softmax layer is used to predict the diagnosis codes of the next
time-stamp. The predictive performance of Doctor AI are evaluated
using recall@n with n = 10, 20, 30 achieving 0.79 recall@30.

2.2 Explainable AI
In response to the increasing demand for interpretability, a vast liter-
ature on this matter has been produced [18]. Many interpretability
approaches related to sequential data modeling focus on adding an
attention mechanism [2, 44] to a sequential model and use the atten-
tion weights as a form of explanation [3, 11, 33, 47], however recent
works have highlighted how this kind of explanation might lack

consistency [6, 22, 41] and that attention should not be used as an
explanation. Other interpretability approaches related to sequential
data modeling focus on understanding the internal behavior of the
black-box under study [45]; conversely, our approach is agnostic
to the black-box whose outcome we want to explain. The agnostic
approach to explanations was first introduced in LIME [39]. The
intuition behind LIME is that even if the decision boundary learned
by the black-box in the feature space can be arbitrarily complex,
it can always be locally approximated by a simpler, more inter-
pretable model. In the LIME approach, the explanation is the set
of weights of a sparse linear model. Other examples of agnostic
approaches that focus on explaining the black-box behavior around
a specific instance are SHAP [32] and ANCHORS [40]. The SHAP
approach evaluates local features importance using a game theory
approach, while ANCHORS formulate the problem using a multi-
armed bandit approach. Our work shares some of the features of
these approaches: for example, we mine our explanations using a
perturbation-based strategy. However, unlike any other method,
we also exploit the domain knowledge encoded in the ontology
to generate relevant perturbations for the specific problem under
study. By doing so, we increase the quality of the generated syn-
thetic instances, which is of pivotal importance for the quality of the
explanation provided. Similarly to LIME, we train a local surrogate
model able to mimic the black-box behavior around the data point,
and similarly to ANCHORS, our approach produces rule-based ex-
planations. However, we mine our explanations from a multi-label
decision tree [36], which allows us to deal with a complex output
space, the multi-label one, in a simple, straightforward manner. Fur-
thermore, none of the aforementioned approaches can be directly
applied to a sequential input. In our work, we introduce a temporal
encoding/decoding scheme that allows the user to visualize which
events are the most relevant for the instance classification directly
on the temporal sequence.

2.3 Ontology use in machine learning
In our work, we exploit the medical ontology of ICD-9 (Interna-
tional Classification of Diseases, Ninth Revision2) diagnosis codes
to increase the fidelity performance of the interpretable model to
the black-box. The increase in predictive performance, thanks to
the infusion of knowledge in the learning procedure, was adopted
in several other works. For example, in [10], the authors use an
attention mechanism that leverages the medical ontology of ICD-9
to learn a code representation that combines the embeddings of
its ontology ancestors. They then train this attention mechanism
together with an RNN with GRU units to improve the classification
performance of prediction of the predictive model. They show that
the performance is increased by 10% with respect to a basic model
that does not exploit the medical ontology. Furthermore, they show
that the learned representation of medical codes aligns with med-
ical knowledge. Moreover, the authors of [37] show how disease
classification performance can improve using features based on
the ICD-9 codes semantic similarity. To compute the ontological
similarity among sets of ICD-9 codes, i.e., a visit, they first calculate
the semantic similarity of each pair of terms in the sequences as
the importance of their lowest common ancestor in the hierarchy

2http://icd9.chrisendres.com/

630



Doctor XAI FAT* ’20, January 27–30, 2020, Barcelona, Spain

and then take the maximum of these similarities as the similarity
of the two sequences. This approach over-estimates the similarity
of the two sequences since it is sufficient to have one ICD-9 code
in common to have similarity equal to one. The importance of the
lowest common ancestor is related to the level of the term in the
hierarchy; according to the authors this feature is related to the
rarity of the disease, but it just captures how well specified is the
disease. However, even with this basic approach to encoding med-
ical knowledge into the learning process, the performance of the
algorithms is increased. We use a more sophisticated approach to
compute patients similarity as detailed in Section 3.2.

3 METHODS
In this section, we introduce the components of Doctor XAI and
how they form the full explanation pipeline. Our technique is based
on the idea presented in [39] of learning an interpretable classifier
able to mimic the decision boundary of the black-box that is rele-
vant to the decision taken for a particular instance. More formally:

Given an instance x and its black-box outcome b(x) = y, an ex-
planation is extracted for this individual decision from an inherently
interpretable model c trained to mimic the local behavior of b.

For our approach, we follow the general pipeline of generating
a set of synthetic instances (called neighborhood) surrounding the
instance x we want to explain, labeling them utilizing the black-box
b, training an interpretable model c on the labeled neighborhood,
and finally extracting an explanation in the form of a symbolic
rule. However, we have developed specific modules in order to deal
with the temporal dimension in the data and exploit linked struc-
tural knowledge representation: Figure 1 illustrates our explanation
pipeline.

3.1 The explanation pipeline
The starting point is the data point whose black-box prediction
we are interested in explaining. As the first step, we select the
data points that are closest to the instance to be explained in the
available dataset: these points are called the real neighbors of the
instance. We can either select the closest data points according
to a standard distance metric, such as the Jaccard one or exploit
ontology-base similarities. We describe the latter in Subsection 3.2.
In both cases, we obtain a set of real neighbors, each of which is
represented as a sequence. We then generate the synthetic neigh-
borhood perturbing the first real neighbors to ensure the locality
of the augmented neighborhood. The synthetic neighbors’ sam-
pling is crucial to the purpose of auditing black-box models. Ideally,
the synthetic instances should be drawn from the true underlying
local distribution. Unfortunately, this distribution is generally un-
known, and how to generate meaningful synthetic patients is still
an open question. While most state-of-the-art agnostic explainers
employ random perturbations, we use the domain knowledge en-
coded in the ICD-9 ontology to generate more meaningful synthetic
instances, as explained in Subsection 3.3. It could be argued that
the interpretable model could be trained directly on the closest
real neighbors. However, the rationale behind the generation of
synthetic neighbors is that we want to build a dense training set for

DATA POINT
(to be explained)

Real neighbors 
[sequence]

Real neighbors 
[flattened]

Synthetic neighbors 
[flattened]

Interpretable Model

Rules

Synthetic neighbors 
[sequence]

Labels for synthetic 
neighbors

Ontological
Perturbation

Jaccard | Ontological
Distance Selection

Feeding as input

Extraction

Temporal
Encoding

Temporal
Encoding

Temporal
Decoding

Normal
Perturbation

Black-box
Labeling

Figure 1: The explanation pipeline

the interpretable classifier c in order to increase its performance in
mimicking the black-box. Unlike other explanation techniques, we
do not perturb directly the features of the instance whose black-
box decision we want to explain. By doing so, we prevent the case
of generating a synthetic neighborhood containing only instances
with the same black-box classification - a situation that would make
the training of any interpretable model impossible. In other words,
we ensure the expressiveness of the synthetic neighborhood, i.e., the
black-box classifications are heterogeneous among the synthetic
neighbors. For the perturbation steps in our pipeline, we can follow
two alternative paths, represented by the red and blue arrows in
Figure 1 (the two paths share the black arrows). The red path is
based on the normal perturbation, which we describe in Subsec-
tion 3.4; the blue path involves the ontological perturbation, as
described in Subsection 3.3. Both paths involve steps of temporal
encoding/decoding (with the relative algorithms described in Sub-
section 3.5), since the black-box model requires a sequential input,
whereas the interpretable one requires a tabular (flat) one. The red
path is based on the normal perturbation: first, the real neighbors
are encoded (flattened) into sparse vectors. Then the normal per-
turbation is applied in order to obtain a synthetic neighborhood -
and this kind of data can be fed to an interpretable model. In order
to obtain the labels for the synthetic data points, however, we have
to decode them (back into sequences) so that we can feed them to
our black-box model for labeling. Once we have both the synthetic
neighborhood and the corresponding labels, we can train the inter-
pretable model, and finally, extract symbolic rules. Similarly to [36],
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we chose a multi-label decision tree as inherently interpretable
classifier c . From such decision tree, we extract rule-based expla-
nations in the form p → y where y = c(x). The explanations are
extracted by including in the rule premise p all the split conditions
on the path from the root to the leaf node that is satisfied by the
instance x . The blue path involves the ontological perturbation. In
this case, we can apply the perturbation directly on sequential data,
obtain a synthetic neighborhood as a set of sequences, and feed
them to the black-box model for labeling. However, as it was for
the red path, the interpretable model requires a tabular input, so
we proceed to flatten (time-encode) the synthetic neighbors in a
set of vectors. At this point, the blue path follows the same final
steps as described above: training of the interpretable model and
extraction of symbolic rules. We remark that, while we followed
a general framework for our model-agnostic explanation pipeline,
we have extended the framework with novel contributions in order
to deal with structured data and sequential data respectively. We
observe that these components can be independently plugged in
an explanation pipeline according to the nature of the data point
to be explained.

3.2 Ontological Distances
In this section, we define a new distance measure that allows us to
select the first neighbors of the instance whose decision we want
to explain. Each patient’s clinical history is represented as a list
of visits, which in turn are encoded as lists of ICD-9 codes. Every
instance is therefore a list of lists of ICD-9 codes. More formally,
if we define the set of ICD-9 codes as C = {c1, c2, . . . , c |C |}, each
patient’s clinical history is represented by a sequence of visits
V1, . . . ,VM such thatVi ⊆ C. A simple example of a patient clinical
history representation is as follows:

[[433.10, 453.81], [453.81], [453.81, 788.5, 790.01]]

The patient visited the hospital three times; the condition 453.81
(Acute embolism and thrombosis of superficial veins of unspeci-
fied upper extremity) is chronic, condition 433.10 (Occlusion and
stenosis of carotid artery without mention of cerebral infarction)
was observed on the first visit only, whereas two new conditions
(with codes 788.5 and 790.01) were diagnosed only in the third visit.
We observe that multi-hot encoding all occurring ICD-9 codes is a
fairly inefficient representation for visits - the obvious drawback
being the size of the encoding vector corresponding to the size of
the ICD-9 dictionary. Furthermore, this positional representation
does not encode the semantic distance from ICD-9 codes - a patient
with food poisoning, one with a broken hand and one with a broken
wrist are equally distant from a purely Hamming-based perspective.
In order to mine the semantically similar data points, we introduce
an ontology-based distance metric.

Code-to-code similarity Each ICD-9 code represents a medical
concept in a hierarchical ontology, these concepts are the nodes
of the graph-representation of such ontology, and it is therefore
possible to compute distance and similarity scores among any pair
of them. Several similarity metrics could be selected; in this paper,
we adopt the Wu-Palmer similarity score (WuP) [46] because it is
one of the most commonly used for ICD-9 ontologies [1, 16, 23].

Given two ICD-9 nodes c1 and c2, let L be their lowest common
ancestor (LCA) and R be the root of the ICD-9 ontology; also let
d(x ,y) be the number of hops (steps) required to reach node y from
node x following the ontology links. The WuP similarity measure
between c1 and c2 corresponds to:

WuP(c1, c2) =
2 ∗ d(L,R)

d(c1,L) + d(c2,L) + 2 ∗ d(L,R)
WuP(c1, c2) ∈ [0, 1] for any couple of ICD-9 nodes. The lower
bound 0 is obtained when d(L,R) = 0, that is, when the LCA of c1
and c2 is the root node. Conversely, a node has WuP-similarity 1
with itself. By relying on the underlying ICD-9 ontology, we can
therefore use the WuP similarity to compute pairwise distances be-
tween ICD-9 codes. This yields a much more fine-grained analysis
compared to a coarse Hamming similarity.

Visit-to-visit distance Having defined a code-to-code distance,
the following step is to compute distances at the visit level - since
visits are defined as lists of occurring ICD-9 codes. We adopted
the weighted Levenshtein [28] distance, a string metric for measur-
ing the difference between two sequences as the minimum num-
ber of single-character edits (insertions, deletions or substitutions)
required to change one sequence into the other. The weighted
version of the Levenshtein distance allows defining custom inser-
tion/deletion/edit costs. We have set 1 −WuP(c1, c2) as edit cost
for modifying c1 into c2, and 1 as insertion/deletion (indel) cost
(sinceWuP(c1, c2) ≥ 0, 1−WUP(c1, c2) ≤ 1) in order to favor edits
over indels. This gives us a distance metric between pairs of visits,
which is based on the similarity between the ICD-9 codes occurring
in each of the two visits.

Patient-to-patient distance The third step is to compute a
patient-to-patient distance metric based on how similar the visits
of the two patients are. In order to do so, we adopted the Dynamic
Time Warping (DTW) algorithm [4], again using the pairwise visit
distances provided by the weighted Levenshtein algorithm as edit
distance. The sequences of visits arewarped non-linearly in the time
dimension to determine a measure of their similarity independent
of certain non-linear variations in the time dimension. This final
step provides us with the pairwise distances for all patients (data
points) in the dataset, thus enabling us to select real neighbors with
ontologically similar conditions w.r.t. the data point to explain.

3.3 Ontological Perturbation
As previously mentioned, after selecting the first real neighbors of
the instance whose decision we want to explain, we perturb them in
order to generate synthetic neighbors. There aremainly twoways to
perform an ontology-based perturbation on an instance: bymasking
or replacing some conditions (ICD-9 codes) in the patient’s clinical
history according to their relationships in the ontology. We decided
to adopt the first type of perturbation in order to limit the amount
of noise injected in the training set of the interpretable classifier.
The idea behind perturbing the patient’s history in this way is that
we want to explore how the black-box label changes if we mask
all the semantically-similar items from the sequence. We decided
to randomly mask all the occurrences of the items with the same
least common superconcept. By doing so, we are exploring how a
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Figure 2: A branch of the ICD-9 ontology

general condition (a higher concept in the ontology) is affecting
the black-box diagnosis. In our case, we are dealing with patients’
clinical history. Each patient’s clinical history is a sequence of visits,
and each visit is represented by lists of ICD-9 codes. In the ICD-9
ontology, all codes are composed of a prefix and a suffix, separated
by a dot: the prefix defines the general condition, and the suffix
provides increasingly specific information. We show an example of
the hierarchical structure of the ICD-9 ontology in Figure 2. Our
implementation of the ontological perturbation is the following: we
first randomly select one ICD-9 code in the clinical history of the
patient we want to perturb (a leaf of the ontology), then we mask
all the ICD-9 codes in the patient’s history that share the same
prefix (the least common superconcept). By doing so, we generate
synthetic patients that lack a specific group of semantically similar
conditions. Consider, for example, the following patient:

P = [[276.1, 276.2], [276.4, 530.1], [507, 530], [276.2, 530.19]]

One example of ontological perturbation is the following: we ran-
domly select ICD-9 code 276.4 which is mixed acid-base balance
disorder. Starting from this code we create the synthetic patient

P∗ = [[], [530.1], [507, 530], [530.19]]

by masking all the ICD-9 codes related to ICD-9 276, i.e., disorders
of fluid electrolyte and acid-base balance (the least common super-
concept). Note that, without ontological information, we have 7
different codes and therefore 27 potential perturbations, most of
which don’t really isolate different conditions. Conversely, using the
ontology we group the occurring ICD-9 codes in three categories
{276*, 507*, 530*}: as a consequence we have 8 potential maskings,
each of which isolates a subset of different conditions.

3.4 Normal Perturbation
As an alternative to the ontological perturbation of the first real
neighbors of the instance under study, we performed a normal per-
turbation on such features. This perturbation applies to a broader

Figure 3: Example of temporal encoding for a patient

Figure 4: Example of temporal decoding for a patient

number of cases since it does not require an ontology to be per-
formed. Given the flattened version of the real neighbors, the normal
perturbation creates the new synthetic instances feature by fea-
ture drawing from a normal distribution with mean and standard
deviation of the empirical distribution of that feature in the real
neighbors. This perturbation implies the strong assumption that
every feature is independent of the others.

3.5 Temporal encoding and decoding
As introduced above, the standard data type for longitudinal health-
care data is to represent a patient as a list of visits, and in turn each
visit as a list of occurring conditions (in our case, ICD-9 codes).
There is no inherently interpretable model able to deal with the
multi-label classification of such type of input; therefore, we need
to perform an input transformation that both retains its sequential
information and allows to feed it into an interpretable model - a
decision tree in our case. We introduce a pair of encoding-decoding
algorithms so that we can flatten the temporal dimension when
feeding our synthetic neighborhood to the interpretable model. The
binary encoder implements a time-based exponential decay rooted
at the last item of the sequence. Intuitively, each code ci in visit
Vj will be given a score of +.5 if Vj is the last visit, +.25 if Vj is the
second-to-last visit, and so on. More formally, when encoding a
patient P = [V1, ..,VN ], each code c ∈ P will be encoded as follows:

EN (c, P) =
n∑
i=1

(1/2n−i+1 if c ∈ Vi else 0)

The encoding is 0 for all items that never occur in that sequence,
and it tends to 1 for a growing number of elements in the sequence
in which that item occurs. The encoded (flattened) representation
of a patient is therefore a sparse vector of real numbers, and as such
it can be fed to multiple interpretable models.
Conversely, we define the decoding from a sparse vector of real
numbers to a sequence of visits as:

DE(X , t , l) =


[] if X = 0 or l = 0
append(DE(X − t , t/2, l − 1), [1]) if X > t

append(DE(X , t/2, l − 1), [0]) otherwise
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where X is the value to be decoded, t is initially set at .5 and l
controls the maximum length of the generated sequence (we use
the average length of the real neighbors). The result of the decoding
is a list of 0s and 1s that indicates the presence/absence of a certain
code. We show a simple example of temporal encoding in Figure 3.
In this example, the patient visited the hospital three times. Each
visit contains a set of ICD-9 codes (for the sake of simplicity here
represented as letters). As a first step, a weight is associated to each
visit. Then the weight of each ICD-9 code is computed by adding
the weights of the visits where it occurred. We also show a simple
example of temporal decoding of a flat synthetic patient in Figure 4.
In this example, we transform the value of the first ICD-9 code
(represented by letter A) into its occurrence in the sequence. In this
example we set the maximum length of the generated sequence
to l = 3. It is important to remark that the decoding algorithm,
when presented with perturbed data, might potentially produce
arbitrarily long sequences, where progressively small residuals are
mapped to the occurrence of the decoded ICD-9 code in progres-
sively further away visits. The l-guard was introduced to prevent
this from happening so that flattened synthetic patients match the
number of visits of the flattened real neighbors.

4 EXPERIMENTS AND RESULTS
4.1 Dataset
We ran our experiments on the Multiparameter Intelligent Monitor-
ing in Intensive Care III (MIMIC-III) database [24]. This database
contains de-identified data of over 40.000 ICU (Intensive Care Unit)
patients of the Beth Israel Deaconess Medical Center data in Boston
collected from 2001 to 2012. We used the information related to the
hospital stay (dates and diagnosis codes) to build the patient clini-
cal history as performed by the pre-processing script available in
Doctor AI GitHub repository3. This operation removes all patients
with less than two visits, some statistics about the dataset after the
pre-processing procedure can be found in Table 1.

MIMIC-III

n. of patients 7499
n. of visits 19911
avg. n. of visits per patient 2.65
min. n. of visits per patient 2
max. n. of visits per patient 42
n. of unique ICD-9 codes 4880
n. of unique CSS grouper codes 272
avg. n. of ICD-9 codes per visit 13.06

Table 1: MIMIC-III characteristics for patients with more
than one visit

The clinical history of each patient is modeled as time-stamped
sequence of visits. As previously mentioned, each visit is repre-
sented by a set of ICD-9 diagnosis codes, these codes are assigned
to each patient at the end of his or her hospital stay, and hospitals
use them to bill for care provided. They are organized in a "is-a"

3https://github.com/mp2893/doctorai

hierarchical tree structure4 that places more general concepts closer
to the root of the tree and more fine-grained concepts closer to the
leaves of the tree. The ICD-9 taxonomy and occurring ICD-9 codes
in MIMIC are visualized in Figure 5. We used this ontology to mea-
sure the similarity between patients’ clinical history as described in
section 3.2 and to generate the synthetic neighbors of each patient
as described in section 3.3.

Figure 5: ICD-9 ontology. The red dots represent codes oc-
curring in the MIMIC dataset, the orange ones their parent
nodes.

4.2 Black-box classifier
We trained Doctor AI on MIMIC-III for 50 epochs, using approx-
imately 70% of patients as the training set, 15% as the validation
and 15% as the test set. We built the label for each time step of
the sequence by grouping the full-length ICD-9 codes using CCS
single-digit groupers5. By doing so, the dimensionality of the label
space shrinks from 4880 codes to 272 groups of codes. We com-
pare the predictive performance of Doctor AI trained by us on
MIMIC-III dataset with the ones reported in the original paper in
Table 2. The metric used to evaluate the predictive performance
is recall@n= # of true positives in the top n predictions

# of true positives . We also trained a
baseline model to imitate one of the benchmarks of the original
paper. This baseline, the Most frequent, predicts the top-k most
frequent labels observed in visits before the current visit. The fact
that we trained Doctor AI on a much smaller dataset lowers the
algorithm’s predictive performance compared to the ones of the
original paper. However, they are in line with the performance on
the MIMIC-II dataset discussed in the original paper. Furthermore,
having a good predictive performance is not our goal; we will use
the black-box labels as ground-truth labels for the decision tree. In
our work, we focus on explaining Doctor AI because of the avail-
ability of its source code and because the authors’ results are easily
4https://bioportal.bioontology.org/ontologies/ICD9CM
5https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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Table 2: Doctor AI performance on different datasets.

Dataset and algorithm recall@n
n=10 n=20 n=30

Doctor AI: MIMIC-III 0.350 0.521 0.631
Most frequent: MIMIC-III 0.383 0.473 0.491
Doctor AI: dataset from [9] 0.643 0.743 0.796
Most frequent: dataset from [9] 0.566 0.674 0.717

reproducible using open-source data. However, we want to stress
that our method is not specific to this black-box.

4.3 Experimental set-up
We decided to test our explanation method on a cohort of 1.000
randomly selected patients from the MIMIC database. We put each
of these 1.000 patients through 3 different explanation pipelines and
we explained their top-10 CCS-codes prediction. The first two ex-
ploit the ontological information encoded into ICD-9 codes, whereas
the last one can also be used to explain sequential data classifica-
tion if an ontology is missing. We aim to show that exploiting
the ontological information in the data increases the explanation
quality.

• Ontological pipeline with ontological perturbation - Dr.XAI.
This pipeline fully exploits the knowledge encoded into the
ICD-9 ontology to create the synthetic neighborhood. Given
a patient whose black-box decision we want to explain, it se-
lects its first k neighbors in the dataset using the ontological
distance described in section 3.2 and then it generates the
synthetic neighborhood by perturbing them using the onto-
logical perturbations described in section 3.3. This pipeline
corresponds to the blue path of Figure 1 using the Ontologi-
cal similarity.

• Ontological pipeline with normal perturbation. This pipeline
selects the first k real neighbors of the instance to explain
using the ontological distance, but then it creates the syn-
thetic neighborhood by perturbing these instances using the
normal perturbation described in section 3.4. This pipeline
corresponds to the red path of Figure 1 using the Ontological
similarity.

• Non-ontological pipeline with normal perturbation. This pipeline
does not use the semantic information encoded in the ICD-9
codes. It first selects the k real neighbors of the instance to be
explained using Jaccard similarity between each patient visit
and then it perturbs them by using normal perturbations 3.4.
This pipeline corresponds to the red path of Figure 1 using
the Jaccard similarity.

By comparing the two ontological pipelines, we want to show that
exploiting the semantic information encoded in the ICD-9 ontol-
ogy is also useful to create the synthetic neighbors. We developed
the non-ontological pipeline as a baseline for explanation quality.
However, this last pipeline is also the most general one because
it can be applied to sequential data that does not have an associ-
ated ontology. Furthermore, we wanted to show that increasing the
density of the feature space around the instance to be explained by
creating the synthetic neighbors actually increases the interpretable

model’s ability to mimic the black-box locally. For this reason, for
each instance to be explained, we trained two decision trees. One
decision tree is trained directly on the real neighbors of that patient
from the dataset, and the other one is trained on a fraction of the
augmented synthetic neighborhood. We then compare the perfor-
mance of these decision trees on an out-of-sample set of synthetic
neighbors.

We utilize the following metrics to evaluate and compare the
different explanation pipelines.

• Fidelity to the black-box ∈ [0, 1] This metric compares the
predictions made by the interpretable model with the predic-
tions made by the black-box on a synthetic neighborhood
of the instance. It measures the ability of the interpretable
classifier to locally mimic the black-box, and therefore it is
tested on a held-out subset of the synthetic neighborhood.
Since we are dealing with a multi-label classification task, we
calculate the fidelity the F1 measure with micro-averaging
[50].

• Hit ∈ [0, 1] This metric compares the interpretable classi-
fier prediction yc and the black-box prediction yb on the
instance to be explained. It tells us if the interpretable classi-
fier predicts the same label as the black-box on the instance
we want to explain. Since the prediction we are trying to
explain is a multi-label classification, we calculate the hit as
1 − hamming-distance(yb ,yc ).

• Explanation complexity. This metric measures the complexity
of the explanation as the number of premises in the rule-
based explanation. This measure is important since we do
not want to approximate the black-box with a model that
loses its interpretability because of the high-dimensionality
of the explanations it produces [13, 30].

4.4 Results

Figure 6: Fidelity distribution for the ontological pipeline
with different k, perturbation type, and training/test set.

In Figure 6 we show the fidelity sample distributions at different
values of k for the decision trees trained using the ontological ex-
planation pipelines, i.e., the pipelines that select the first k dataset
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Table 3: Mean values of fidelity

Explanation Pipeline Fidelity
k=10 k=30 k=50

realDT syntDT realDT syntDT realDT synDT
Ontological pipeline with ontological perturbation 0.81 0.89 0.77 0.85 0.12 0.79
Ontological pipeline with normal perturbation 0.70 0.73 0.67 0.62 0.10 0.76
Non-ontological pipeline with normal perturbation 0.71 0.77 0.69 0.47 0.68 0.78

Table 4: Mean values of hit

Explanation Pipeline Hit
k=10 k=30 k=50

realDT syntDT realDT syntDT realDT synDT
Ontological pipeline with ontological perturbation 1.00 1.00 1.00 1.00 0.93 1.00
Ontological pipeline with normal perturbation 1.00 0.98 1.00 0.99 0.93 0.98
Non-ontological pipeline with normal perturbation 1.00 0.99 1.00 0.99 1.00 0.99

neighbors of the instance to be explained using the ontological dis-
tance. The first observation is that the decision trees trained directly
on the k real neighbors (blue and green boxplots) generally have
a lower fidelity to the black-box compared to the ones trained on
the augmented synthetic neighborhood (orange and red boxplots).
This trend is true for all values of k and for both the ontological
pipeline with ontological perturbation and the ontological pipeline
with normal perturbation. The fidelity values of each decision tree
have been evaluated on an held-out test set of synthetic neighbors.
This trend confirms that increasing the local density of points in the
feature space around the instance to be explained helps the inter-
pretable model to understand the black-box behavior. The second
observation is that the fidelity of the decision tree trained using
the ontological pipeline with ontological perturbation (red boxplot)
is generally higher compared to all the other explanation pipelines.
This observed tendency confirms that exploiting the ontological
information during the synthetic neighborhood creation allows the
decision tree to better approximate the local black-box decision
boundary.

Figure 7: Fidelity distribution for the non-ontological
pipeline at different values of k and training set.

In Figure 7 we show the fidelity sample distributions at different
values of k for the decision trees trained using the non-ontological
explanation pipeline, i.e., the pipeline that selects the first k dataset
neighbors of the instance to be explained using the Jaccard similar-
ity between patients’ visits. We developed this explanation pipeline
that does not use the semantic information encoded into the ICD-9
codes as a baseline to prove that an approach that does not exploit
this information has lower performance. This is true if we compare
this explanation pipeline with the fully-ontological one (the onto-
logical pipeline with ontological perturbation). However, the fidelity
performance of this non-ontological pipeline is comparable to the
ones of the ontological pipeline with normal perturbation. The high
values of fidelity achieved by this pipeline prove that we developed
a trustable explainability technique applicable to any black-box that
takes as input any sequential data, even when there is no ontology
associated with the items of the sequence. Furthermore, it is impor-
tant to notice that, also for this pipeline, the values of fidelity to the
black-box increase after the synthetic neighborhood augmentation
(the orange boxplot).

Figure 8: Explanation complexity for the ontological
pipelines
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In Figure 8 we show the sample distribution of explanation com-
plexity, i.e., the number of premises in the rule-based explanations
at different values of k for the two ontological explanation pipelines.
As expected, we see how the length of the explanation increases
as k increases. This happens because if we start from a high num-
ber of first real dataset neighbors we are trying to approximate
a larger portion of the decision boundary of the black-box with
the interpretable classifier. We could say that we are not restrict-
ing ourselves to the local decision boundary close to the instance
whose decision we want to explain. Therefore, since we are trying
to approximate a more complex decision boundary the dimension-
ality/complexity of the decision tree grows and consequentially the
length of the rule increases. From this plot it is also possible to see
that the explanation length of the explanations extracted from the
ontological pipeline with ontological perturbation (orange boxplot) is
more variable than the ones extracted using the ontological pipeline
with normal perturbation for large values of k . Aggregated statistics
of fidelity and of hit for all the explanation pipelines are shown in
Tables 3 and 4: we can observe that the value of hit is consistently
high for all explanation pipelines and across all values of k .

4.5 Explanation example
We show in Figure 9 an explanation example extracted with the
ontological pipeline with ontological perturbation with k = 10. In
order to make it more comprehensible for readers not familiar with
ICD-9 codes, we enriched the rule-based explanation with the ICD-
9 codes semantic. The original decision rule extracted from the
decision tree can be seen at the top of the figure with the fidelity of
the decision tree and its hit value. There are several ways to read
this rule since it contains many layers of information. The decision
rule is the decision tree pathway that leads from the root of the tree
to the leaf containing the black-box decision; for this reason, all
inequalities are to be considered in conjunction - furthermore, the
ICD-9 codes occurring in the rule are ranked in order of information
gain. Each conjunct of the rule follows the pattern

ICD-9_code = observed_value ≷ threshold_value

The observed value is the value of that ICD-9 code for the patient
whose decision we want to explain. Recall that the temporal en-
coding or flattening procedure described in Section 3.5 assigns to
each ICD-9 code a weight according to the visit in which it was
observed (diagnosed). The threshold value is the split value assigned
by the decision tree to that ICD-9 code. Both these values can be
interpreted as the presence of the ICD-9 code in a set of visits. The
patient under examination had four visits. The ICD-9 codes describ-
ing the diagnoses associated with each visit are represented in the
timeline just below the decision rule. Recall that we are explaining
the top-10 CCS-codes predicted by Doctor AI. The ICD-9 codes con-
sidered meaningful by the black-box have been colored to enhance
the readability. The explanation of each real and threshold value
can be found in the list below the timeline. For example, the ICD-9
code 584.5 has an observed value of 0.25, which means that it was
observed in the second-to-last visit (visit 3). Its threshold value is
0.12, whose closest value among those generated in the temporal
encoding process is 0.125 which represents the third-to-last visit
(visit 2). For this reason, even if this ICD-9 code was observed in

the penultimate visit, the interpretation of the first rule conjunct is
584.5 has to have been observed at least once in the last three visits.

The code to run our experiments as well as our results are avail-
able on GitHub6.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we presented Doctor XAI, the first agnostic expla-
nation technique suitable for any black-box classifier that deals
with data having one or more of these characteristics: sequential,
multi-labeled, and ontology-linked. These features are typical of
healthcare data. Our technique first generates a set of synthetic
instances close to the instance whose black-box decision we need
to explain, then it trains an interpretable classifier - a decision tree -
on such neighborhood, and finally, it extracts a rule-based explana-
tion from it. We studied the behavior of the interpretable classifier
varying the hyper-parameter k - the number of first neighbors in
the real dataset that are considered in the synthetic neighborhood
generation. In particular, we showed that, for all values of k , the
synthetic neighborhood generation procedure which exploits the
ontological information encoded in the ICD-9 codes achieves better
performance in approximating the local behavior of the black-box
if compared to a procedure which does not have access to the ontol-
ogy. Furthermore, the synthetic augmentation of the interpretable
classifier training set allows it to increase its fidelity to the black-
box. We also tested the sequential-only version of our explanation
technique showing that it achieves good fidelity to the black-box,
while also confirming that the ontology-enriched approach achieves
a better score.

Application scenario. We believe that doctors and patients
would both benefit from such an explanation of the black-box be-
havior. Ideally, doctors (the target users of our method) would be
able to have a higher understanding of the decision support sys-
tem they are using (the black-box). This means that the ultimate
decision would be more informed and ultimately better than the
decision that the human decision-maker would have made without
the black-box, as well as better than the automated decision by the
black-box alone. Such an informed decision would also benefit the
patient because of the increased quality of care provided by the
doctor. In this paper we focused on the medical domain, but since
our method is agnostic w.r.t. the black-box, the possible applications
cover several scenarios where we can identify a sequence of events
linked to ontology concepts, such as online market basket analysis
[19] or Wikipedia user behavior prediction [27]

Concerning directions for future work. We will focus on
studying other kinds of synthetic neighbors generation for sequen-
tial data. Furthermore, we would like to better assess the impact
of the random components of the synthetic neighbors’ generation
procedure on the quality of the explanations. Right now, Doctor
XAI can explain only black-box classifiers, but with a simple exten-
sion, we would be able to explain black-box regressors producing
continuous outcomes - this is another common healthcare task, for
instance for predicting risk stratification.

6https://github.com/CeciPani/DrXAI
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Figure 9: Explanation example
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