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The identification of cancer stem cells in vivo and in vitro relies on specific surface markers that should allow
to sort cancer cells in phenotypically distinct subpopulations. Experiments report that sorted cancer cell
populations after some time tend to express again all the original markers, leading to the hypothesis of
phenotypic switching, according to which cancer cells can transform stochastically into cancer stem cells.
Here we explore an alternative explanation based on the hypothesis that markers are not perfect and are thus
unable to identify all cancer stem cells. Our analysis is based on a mathematical model for cancer cell
proliferation that takes into account phenotypic switching, imperfect markers and error in the sorting
process. Our conclusion is that the observation of reversible expression of surface markers after sorting does
not provide sufficient evidence in support of phenotypic switching.

E
vidence indicating that tumors are composed by a heterogeneous cell population has accumulated for long
time1. There are two different general hypothesis on the nature of this heterogeneity: the first states that
cancer cells might differ but all cells are potentially tumorigenic (conventional model) while the second

states that only a subset of cells, the cancer stem cells (CSCs), are tumorigenic and drive tumor growth (hier-
archical model)2. CSCs are usually identified using serial transplantation, validating a candidate CSC subpopula-
tion by monitoring the capability to recapitulate the heterogeneity of the primary tumor. Both xeno- and
syngeneic transplantation might, however, misrepresent the real intricate network of interactions with diverse
supports such as fibroblasts, endothelial cells, macrophages, mesenchymal stem cells and many of the cytokines
and receptors involved in these interactions (for a more comprehensive discussion read Ref.[3]). In addition, the
success of this strategy is linked to the choice of an appropriate marker that can correctly identify the CSC
population both in xenografts and in biotic samples. Due to these problems, the presence of CSC in solid tumors is
still debated.

In this context a recently proposed hypothesis states that phenotypes in a cancer cell population are not static
but can switch stochastically4. The idea underlying this phenotypic switching hypothesis is that any biological
system is subject to a varying degree of noise in key signalling pathways that may lead to heritable changes in gene
expression through epigenetic mechanisms5,6. To prevent that this noise could trigger an inappropriate cellular
response, signalling systems may be buffered in such a way that the cells would respond to yield a specific
biological output, such as a switching its phenotype, only when a critical signalling threshold is crossed. In cancer
cells a phenotype instability could be due to genetic lesions that constitutively activate one signalling pathway
playing a key role in buffering the output from a second pathway leading the cells to become more sensitive to
microenvironment. According to this idea, phenotypic switching in cancer cells may reflect a lowering of the
threshold necessary to trigger a change in cell identity in response to external signals originating within the tumor
microenvironment that may vary substantially from location to location. Hence, if phenotypic switching is
reversible, most cells should have the potential to adopt a stem cell like phenotype accounting for the high
proportion of cells able to seed tumors in severely immunocompromise animals7,8. In a recent paper Gupta
et al. show that subpopulations of breast cancer cells of a given phenotypic state over time express again all the
original phenotypes. These results are interpreted by a simple Markov model involving a tiny probability for
cancer cells to switch back to the CSC state4. Other papers, however, do not support the phenotypic switching
hypothesis. In melanoma, ABCB5- cells are not able to generate ABCB51 cells9, CD341Cd271/Ngfr/p75- cells
formed tumors CD271- restricted, whereas CD34CD271/Ngfr/p75- cells formed tumors containing both CD2711

and CD271- cells10.
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From the biological point of view, it is not easy to determine if the
tumor grows following the conventional or the hierarchical model
and to understand the nature of phenotypic switching. In this
respect, mathematical models can prove very useful to clarify the
consequences of biologically motivated assumptions. The key issue
is to explain how a purified subpopulation can express CSC markers
after sorting. A possible explanation is provided by the phenotypic
switching hypothesis: if phenotypes evolve dynamically it is possible
that cells originally negative to the CSC phenotype may express it
later due to stochastic fluctuations (See Fig. 1A). This explanation is
somewhat problematic from the conceptual point of view: if cancer
cells (CCs) can transform back into CSCs then the very notion of
CSC becomes blurred. A key distinction between CSCs and other
CCs is that the first generate the latter and not vice versa.
Furthermore, CSC should be virtually immortal while CCs should
stop replicating after a finite number of divisions. Once we accept
that CCs can return to the CSC state, they become potentially
immortal as well. Hence the distinction between phenotypic switch-
ing and the original conventional model risks of becoming purely
semantic.

In this paper, we explore a conceptually simple alternative to
explain the experimental results. The operative identification of
CSCs relies on stem cell markers, but their absolute accuracy is far
from being guaranteed. Our proposal is to assume that putative CSC
markers are imperfect and derive the experimental consequences of
this assumption (See Fig. 1B). An imperfect marker yields a marker-
positive subpopulation that is CSC rich, but does not allow to elim-
inate all CSCs from the marker-negative subpopulation. The few
CSCs present in the marker-negative subpopulation will drive tumor
growth and re-establish a marker-positive subpopulation in the
tumor. This scenario was ruled out in Ref. [4] because the short-term
growth rate for stem-like and non-stem-like cells was simular. Here
we demonstrate that this observation can also be explained by the
imperfect marker hypothesis, since a difference in growth is only
observable in the long-term, as also shown in Ref. [11]. Our conclu-
sion is that current experimental data that have been claimed to
support the phenotypic switching hypothesis4 can also be interpreted
within an imperfect marker scenario.

To model the kinetics of cancer cells, we employ a standard
population dynamics approach, using the theory of branching

processes12,13. Branching proceses have been used extensively in the
last decades to model the growth of stem cells14–19 and more recently
of cancer stem cells20–23. In this paper, we employ and extend the
branching process model for CSCs discussed in Ref. [11]. The main
limitation of branching processes is due to their mean-field nature
that does not take into account the geometry of the cellular arrange-
ment inside a tumor. Despite this shortcoming, the model allows for
a quantitative description of experimental growth curves of mela-
noma cells, providing an indirect confirmation of the CSC hypo-
thesis in this tumor11. It would be interesting to understand better
CSC localization, in analogy with stem cells in tissues where it is
possible to study their spatio-temporal kinetics in vivo24,25, using
statistical mechanics models to understand the results26. Similar
techniques for cancer are still at a preliminary stage and have been
use to track metastatic cells in vivo27. Tracking CSCs appears to be
more complicated mainly because of the lack of unambiguous
markers.

Results
Simple Markov model. The experimental results on breast cancer
cells reported in Ref. [4] were originally interpreted by a simple
Markov model. Cancer cells were sorted in three classes (Stem-like,
basal and luminal) depending on the expression of a combination
three markers (CD24,CD44 and EpCAM). By defining relative
fractions fi(t) for each class at time t, the time evolution of each
population was chosen to follow the equation

fi tð Þ~
X

j

Pijfj t{1ð Þ, ð1Þ

where time is measured in days, and Pij is the probability per unit day
that a cell of type j transforms into a cell of type i. This equation has a
formal solution

fi tð Þ~
X

j

Ptð Þijfj 0ð Þ, ð2Þ

where Pt is the t – power of the matrix P. In Ref. [4], an estimate for
the matrix P was obtained by sorting the cells into three classes and
then sorting each subpopulation again after six days of cultivation.

Here, we consider the simple case in which cells are sorted in only
two classes: CSCs and CC. Taking advantage of the normalization

Figure 1 | Phenotypic switching and Imperfect markers. (A) According

to the phenotypic switching hypothesis, CCs (blue) have a small

probability to revert to the CSC state (red). If a marker is used to sort the

cells into different subpopulation, the negative subpopulation will

eventually express again the marker due to phenotypic switching.

(B) According to the imperfect marker idea, CCs can not transform back

into CSCs, but both CCs and CSCs express the marker, although in

different proportions: most of the CSCs are positive, while most of the CCs

are negative.
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Figure 2 | Evolution of the concentration of positive cells after sorting in
the Markov model. The evolution of the concentration of positive cells

after sorting for positive (1) and negative (2) subpopulations as a

function of the number of generations N for the Markov model with

P11 5 0.4 and two different values of P21.
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condition Siri 5 1, the evolution equation in Eq. 1 can then be
written in terms of the density of CSC f1 alone

f1 tð Þ~P11f1 t{1ð ÞzP21 1{f1 t{1ð Þð Þ ð3Þ
where P11 is the probability per day that a CSC remains a CSC and P21

is the probability that a CC transforms to a CSC. Eq. 3 has explicit
solution

f1 tð Þ~f1 0ð Þ P11{P21ð ÞtzP21
1{ P11{P21ð Þt

1{P11zP21
: ð4Þ

At long times the fraction of CSCs is given by
f ?1 ~P21= 1{P11zP21ð Þ and the steady-state is reached exponen-
tially with a typical timescale t 5 21/log(P11 2 P21) both for positive
(f1(0) 5 1) and negative sorted subpopulations (f1(0) 5 0). An illus-
tration of the behavior of the model is reported in Fig. 2.

The model is particularly simple but does not really distinguish
between CSCs and CCs, since all cell classes are treated in the same
way and proliferation is not accounted for. Therefore, the simple
Markov model describes cells that are heterogeneous but not hier-
archically organized as in the conventional cancer model. It is, how-
ever, possible to combine in a mathematical model phenotypic
switching with a hierarchical organization of the cells as we will
discuss below.

CSC model. We consider a stochastic model for the proliferation of
hierarchically organized cancer cells introduced in Ref. [11] and
illustrated in Fig. 3A. According to the CSC hypothesis, cells are
organized hierarchically, with CSCs at the top of the structure.
CSCs can divide symmetrically giving rise to two new CSCs with
probability or asymmetrically with probability 1{ giving rise to
a CSC and a CC. While CSCs can duplicate for an indefinite amount
of time, CCs become senescent and stop duplicating after a finite
number of generations M. This is the minimal ingredient needed to
model the CSC hierarchy. It is possible that CSCs differ in other
biological aspects from CCs, but this is irrelevant from the point of
view of population dynamics. This model was successfully used to
describe the growth of melanoma cells, where the best fit to the data
yields ^0:7 and M 5 3811.

The analytical solution of the CSC model has been reported in Ref.
[11], writing down the equations for the evolution of cell populations

that have a recursive form11

SN~ 1zð ÞSN{1

CN
1 ~ 1{ð ÞSN{1

::: :: :::

CN
k ~2CN{1

k{1

DN~DN{1z2CN{1
M :

ð5Þ

Here SN is the number of CSCs after N generations, CN
k is the number

of CCs of ‘‘age’’ k (i.e. that have undergone already k divisions) at
generation N and DN is the number of senescent cells at generation N.
Solving Eq. 5 one can show that the asymptotic fraction of CSC is
given by

fCSC~
1z

2

� �M

: ð6Þ

The time evolution can be obtained by introducing the division rate
Rd, that for simplicity we set to be the same for CSCs and CCs. Time is
then related to generation number by the relation N 5 tRd. Eqs. 5 can
be solved exactly to yield the number of cells in each class in terms of
the initial conditions11, or alternatively they can be evaluated numer-
ically. In the CSC model CCs never revert to the CSC state and
therefore a perfectly sorted CC population should always remain
negative. On the other hand, if some CSCs are present the CSC
fraction will eventually return to the steadystate value. Finally, the
total number of cells is proportional to the number of CSC growing
in time as

N tð Þ! 1zð ÞRd t , ð7Þ

where Rd is the rate of cell division per day.

Phenotypic Switching model. To introduce phenotypic switching
into the CSC model, we consider the possibility for CCs to revert back
the CSC state. This is done by introducing the probability p that,
instead of dividing, a CC transforms into a CSC (see Fig. 3B). Hence,
CCs divide with probability 1 2 p giving rise to two CCs as in the CSC
model. This model of phenotypic switching retains the distinction
between CSCs and CCs, since only the latter turn senescent after a

Figure 3 | Models. (A) In the CSC model, CSCs (red) can divide symmetrically yielding two CSCs with probability or asymmetrically yielding a CSC and

a CC with probability 1{ . CCs divide symmetricaly for M generation after which they turn senescent. (B) Phenotipic switching is modeled by

introducing a probability p that a CC transform back to the CSC state instead of duplicating. (C) In the imperfect marker model, the switching concerns

marker expression not the CSC state. Both CSCs and CCs can be positive to the marker and upon division the expression of the marker can change

randomly with respect to the originating cell according to the probabilities q for CSCs and q6 for positive and negative CCs.
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fixed number of divisions, unless they transform back to the CSC
state. Finally, senescent cells are not allowed to switch to the CSC
state.

To solve the model, we have to modify the recursion relations Eq. 5
to take into account the possibility that CCs revert to the CSC state
with probability p. This leads to a set of equations

SN~ 1zð ÞSN{1zp
XM

i~1

CN{1
i

CN
1 ~ 1{ð ÞSN{1

::: :: :::

CN
k ~2 1{pð ÞCN{1

k{1

DN~DN{1z2 1{pð ÞCN{1
M ,

ð8Þ

that we integrate numerically for different initial conditions, corres-
ponding to positive and negative sorting. Typically we first determine
the steadystate distribution (S‘, C?

k , D‘) and then perform the sort-
ing by choosing negative cells as (S0 5 0, C0

k~C?
k , D0 5 D‘) and

positive cells as (S0 5 S‘, C0
k~0, D0 5 0) We then evolve the system

until it reaches the steadystate again. Fig. 4 illustrates the behavior of
the model by following the fraction of positive cells f1 in the two
subpopulation for different values of p.

Imperfect Marker model. In the imperfect marker model, we
assume that the marker does not allow to sort all the CSCs but can
at most separate the cells into CSC rich and CSC poor populations.
We start again from the CSC model and introduce a set of
probabilities defining the evolution of the marker for CSCs and
CCs (see Fig. 3C). At each cell division, CSCs have a probability q
of giving rise to one negative CSC or to one positive CC, while with
probability 1 2 q they give rise to a positive CSC or a negative CC.
The other cell in the division process always retains the marker of the

originating cell. If q is small, then most CSCs will be positive and
most CCs will be negative, while for q 5 0 the marker is perfect.
Similar rules apply for CCs: positive CCs have a probability q1 to
generate a positive CC and a probability 1 2 q1 to generate a negative
CC upon division, while the other cell remains positive. Negative
CCs have yield a positive CC with probability q2 and a negative
CC with probability 1 2 q2, while the other cell remains negative.
While the results will crucially depend on the choice made for q, q1

and q2, here we consider only two extreme cases:

i) CSCs and CCs can change the expression of the marker in
exactly the same way. This case corresponds to q1 5 q2 5 q.

ii) Only CSCs can divide into cells that have a different expression
of the marker with respect to the generating cells (with probabil-
ity q), while CCs retain their marker upon division. This case
corresponds to q1 5 1 and q2 5 0: positive CCs always divide
into positive CCs, while negative CCs always yield negative CCs.

The advantage of these two cases is that they involve a single para-
meter, q.

For the imperfect maker model, we have to write two sets of
recursion relations for positive and negative cells:

SN zð Þ~ 1z 1{qð Þð Þ SN{1 zð ÞzSN{1 {ð Þ� �
CN zð Þ

1 ~ 1{ð Þq SN{1 zð ÞzSN{1 {ð Þ� �
. . . :: . . .

CN zð Þ
k ~ 1zqzð ÞCN{1 zð Þ

k{1 zq{CN{1 {ð Þ
k{1

DN zð Þ~DN{1 zð Þz 1zqzð ÞCN{1 zð Þ
k{1 zq{CN{1 {ð Þ

k{1 ,

ð9Þ
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Figure 4 | Evolution of the concentration of positive cells after sorting for
the Phenotypic Switching model. (A) The evolution of the concentration

of positive cells after sorting for positive (1) and negative (2)

subpopulations as a function of the number of generations N for different

values of the parameter p, M 5 30 and ~0:6. (B) The same plot as panel

(A) for p 5 1022 and different values of M.
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SN {ð Þ~ q SN{1 zð ÞzSN{1 {ð Þ� �
CN {ð Þ

1 ~ 1{ð Þ 1{qð Þ SN{1 zð ÞzSN{1 {ð Þ� �
. . . :: . . .

CN {ð Þ
k ~ 1{qzð ÞCN{1 zð Þ

k{1 z 2{q{ð ÞCN{1 {ð Þ
k{1

DN {ð Þ~DN{1 {ð Þz 1{qzð ÞCN{1 zð Þ
k{1 z 2{q{ð ÞCN{1 {ð Þ

k{1 :

ð10Þ

In Fig. 5, we report the evolution of the fraction of positive cells in
the sorted population for case (i) and (ii) as a function of q. In both
the fraction of positive cells converges to the steady-state value with a
timescale set by M while the steady-state value depends on q.

Dynamics after an imperfect sorting. The last case considered is
that of a perfect marker for CSCs, but an imperfect sorting. Sorting by
Fluorescence-activated cell sorting (FACS) typically involves errors:
some cells could be assigned to the wrong category. We measure the
efficiency of the sorting by g, the probabilty that a cell is sorted
incorrectly by FACS. An imperfect sorting on a cell population
characterized by a number [S0, C0

k , D0] of CSCs, CCs and senescent
cells yields a positive subpopulation composed by [(1 2 g)S0, gC0

k ,
gD0)] cells and a negative subpopulation composed by [gS0,
1{gð ÞC0

k , (1 2 g)D0)] cells. Consequently the fraction of positive
cells in the original population is not equal to the fraction of CSCs but
is given by

f zð Þ~ 1{gð ÞfCSCzg 1{fCSCð Þ, ð11Þ

and only for g 5 0 we have f(1) 5 fCSC. Using this model we can study
the evolution of positive cells in sorted subpopulations.

To quantify the effect of an imperfect sorting, we consider the
evolution of the concentration of positive cells as a function of the
sorting efficiency g. Using the CSC model, we start from steady-
state concentrations of CSCs and CCs and sort them into two
subpopulations according to Eq. 11. Next, we integrate Eqs. 5
and at each generation we compute the fraction of positive cells.
The result also in this case is that after some time the system
returns to the steady state. As illustrated in Fig. 6A for M 5 30
and ~0:8, the evolution depends on g only for the negative
subpopulation and is independent on g for the positive subpopu-
lation. In both cases, the number of generations needed to reach
the steady state is controlled by M, as shown in Fig. 6B. Hence, we
can estimate the typical equilibration time to be around t�^MRd

for the positive subpopulation and slightly larger for the negative
one. The main difference between imperfect sorting and imperfect
marker or phenotipic switching is that in the first case there is a
net asymmetry between positive and negative subpopulations: the
negative subpopulation remains roughly constant for the first M
generations, while the positive subpopulation decreases from the
beginning.

The sorting efficiency, while not directly accessible from experi-
ments, can be estimated by a simple calculation. When discussing
FACS experiments it is customary to report the purity of the process,
obtained by sorting the subpopulation immediately after the first
sorting. Here we define the purity k of the sorting as the real con-
centration of positive cells present in the nominally positive subpo-
pulation and express it in terms of g

k~
1{gð ÞfCSC

1{gð ÞfCSCzgð1{fCSCÞ

Combining Eq. 11 and Eq. 12, we can estimate the sorting efficiency
in terms of the measured values of f(1) and k. In the limit f zð Þ=1,
typical of CSC markers, and high purity (1{k=1), we obtain a
simple expression

g^f zð Þ 1{kð Þ: ð13Þ

To make a concrete example, Ref. [4] reports a purity of 96%
and 2% stemlike cells obtained from SU159 breast cancer

cells. Inserting k 5 0.96 and f(1) 5 0.02 in Eq. 13, we estimate
g 5 8 3 1024.

Comparison with experiments. As discussed above, the simple
Markov model, the CSC model with phenotypic switching,
imperfect markers or imperfect sorting all yield the same outcome:
after some time the fraction of cells that are positive to the marker
returns to the original value. This proves that the expression of a
putative CSC marker after positive cells have been eliminated by
sorting is not a sufficient proof of phenotypic switching. To
illustrate this point more clearly, we consider the experimental
results reported by Gupta et al4 on breast cancer cell lines. In Fig. 7
we report the fraction of positive (stem-like) cells six days after the
initial sorting. These data were interpreted in Ref. [4] by the simple
Markov model. Here we show that the same data can be reproduced
by the imperfect marker model or by the phenotypic switching
model. To this end we have chosen parameters so that the
asymptotic value of f1 is equal to the initial value, f1 5 1.9%,
obtained in Ref. [4], thus assuming that the cell populations were
originally in the steady-state. We notice that the experimental data
could be interpreted as a result of an imperfect sorting if we assume
that M , 5, which appears to be too small.

In order to get more insight on the process underlying the
observed behavior one can consider the growth curves of the sorted
subpopulations. The experimental data reported in Ref. [4] refer to
two days of growth and show no significant difference in prolifera-
tion between sorted subpopulations. This observation was consid-
ered in Ref. [4] as additional evidence in favor of phenotypic
switching. This is, however, not the case as shown in Fig. 8 which
compares the experimental data with the prediction of the pheno-
typic switching and imperfect marker models. Both models show no
difference in growth at short times, while the difference can only be
observed at later times. A similar result was reported for melanoma
cells sorted with a putative stem cell marker (ABCG2)11: a difference
in the growth for positive and negative cells was observed only after
two months of cultivation.
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Discussion
In the last decades, the main biologically motivated strategy to kill
tumor cells has been to target common factors involved in cellular
proliferation. The underlying idea was that if all cells are able to give
rise to a tumor, one should try to identify the best factors that might
affect the biological function of all the cells in order to kill them all
together. Since tumor cells can proliferate indefinitely, the best can-
didates were supposed to be key factors involved in cellular division.
Many factors have been claimed in the past to affect tumor prolif-
eration, but most of time their clinical impact were modest in com-
parison to the effects demonstrated in vitro. Thus, either the factors
were not the right ones or one should reconsider the traditional view
of cancer.

In 1997, Bonnet et al2 proposed that only a subpopulation of the
cells can sustain tumor growth. These cells were defined CSCs
because they share with stem cells biological characteristics like the
unlimited capability to grow3. This observation changes completely
the therapeutic perspective since the only way to eradicate the tumor
is to target CSCs28. Yet, the identification of the best markers to define
CSCs is an extremely controversial topic in the literature. For
instance, Gupta et al4 used CD44high/CD24-/EpCAMlow to identify
breast cancer CSC. In a different paper, however, CD441/CD24low

cells were shown to be more abundant in triple-negative invasive
breast carcinoma phenotype and to be associated with poor out-
come29. In melanoma the story is quite similar with different markers
used to identify CSCs7–9,30–36 and no consensus on which one is the
most effective. In a recent paper, Roesch et al used JARID1B to
identify CSC and suggested that melanoma cells are not hiearchically
distributed since the JARID1B- subpopulation can become positive
after some time8, as also observed by Quintana et al.7 using other CSC
markers and by Gupta et al4 in breast cancer. These results lead to a
new hypothesis that is gaining traction in the literature37: the possibil-
ity that CCs can switch back to the CSC phenotype.

In this paper, we have revisited the experimental evidence in sup-
port of the phenotypic switching hypothesis using mathematical
models for guidance. We showed that the reversible expression of
markers after sorting can be explained by assuming that putative

CSC markers are not perfect, without invoking phenotypic switching
of CCs into CSCs. To illustrate this point we have constructed a
hierarchical cancer model in which CSCs can self-renew and give
rise to CCs which can duplicate for a finite number of times only.

This basic model can then be modified according to the pheno-
typic switching hypothesis, introducing a small probability for CCs
to transform back into CSCs, or to the imperfect marker hypothesis,
introducing probabilities for CSCs and CCs to yield a progeny that is
positive or negative to the marker. Finally, the model can also be used
to test the effect of sorting errors, when CSCs or CCs are assigned to
the wrong category by the instrument. In all these cases the CSC
marker appears to be reversibly expressed after sorting. The fraction
of positive cell reaches the steady-state value even for negative cells.
The model also allows to predict the growth of sorted subpopula-
tions, which could in principle be used to discriminate between
various possibilities. We have compared the prediction of the model
with experimental results reported in Ref. [4], showing that it is not
possible to distinguish between the phenotypic switching and the
imperfect marker hypothesis. We also notice that in experiments
the effect of imperfect markers is likely to be combined with that
of sorting errors. We conclude that experiments suggesting pheno-
typic switching of CCs into CSC could equally well be interpreted
assuming that the putative CSC marker is not perfect. In order to
have a more conclusive idea on the behaviour of CSCs, it would
interesting to follow their kinetics in vivo in analogy with what is
currently done for stem cells24,25.

Methods
Recursion equations (5,8,9,10) are solved numerically using a Fortran code. We first
reach the steady-state by iterating the equations for at least N 5 100 steps starting
from an initial condition with a single CSC. The steady-state is, however, independent
on the initial conditions. Next, we perform the sorting by separating positive and
negative cells according to the model and iterate again the equations from the new
initial condition. The process is repeated for different parameter values.
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