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1 Community Search

Suppose we have identified a set of subjects in a terrorist network suspected
of organizing an attack. Which other subjects, likely to be involved, should
we keep under control? Similarly, given a set of patients infected with a viral
disease, which other people should we monitor? Given a set of companies trading
anomalously on the stock market: is there any connection among them that could
explain the anomaly? Given a set of proteins of interest, which other proteins
participate in pathways with them? Given a set of users in a social network that
clicked an ad, to which other users (by the principle of “homophily”) should the
same ad be shown?

Each of these questions can be modeled as a graph-query problem: given
a graph G = (V,E) where (V is a set of vertices representing entities and E
is a set of edges modeling the relations among the entities) and given a set of
query vertices Q ⊆ V , find a subgraph H of G which “explains” the connections
existing among the vertices in Q, that is to say that H must be connected and
contain all query vertices in Q.

Several problems of this type have been studied under different names, e.g.,
community search [3,6,17], seed set expansion [2,10], connectivity subgraphs [1,7,
15,18], just to mention a few. While optimizing for different objective functions,
the bulk of this literature aims at finding a “community” around the set of query
vertices Q: the (more or less) implicit assumption is that the vertices in Q belong
to the same community, and a good solution will contain other vertices belonging
to the same community of Q. As we showed in our work in [15], when such an
assumption is satisfied, these methods return reasonable subgraphs, but when the
query vertices belong to different modules of the input graph, these methods tend
to return too large a subgraph, often so large as to be meaningless and unusable
in real applications. Moreover, the assumption is not so realistic in practice. In
fact, we have a set of vertices that we believe are of interest for the application
at hand and we want to further investigate them: why should we assume they
belong to the same community? Moreover, if we have already knowledge of the
communities, then why do we need to “reconstruct” the community around Q?
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2 The Minimum Wiener Connector

In our work in [15] we take a different approach: instead of trying to “reconstruct”
the community around Q we seek a small connector, i.e., a connected subgraph
of the input graph which contains Q and a small set of important additional
vertices. These additional vertices could explain the relation among the vertices
in Q, or could participate in some function by acting as important links among
the vertices in Q. We achieve this by defining a new, parameter-free problem
where, although the size of the solution connector is left unconstrained, the
objective function itself takes care of keeping it small.

Specifically, given a graph G = (V,E) and a set of query vertices Q ⊆ V , our
problem asks for the connector H∗ minimizing the sum of shortest-path distances
among all pairs of vertices (i.e., the Wiener index [19]) in the solution H∗:

H∗ = arg min
G[S]:Q⊆S⊆V

∑

{u,v}∈S

dG[S](u, v)

where G[S] denotes the subgraph induced by a set of nodes S, and dG[S](u, v)
denotes the shortest-path distance between nodes u and v in G[S]. We call H∗

the minimum Wiener connector for query Q.
This is a very natural problem to study: shortest paths define fundamental

structural properties of graphs, playing a role in all the basic mechanisms of
networks such as their evolution [11] and the formation of communities [8]. The
fraction of shortest paths that a vertex takes part in is called its betweenness
centrality [4], and is a well established measure of the importance of a vertex, i.e.,
the extent to which an actor has control over information flow. A consequence
of our definition of minimum Wiener connector is that our solutions tend to
include vertices which hold an important position in the network, i.e., vertices
with high betweenness centrality.

Consider social or biological networks with their modular structure [8] (i.e.,
the existence of communities of vertices densely connected inside, and sparsely
connected with the outside). When the query vertices Q belong to the same com-
munity, the additional nodes added to Q to form the minimum Wiener connector
will tend to belong to the same community. In particular, these will typically be
vertices with higher “centrality” than those in Q: these are likely to be influential
vertices playing leadership roles in the community. These might be good users
for spreading information, or to target for a viral marketing campaign [9].

Instead, when the query vertices in Q belong to different communities, the
additional vertices added to Q to form the minimum Wiener connector will con-
tain vertices adjacent to edges that “bridge” the different communities. These
also have strategic importance: information has to go over these bridges to prop-
agate from a community to others, thus the vertices incident to bridges enjoy
a strategically favorable position because they can block information, or access
it before other individuals in their community. These vertices are said to span
a “structural hole” [5]: they are the best candidates to target for blocking the
spread of rumors or viral diseases in a social network, or the spread of malware
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in a network of computers. In a protein-protein interaction network these ver-
tices can represent proteins that play a key role in linking modules and whose
removal can have different phenotypic effects.

In [15] we show that, when the number of query vertices is small, the mini-
mum Wiener connector can be found in polynomial time. However, in the general
case our problem is NP-hard and it has no PTAS unless P = NP: note that,
while the inapproximability result says that the problem cannot be approxi-
mated within every constant, it leaves open the possibility of approximating it
within some constant. In fact, our central result is an efficient constant-factor
approximation algorithm, which runs in Õ(|Q||E|) time. We also devise integer-
programming formulations of our problem. We use them to compare our solu-
tions for small graphs with those found using state-of-the art solvers, and show
empirically that our solutions are indeed close to optimal. Our experiments con-
firm that our method produces solutions which are smaller in size, denser, and
which include more central nodes than the methods in the literature, regardless
of whether the query vertices belong to the same community or not.

3 The Minimum Inefficiency Subgraph

A common aspect of almost all the literature on community search is to require
the solution to be a connected subgraph. The requirement of connectedness is a
strongly restrictive one. Consider, for example, a biologist inspecting a set of pro-
teins that she suspects could be cooperating in some biomedical setting. It may
very well be the case that one of the proteins is not related to the others: in this
case, forcing the sought subgraph to connect them all might produce poor quality
solutions, while at the same time hiding an otherwise good solution. By relax-
ing the connectedness condition, the outlier protein can be kept disconnected,
thus returning a much better solution to the biologist. Another consequence of
the connectedness requirement is that by trying to connect possibly unrelated
vertices, the resulting solutions end up being very large.

In our work in [16], we study the selective connector problem: given a graph
G = (V,E) and a set of query vertices Q ⊆ V , find a superset S ⊇ Q of vertices
such that its induced subgraph, denoted G[S], has some good “cohesiveness”
properties, but is not necessarily connected. Abstractly, we would like our selec-
tive connector G[S] to have the following desirable properties:

• Parsimonious vertex addition. Vertices should be added to Q to form the
solution S, if and only if they help form more “cohesive” subgraphs by better
connecting the vertices in Q. Roughly speaking, this ensures that the only
vertices added are those which serve to better explain the connection between
the elements of Q (or a subset thereof).

• Outlier tolerance. If Q contains vertices which are “far” from the rest of
Q, those should remain disconnected in the solution S and be considered as
outliers. The necessity for this stems from the fact that real-world query-sets
are likely to contain some vertices that are erroneously suspected of being
related.
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• Multi-community awareness. If the query vertices Q belong to two or
more communities, then the connector should be able to recognize this sit-
uation, detect the communities, and refrain from imposing connectedness
between them.

A natural way to define the cohesiveness of a subgraph G[S] is to consider
the shortest-path distance dG[S](u, v) between every pair of vertices u, v ∈ S, as
done in the previous section. One issue with shortest-path distance is that, when
the connectedness requirement is dropped, pairs of vertices can be disconnected,
thus yielding an infinite distance. A simple yet elegant workaround to this issue
is to use the reciprocal of the shortest-path distance [13]; this has the useful
property of handling ∞ neatly (assuming by convention that ∞−1 = 0). This
is the idea at the heart of network efficiency, a graph-theoretic notion that was
introduced by Latora and Marchiori [12] as a measure of how efficiently a network
G = (V,E) can exchange information:

E(G) =
1

|V |(|V | − 1)

∑

u,v∈V
u�=v

1
dG(u, v)

.

Unfortunately, defining the selective connector problem as finding the sub-
graph G[S] with S ⊇ Q that maximizes network efficiency would be meaningless.
In fact, the normalization factor |V |(|V | − 1) allows vertices totally unrelated to
Q to be added to improve the efficiency; clearly violating our driving principle
of parsimonious vertex addition. Based on the above arguments, we introduce
the measure of the inefficiency of a graph G = (V,E), defined as follows:

I(G) =
∑

u,v∈V
u�=v

1 − 1
dG(u, v)

.

Hence, we define the selective connector problem as the parameter-free prob-
lem which requires extracting the subgraph G[S], with S ⊇ Q, that minimizes
network inefficiency. With this definition, each pair of vertices in the subgraph
G[S] produces a cost between 0 and 1, which is minimum when the two vertices
are neighbors, grows with their distance, and is maximum when the two vertices
are not reachable from one another. Parsimony in adding vertices is handled by
the sum of costs over all pairs of vertices in the connector; adding one vertex v to
a partial solution S incurs |S| more terms in the summation. The inclusion of v
is worth the additional cost only if these costs are small and if v helps reduce the
distances between vertices in S. Moreover, note that by allowing disconnections
in the solution, the second and third design principles above (i.e., outliers and
multiple communities) naturally follow from the parsimonious vertex addition.

The Minimum Inefficiency Subgraph (mis) problem is NP-hard, and we prove
that it remains hard even if we constrain the input graph G to have a diameter
of at most 3. Therefore, we devise an algorithm that is based on first building a
complete connector for the query vertices and then relaxing the connectedness
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Fig. 1. Comparison between Minimum Inefficiency Subgraph (mis) and other notions in
the literature on a cortical connectivity network. Query vertices are colored w.r.t. their
known functionalities: memory and motor function (blue vertices), emotions (yellow
vertices), visual processing (red vertices). The green vertices are the ones added to
produce the solution. More details on the case study can be found in [16]. (Color figure
online)

requirement by greedily removing non-query vertices. Our experiments show that
in 99% of problem settings, our greedy relaxing algorithm produces solutions no
worse than those produced by an exhaustive search, while at the same time
being orders of magnitude more efficient. We empirically confirm that the mis is
a selective connector: i.e., tolerant to outliers and able to detect multiple com-
munities. Besides, the selective connectors produced by our method are smaller,
denser, and include vertices that have higher centrality than the ones produced
by the state-of-the-art methods. We also show interesting case studies in a vari-
ety of application domains (such as human brain, cancer, food networks, and
social networks), confirming the quality of our proposal (Fig. 1).

4 Adaptive Community Search in Dynamic Networks

Although community search has received a great deal of attention in the last
few years, most of the literature so far has focused on static networks. How-
ever, many of the networks of interest carry time information which can be very
important for understanding the dynamics of interactions between the vertices.
For instance, interactome, which is the set of molecular interactions in a cell,
can be modeled as a network, in which the vertices are proteins and through
their connections can perform biological functions. However, these connections
are not constantly active, and therefore a dynamic analysis is more appropriate
for understanding properly this complex network [14]. In communication net-
works, for example, the edges represent correspondence between two actors of
the network. If a user A communicates with a user B at some time t0 and later
in time, the user B communicates with a user C the flow of information can pass
from user A to user C, but not in the opposite direction.

In our ongoing work we are studying the problem of community search in
dynamic networks with adaptive query updates. Our objective is to find a tem-
poral connector that includes all the vertices of interest, connecting them with
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“temporal paths” that should be seen as paths both in space (i.e., network struc-
ture) and in time (i.e., network evolution). Since the network changes constantly
in time, we expect that the connectors evolve as well. Therefore, it is natural that
the query set is enriched during the evolution, with new vertices, that formed
part of the solution of the previous time instances. As long as the added vertices
remain related to the initial query set, they are maintained to it. Otherwise,
they are removed from the query set. In this way, the connector keeps evolving
in time and keeps monitoring the evolution of the interactions among the vertices
of interest. We call this problem temporal adaptive community search.
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