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Abstract. Given a dynamic network, where edges appear and disap-
pear over time, we are interested in finding sets of edges that have sim-
ilar temporal behavior and form a dense subgraph. Formally, we define
the problem as the enumeration of the maximal subgraphs that satisfy
specific density and similarity thresholds. To measure the similarity of
the temporal behavior, we use the correlation between the binary time
series that represent the activity of the edges. For the density, we study
two variants based on the average degree. For these problem variants
we enumerate the maximal subgraphs and compute a compact subset of
subgraphs that have limited overlap. We propose an approximate algo-
rithm that scales well with the size of the network, while achieving a
high accuracy. We evaluate our framework on both real and synthetic
datasets. The results of the synthetic data demonstrate the high accu-
racy of the approximation and show the scalability of the framework.

1 Introduction

A popular graph-mining task is discovering dense subgraphs, i.e., densely con-
nected portions of the graph. Finding dense subgraphs was well studied in com-
puter science and data-mining communities with many real-world applications.

Many highly dynamic real-life applications are modeled by continuously
changing graphs. In some cases, the nodes and edges may evolve in a convergent
manner and display correlated behavior. These groups of correlated elements,
especially when they are topologically close, can represent regions of interest in
the network. This work is focused on the discovery of such patterns, i.e., on the
correlated dense subgraphs in dynamic networks. We consider graphs with edges
that appear and disappear as time passes. Our goal is to identify sets of edges
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that show a similar behavior in terms of their presence in the graph, and at
the same time, are densely connected. Previous works [5,6] considered a similar
problem, but limited to the time intervals and hard network partition. In this
work we propose a general framework for finding dense correlated subgraphs,
which can work with any temporal and spatial measure. Given specific density
and correlation thresholds, we enumerate all maximal (the output set does not
contain graphs, which are subgraphs of one another) subgraphs that satisfy the
thresholds. Furthermore, since outputting a large number of highly overlapping
subgraphs is not practical, we produce a manageable and informative set of
highly diverse subgraphs.

Our main contributions are: (i) We introduce and formally define the generic
problem of detecting a set of dense and correlated subgraphs in dynamic net-
works (Sect. 2), and explain how it differs from other similar works (Sect. 5); (ii)
We propose two different measures to compute the density of a group of edges
that change over time, which are based on the average-degree density [7], and a
measure to compute their correlation, based on the Pearson correlation (Sect. 2);
(iii) We develop an exact solution, called ExCoDe, for enumerating all the sub-
graphs that satisfy given density and correlation thresholds. We also propose an
approximate solution that scales well with the size of the network, and at the
same time achieves high accuracy (Sect. 3); (iv) We study the problem of identi-
fying a more compact and diverse subset of results. We extend our framework to
extract a set of subgraphs with a pairwise overlap less than a specified threshold
(Sect. 3); (v) We evaluate our framework on both real and synthetic datasets,
confirming the correctness of the exact solution, the high accuracy of the approx-
imate one, the scalability of the framework, and the applicability of the solution
on networks of different nature (Sect. 4).

The extended version of the paper can be found at http://arxiv.org/abs/
2103.00451.

2 Problem Statement

A dynamic network is a graph that models data that change over time. It is
represented as a sequence of static graphs (snapshots of the network).

Dynamic Network. Let T ⊆ T be a set of time instances over a domain T . A
dynamic network D = (V,E) is a sequence of graphs Gi = (V,Ei) with i ∈ T ,
referred to as snapshots of the network, where V is a set of vertices, Ei⊆V ×V
is a set of edges between vertices. The set E denotes the union of the edges in
the snapshots, i.e., E=∪i∈TEi.

We assume that all the snapshots share the same set of nodes. If a node does
not interact in a snapshot, then it is present as a singleton.

Given a graph G = (V,E), a subgraph H of G is a graph H = (VH , EH),
such that VH ⊆ V and EH ⊆ E. In static graphs, the density of a subgraph is
traditionally computed as the average degree of its nodes [7]:

Density. The density of a (static) graph G = (V,E) is the average degree of its
nodes, i.e., ρ(G) = 2|E|/|V |.

http://arxiv.org/abs/2103.00451
http://arxiv.org/abs/2103.00451
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In the case of a dynamic network D, the edges of a subgraph H may not
exist in all the snapshots, meaning that the density may be different in each
snapshot. Therefore, we propose two approaches to aggregate the density values.
Let Gi(H) = (VH , EH ∩Ei) denote the subgraph induced by H in the snapshot i.
The minimum density, denoted as ρm, is the minimum density of any subgraph
induced by H across the snapshots of D; while the average density, denoted as
ρa, is the average density among these induced subgraphs. In particular,

ρm(H) = min
i∈T

ρ(Gi(H)), ρa(H) =
1

|T |
∑

i∈T

ρ(Gi(H)). (1)

Given a density threshold δ, a subgraph H is called δ-dense if ρm(G) ≥ δ or
ρa(G) ≥ δ, respectively.

These intuitive definitions are too strict for those practical situations where
an interesting event or anomaly exhibits itself only in a small number of snap-
shots of the network [2]. To account for such situations, we introduce the notion
of activity and say that a subgraph H is active at time t if at least k edges of
H exist in t, i.e., |Et ∩ EH | ≥ k. Then, we relax our density definitions and
compute the minimum and average density of H by aggregating only over the
snapshots where H is active. Let T k

H denote the subset of snapshots H is active,
i.e., T k

H = {t | t ∈ T and |Et ∩ EH | ≥ k}. We redefine Eq. 1 as follows:

ρkm(H) = min
i∈Tk

H

ρ(Gi(H)), ρka(H) =
1

|T k
H |

∑

i∈Tk
H

ρ(Gi(H)). (2)

If T k
H is empty, then both ρkm(H) and ρka(H) are set to 0. We use the notation

ρk to refer collectively at ρkm and ρka.
We say that a subgraph is correlated if its edges are pairwise correlated. We

therefore represent every edge as a time series over the snapshots, and measure
the correlation between two edges as the Pearson correlation between the time
series. Pearson correlation is widely used to detect associations between time
series [8]. However, our framework can work with any other correlation measure.
Let t(e) denote the time series of the edge e, where each coordinate is set to
ti(e) = 1 if e appears in the snapshot i, and thus ti(e) = 0 otherwise.

Edge Correlation. Let D = (V ,E) be a dynamic network, e1, e2 ∈ E be two
edges with respective time series t(e1) = {t1(e1), . . ., tT (e1)}, t(e2) = {t1(e2), . . .,
tT (e2)}, and t(e) = 1

|T |
∑T

i=1 ti(e). The correlation between e1 and e2, denoted
as c(e1, e2), is the Pearson correlation between t(e1) and t(e2), i.e.,

c(e1, e2) =

T∑
i=1

(ti(e1) − t(e1))(ti(e2) − t(e2))
√

T∑
i=1

(ti(e1) − t(e1))2
√

T∑
i=1

(ti(e2) − t(e2))2
.

Given a correlation threshold σ, the edges e1 and e2 are considered correlated
if c(e1, e2) ≥ σ.
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We define the correlation of a subgraph H as the minimum pairwise corre-
lation between its edges, i.e., cm(H) = minei �=ej∈EH

c(ei, ej), and say that H is
σ-correlated if cm(H) ≥ σ.

Our goal is to identify all the dense and correlated subgraphs in a dynamic
network. However, since a dense correlated subgraph may contain dense corre-
lated substructures due to the nature of the density and correlation measures
used, we restrict our attention to the maximal subgraphs. Thus, given a dynamic
network D, a density threshold δ, and a correlation threshold σ, we want to find
all the subgraphs H that are δ-dense and σ-correlated, and are not a strict subset
of another δ-dense σ-correlated subgraph.

As it is often the case with problems that enumerate a complete set of solu-
tions that satisfy given constraints, the answer set could potentially be very large
and contain solutions with a large degree of overlap. To counter this effect, we
further focus on reporting only the diverse subgraphs, which are subgraphs that
differ from one another and are representative of the whole answer set. To mea-
sure the similarity between subgraphs, we use the Jaccard similarity between
their edge sets, i.e., the Jaccard similarity between the graph G′=(V ′, E′) and
G′′=(V ′′, E′′), denoted as J(G′, G′′), is J(G′, G′′)=|E′ ∩ E′′|/|E′ ∪ E′′|. Then,
we require that the pairwise similarities between subgraphs in the answer set are
lower than a given similarity threshold ε. This is in line with previous work that
has aimed at finding a diverse collection of dense subgraphs [9].

Diverse Dense Correlated Subgraphs Problem [DiCorDiS ]. Given a
dynamic network D, a density threshold δ, a correlation threshold σ, and a
similarity threshold ε, find a collection S of maximal and diverse subgraphs
such that for each H ∈ S, H is δ-dense and σ-correlated, and for each distinct
H,H ′ ∈ S, J(H,H ′) ≤ ε.

3 Solution

To solve DiCorDiS, we propose a two-step approach, called ExCoDe (Extract
Correlated Dense Edges). It first identifies maximal sets of correlated edges,
and then extracts subsets of edges that form a dense subgraph according the
density measures ρkm or ρka. The correlation of a set of edges is computed as cm.

Given the dynamic network D = (V,E) we create a correlation graph G =
(E, E), such that the vertex set of G is the edge set E of D, and the edges of G
are the pairs (e1, e2) ∈ E × E that have correlation c(e1, e2) ≥ σ. It is easy to
see that a maximal clique in the correlation graph G corresponds to a maximal
set of correlated edges in D.

The flow of ExCoDe is illustrated in Algorithm 1. Starting from the dynamic
network D = (V,E) the algorithm first creates the correlation graph G by adding
a meta-edge between two edges of D if their correlation is greater than σ. Then
it enumerates all the maximal cliques in G. This collection of maximal cliques
in G corresponds to a collection C of maximal correlated edge sets in D. Finally,
FindDiverseDenseEdges examines each connected component in C (by using
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Algorithm 1. ExCoDe

Input: Dynamic network D = (V, E), Density function ρk

Input: Thresholds: Correlation σ, Density δ, Size sM
Input: Thresholds: Edges-per-snapshot k, Similarity ε
Output: Diverse dense correlated maximal subgraphs S
1: G ← CreateCorrelationGraph(G, σ)
2: C ← FindMaximalCliques(G)
3: S ← FindDiverseDenseEdges(D, C, ρk, δ, k, sM , ε)
4: return S

Algorithm 2. FindDiverseDenseEdges

Input: Dynamic Network D = (V, E)
Input: Set of maximal cliques C, Density function ρk

Input: Thresholds: Density δ, Size sM , Edges-per-snapshot k, Similarity ε
Output: Set of diverse dense maximal subgraphs S
1: S ← ∅; P ← ∅
2: CC ← extractCC(C)
3: for each X ∈ CC do
4: if X.size<sM and isMaximal(X, S∪P) and isDiverse(X, S) then
5: (flag , R) ← isDense(D, X, k, ρk, δ)
6: add X to S if flag = 1
7: add R to P if flag = 0

8: for each X ∈ P do
9: add X to S if isMaximal(X, S) and isDiverse(X, S)

10: return S

either the density measure ρkm or ρka) to identify those constituting dense sub-
graphs in D, retaining only a subset of pairwise dissimilar subgraphs according
to the similarity threshold ε. Next we describe the key elements of Algorithm 1,
while the detailed descriptions of all the subroutines are in the supplementary
materials.

Creation of the Correlation Graph. The correlation graph G can be built
exactly, by computing the correlation c(e1, e2) between each pair of edges e1, e2 ∈
E and retaining those pairs satisfying c(e1, e2) ≥ σ. However, when D is large,
comparing each pair of edges is prohibitively expensive, and thus we propose an
approximate solution based on min-wise hashing [3]. Here we exploit the fact
that a strong correlation between two edges implies a high Jaccard similarity
of the sets of snapshots where the edges appear. We use min-wise hashing to
identify sets of candidate correlated edges. Specifically, we use a variant of the
TAPER algorithm [19].

Enumeration of the Maximal Cliques. After the creation of the correlation
graph G, the maximal groups of correlated edges are enumerated by identifying
the maximal cliques in G. To this aim, we use our implementation of the GP
algorithm of Wang et al. [17].
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Algorithm 3. isDense

Input: Dynamic Network D = (V, E)
Input: A set of edges X, Density function ρk

Input: Thresholds: Density δ, Edges-per-snapshot k
Output: (1, ∅) if X is dense; (0, R) if X contains the dense subsets R; (−1, ∅) o.w.
1: K ← kEdgeSnapshots(X, k)
2: if ρk(X, K, δ) then return (1, ∅)

3: if containsDense(X, K, k) = ∅ then return (−1, ∅)

4: return (0, extractDense(X, K, k))

5: function containsDense(X, K, k)
6: while ρk(X, K, δ/2) = false do
7: if X = ∅ or K = ∅ then return false

8: max ← getMaxDeg(X)
9: n ← getMinDegNode(X)

10: if max < δ/2 then return false

11: X ← X \ adj (n)
12: K ← kEdgeSnapshots(X, k)

13: return true
14: function extractDense(X, K, k)
15: R ← ∅; Q ← {(X, K)}
16: while Q �= ∅ do
17: extract (Y, K′) from Q
18: if ρk(Y, K′, δ) then
19: R ← R ∪ {Y }
20: else if K′ �= ∅ then
21: max ← getMaxDeg(Y )
22: N ← getMinDegNodes(Y )
23: if max < δ then continue

24: for each n ∈ N do
25: Y ← Y \ adj (n)
26: K′ ← kEdgeSnapshots(Y, k)
27: add (Y, K′) to Q if Y �= ∅
28: return R

Discovery of the Dense Subgraphs. The goal of this step is to find con-
nected groups of edges that form a dense subgraph, using either ρkm or ρka as
density function ρk. FindDiverseDenseEdges receives in input a set of max-
imal cliques C, each of which represents a maximal group of correlated edges.
Since some of the edges in a clique may not be connected in the network D,
the algorithm extracts all the distinct connected components from the cliques
(calling subroutine extractCC), before computing the density values. To allow
a faster discovery of the maximal groups of dense edges, the connected compo-
nents are sorted in descending order of their size and processed iteratively. If no
larger or similar dense set of the current candidate X has been discovered yet
(line 4), and if the size of X does not exceed the threshold sM , the density of
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X is computed by isDense (line 5) calling subroutine isAvgDense (for ρka(X))
or subroutine isMinDense (for ρkm(X)). Both subroutines iterate through the
snapshots where at least k edges of X are present, but then the former aggre-
gates the density values, while the latter keeps track of the minimum density.
The latter allows for early stopping, if it encounters a snapshot where the density
is below the threshold. However, thanks to the optimizations described in the
next paragraph, the implementation of isAvgDense is more efficient than that
of isMinDense, and thus we call the latter only when the former returns true,
given that the average is an upper bound to the minimum.

When the density of the subgraph H induced by X is above the threshold
δ, X is inserted in the result set S (line 6). Otherwise, some subset X ′ ⊆ X
may satisfy the condition ρka(H

′) ≥ δ. Since examining all the subsets of X is
costly, we use Procedure containsDense, which is based on a 2-approximation
algorithm for the densest subgraph problem [7], to prune the search space. In
details, Procedure containsDense iteratively removes the vertex with lowest
degree from the subgraph H, until it becomes empty or its density is greater
than δ/2. Every time a vertex is removed, its outgoing edges are removed as
well (line 11), and thus the set of valid snapshots K must be updated (line 12).
If K becomes empty, any subset of X has zero density, and thus the algorithm
returns false (line 7). If the maximum value of density calculated during the
execution of this algorithm is below the threshold δ/2, it holds that X cannot
contain a subset X ′ with density above δ [7], and thus containsDense returns
false. Therefore, extractDense, which extracts all the dense subsets in the
set X, is invoked (line 4) only when containsDense returns true.

When Procedure containsDense returns true, extractDense iteratively
searches for all the dense subsets in X. At each iteration, a subset of edges Y is
extracted from the queue Q and its density is checked. If Y is not dense but the
set of valid snapshots is not empty (line 20), a new candidate is created for each
vertex n with lowest degree in the subgraph induced by Y . These candidates are
then inserted into Q. On the other hand, when Y is dense, it is inserted into the
result set R. At the end of Algorithm 2, the maximal subsets in the set P, which
contains the elements of all the R sets computed during the search, are checked
for similarity with the subsets already in S. Those with Jaccard similarity below
ε with any subsets in S are finally added to S (lines 8–9).

Computing Average Density Efficiently. The average density ρa(H) of a
subnetwork H = (VH , EH) in a dynamic network D can be computed via the
summary graph of D defined as the static graph R = (V,E, σ) where V is the
set of vertices of D, E is the union of the edges Ei of all the snapshots of D,
and σ : E �→ R is a weighting function that assigns, to each edge e ∈ E, a
value equal to its average appearance over all the snapshots of D, i.e., σ(e) =
1/|T |

∑
i∈T ti(e). The following proposition ensures that ρa(H) is equivalent to

the weighted density of H in the summary graph R, which is defined as wρ(H) =
2
∑

e∈EH
σ(e)/|VH |.

Proposition 1. Given a dynamic network D, its summary graph R, and a sub-
network H, it holds that ρa(H) = wρ(H).
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Proof.

ρa(H) =
1

|T |
∑

t∈T

ρ(Gt(H)) =
1

|T |
∑

i∈T

(
2|EH ∩ Et|

|VH |

)

=
2

|VH |
1

|T |
∑

i∈T

∑

e∈EH

ti(e) =
2

|VH |
∑

e∈EH

σ(e) = wρ(H). 
�

The weighted density of H in the summary graph R can be calculated sig-
nificantly faster than its average density in the dynamic network D, since the
former is obtained by summing the appearances of the edges of H defined by
σ, while the latter is obtained by constructing the subgraph induced by EH in
each snapshot, computing the average node degree of each induced subgraph,
and taking the average among those values. Thus, Proposition 1 allows us to
improve the efficiency of our algorithm when using ρa (and ρka) density function.

ExCoDe Complexity. The exact construction of G takes O(|E|2), as it requires
the computation of all the pairwise edge correlations. The approximate solution
creates h ·r hash values for the edges in O(h ·r · |E|) and compares only the edges
that share at least one hash code. Even though the worst-case time complexity
is still O(|E|2) (every pair of edges share some hash code), practically, the actual
number of comparisons is much smaller than |E|2. The time complexity of the
maximal clique enumeration is O (|E| · κ(G)), where κ(G) is the number of cliques
in G. The computation of the connected components in the maximal cliques
takes O(|E| · κ(G)), as it requires a visit of the network D for each clique.
In the worst case, each edge of the network belongs to a different connected
component, and thus Algorithm 2 must iterate |E| times. At each iteration, it
calls Procedure isDense to compute the density of the current set of edges X if
its size is lower than sM . Procedure isDense calculates the average node degree
of each subgraph induced by X in all the snapshots where at least k edges
of X are present (at most |T |), and thus its time is bounded by O(sM · |T |).
When X is not dense, the algorithm further calls Procedure containsDense
and Procedure extractDense. The former runs in sM , since it removes at
least one edge from X at each iteration; while the latter must process all the
subsets of X in the worst case (2sM ). The complexity of Algorithm 2 is therefore
O(κ(G) · |E| + |E|(sM · |T | + sM + 2sM )) = O(|E|(κ(G) + sM |T | + 2sM )), which
is also the complexity of Algorithm 1.

4 Experimental Evaluation

We evaluate the performance of our exact and approximate solutions in terms
of accuracy and execution time. We also integrated our solution into a tool
demonstrated at ICDMW19 [14]. More experimental results can be found in the
supplementary materials, due to space limitations.

The datasets considered are 3 real networks and 6 randomly-generated net-
works, the characteristics of which are shown in Tables 1 and 2, respectively.
They report the number of vertices |V |, edges |E|, and snapshots |T |; the aver-
age node degree da(G); the average node degree per snapshot da(Gi); and the
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Table 1. Real datasets

Dataset |V | |E| |T | da(G) da(Gi) ca(e)

haggle 274 2K 90 15.5 5.2 5.4

twitter-s 767 2K 2K 6.2 3 121.1

twitter-m 1.2K 7K 2K 12.1 3.2 86.4

twitter-l 1.3K 10K 2K 15.2 3.3 68.6

mobile-s 5K 42K 48 15.3 4.9 3.8

mobile-m 5K 80K 48 28.6 6.4 3.6

mobile-l 5K 118K 48 41.4 7.5 3.6

Table 2. Synthetic datasets

Dataset |V | |E| |T | pin pout Independent Correlated

da(G) da(Gi) aa(e) da(Gi) ca(e)

gaussian-1-7-1 100 1059 100 0.7 0.1 21.1 10.6 50 10.32 48.2

gaussian-2-7-1 200 3029 100 0.7 0.1 30.2 15.1 50.1 15.1 50.1

gaussian-3-7-1 300 6070 100 0.7 0.1 40.4 20.2 50 20.3 50.3

gaussian-1-7-3 100 1825 100 0.7 0.3 36.5 18.2 50 18.2 49.9

gaussian-2-7-3 200 6828 100 0.7 0.3 68.2 34 49.9 33.8 49.6

gaussian-3-7-3 300 14723 100 0.7 0.3 98.1 49 49.9 48.9 49.8

Table 3. Minimum (Fm) and average (Fa) F-score, running time. Worst case values
in parenthesis. “-” for runs longer than 2 days.

Dataset ciForager ExCoDe

Fm Fa t(min) Fm Fa t(sec)

gaussian-1-7-1 0 (.07) .03 (19) .2 (.98) 1 (.99) 1 (1.1) .71

gaussian-2-7-1 0 (.03) .01 (365) 4 (.00) 1 (.95) 1 (2.2) 1.6

gaussian-3-7-1 0 (-) .007 (-) 44 (.98) 1 (.99) 1 (8.0) 4.5

gaussian-1-7-3 0 (.02) .01 (78) .9 (.98) 1 (.99) 1 (1.2) 1

gaussian-2-7-3 0 (-) .003 (-) 332 (.97) 1 (.99) 1 (10) 5.5

gaussian-3-7-3 - (-) - (-) - (.98) 1 (.99) 1 (51) 23

average number of appearances of an edge in the snapshots ca(e). haggle [4]
is a human-contact network, twitter [12] is a hashtag co-occurrence network
created using tweets collected from 2011 to 2016, and mobile [11] is a network
modeling calls between users made available by Telecom Italia. The gaussian-x-
y-z are synthetic networks generated using the gaussian random partition graph
generator in the Python NetworkX library1. A graph is obtained by partitioning

1 https://tinyurl.com/y5sezq73.

https://tinyurl.com/y5sezq73
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Fig. 1. Running time and average F score for varying δ

the set of n nodes into k groups each of size drawn from a normal distribution
N (s, s/v), and then adding intra-cluster edges with probability pin and inter-
cluster edges with probability pout .

We implemented our algorithms in Java 1.8, and run the experiments on
a 24-Core (2.40 GHz) Intel Xeon E5-2440 with 188 Gb RAM with Linux 3.13,
limiting the amount of memory available to 150 Gb. In addition, we implemented
a Java version of ciForager [6], which is the approach most related to ours.
For the synthetic datasets we report results based on 100 runs.

Effectiveness of the Exact Solution. We tested the effectiveness of our exact
algorithm in detecting the actual dense groups of correlated edges in the syn-
thetic networks gaussian-x-7-1 and gaussian-x-7-3. The correlation threshold
σ is set to 0.8; the density threshold δ is equal to the minimum average degree
among the actual dense groups, namely 2; and the maximum size sM is set to ∞
to ensure we do not miss any dense group. We measured the accuracy in terms
of the Jaccard similarity between the groups of edges discovered S and the dense
groups in the ground-truth G. First, for each group H ∈ S, we computed the Jac-
card similarity with its closest dense group in G, and then calculated minimum
and average precision as Pa and Pm:

Pa = 1
|S|

∑
H∈S

max
J∈G

Jacc(H,J) Pm = min
H∈S

max
J∈G

Jacc(H,J)

Then, for each dense group J ∈ G, we computed the Jaccard similarity with
its closest group in S, and calculated minimum and average recall Ra and Rm:

Ra = 1
|G|

∑
J∈G

max
H∈S

Jacc(H,J) Rm = min
J∈G

max
H∈S

Jacc(H,J)

Finally, we report the average and minimum F-score, as: Fa = 2(Pa ·
Ra)/(Pa + Ra) and Fm = 2(Pm · Rm)(Pm + Rm).

As shown in Table 3, for each synthetic network ExCoDe obtained both
Fa = 1 and Fm = 1, meaning that the algorithm correctly identified all the
dense groups despite the extra edges added between the groups in the networks.
We achieved lower scores only when using correlation thresholds σ ≤ 0.2 for the
smallest network, and σ ≤ 0.3 for the others. In these cases it is more likely
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that some inter-group edges have a correlation greater than σ, and therefore the
algorithm discovers sets of edges that are supersets of the actual dense groups.
Nonetheless, the Fa score is always greater than 0.94, while the Fm score is lower
than 0.97 only for network gaussian-2-7-1.

In addition, Table 3 compares our approach with ciForager [6], the closest
competitor. ciForager creates a partition of edges to optimize temporal (aggre-
gated over temporal windows) correlation and spatial (all-pairs path) distance
of each partition. We run the code with the default parameters: window length
wl = 10, window overlap size wi = 1, clustering similarity threshold 0.25, region
similarity threshold 0.2. The window length is the size of the window used to
segment the sequence of graph snapshots into overlapping subsequences, while
the overlap size indicates how much the subsequences overlap. The clustering
threshold decides which edges to be grouped together, and the region threshold
determines how to merge the groups of edges found in different windows.

Since the output of ciForager is an edge partition, and thus contains edges
that are not part of any dense group, the average and minimum precisions Pa and
Pm are always low, and, as a consequence, the Fa and Fm are always lower than
those of ExCoDe. Performance wise, ciForager is expensive since it computes
the temporal distance for almost each pair of edges and for each window. In
contrast, our algorithm was able to terminate in less than a minute with every
configuration and network tested.

Efficiency of the Approximate Solution. Figure 1 shows the performance
and running time of ExCoDe approximate to find the (0.9)-correlated δ-dense
subgraphs in the mobile-m network, using both ρka and ρkm, and varying δ. As
we can see, the approximate solution is one order of magnitude faster than the
exact algorithm, and yet achieves a Fa score of at least 0.8 for the ρka (AVG) case,
and 0.77 for the ρkm (MIN). We observed a similar behavior also in the other
networks. As an example, in the twitter samples we obtained the highest Fa

score at high density values, while a minimum of 0.63 at low density values.

5 Related Work

Our problem is close to dense subgraph mining in dynamic networks. Works
in this field aim at retrieving the highest-scoring temporal subgraph [13], the
densest temporally compact subgraph [15], or the group of nodes most densely
connected in all the snapshots [16]. Although they can be adapted to retrieve
multiple subgraphs, the detected subgraphs are non-overlapping, and with edges
that are not temporally correlated. The enumeration of dense structures has
been studied in the context of frequent subgraph mining [1], and top densest
subgraph mining [9]. When the input is a dynamic network, these groups rep-
resent subgraphs that persist over time; however, in general they are not tem-
porally correlated. In anomaly and fraud detection, other measures have been
considered, together with the density, with the goal of finding interesting regions
in the snapshots of a dynamic network [2]. All such works focus on the statisti-
cally significant structures, while our interest is on dense groups of edges with a
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similar behavior over time. A notion of correlation has been used in approaches
that characterize the event dynamics by the number of articular labels in the
vicinity of spacial reference nodes [10], or that compute a decay factor [18]. In
contrast to our work, both these approaches retrieve only anomalous nodes. The
works closest to ours are CStag [5] and its incremental version ciForager [6],
which find regions of correlated temporal change in dynamic graphs. However,
they partition the edges into L regions, meaning that each edge is a part of the
output, and hence the output can be very large and contain a number of low
quality graphs. In contrast, we enumerate only the subgraphs with large density
and high pairwise edge correlation.

6 Conclusions

We studied the problem of finding maximal dense correlated subgraphs in
dynamic networks. We proposed two measures to compute the density of a
subgraph that changes over time, and one to assess the temporal correlation
of its edges. We described a framework that uses those measures to identify
such subgraphs for given density and correlation thresholds. We experimentally
demonstrated the limitations of the existing solutions and provided an approx-
imate solution that runs in an order of magnitude faster, yet achieving a good
solution quality.
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