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Recently, the abundance of digital data is enabling the implementation of graph-based ranking algorithms
that provide system level analysis for ranking publications and authors. Here, we take advantage of the entire
Physical Review publication archive �1893–2006� to construct authors’ networks where weighted edges, as
measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit
transfer. On this network, we define a ranking method based on a diffusion algorithm that mimics the spreading
of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by
local measures such as the citation count and provide a statistical analysis of the assignment of major career
awards in the area of physics. A website where the algorithm is made available to perform customized rank
analysis can be found at the address http://www.physauthorsrank.org.
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I. INTRODUCTION

The recording of social interactions and data in the elec-
tronic format has made available data sets of unprecedented
size. This is particularly evident for bibliographic data whose
study has received a boost from the information technology
revolution and the digitalization process. This has led to the
definition of ranking measures which are supposed to pro-
vide objective and quantitative measures of the importance
of journals, papers, programs, people, and disciplines �1,2�.
While the validity of these metrics is object of debate �3�, it
is now standard practice to consider measures such as the
impact factor, the number of citations and the h index �4� to
assess the scientific research production of individuals and
institutions. In this context, the use of multipartite networks
as the natural abstract mathematical representation of the
data is particularly convenient and several studies have re-
cently focused on the study of coauthorship networks, paper
citation networks, etc. �5–8�. In general, each of these net-
works is an appropriate bipartite or unipartite network pro-
jection of the original bibliographic data set where authors
and papers are nodes and citations, authorship, and other
bibliographic information define the links among nodes
�8,9�.

The possibility of a system level study of these networks
has opened new possibilities for the bibliometric analysis
aimed at evaluating the impact of scientific collections, pub-
lications, and scholar authors. In particular, the field has le-
veraged on graph-based ranking algorithms developed in the
context of the world wide web �10–14� to provide the impact
and prestige of papers and authors. The final goal of ranking
bibliographic data is even more ambitious as it ultimately
concerns the possibility of predicting the evolution of impact
and ranks on the basis of past data �12�.

Criticisms to the ranking mechanism are generally rooted
in the fact that the common indicators, such as the simple
citation counts or the metrics derived from this quantity, do
not truly account for the actual merit of a scientist. Citations
have different values depending on who is the citing scien-

tist, defining a complicated mechanism of scientific credit
diffusion from author to author. Even at the simplest level,
this is a very nonlocal process in which scientists endorse
each other through the process of citing each other’s works.
In order to take into account this perspective, we have de-
fined an approach that bases the author’s ranking on a diffu-
sion algorithm that mimics the diffusion of scientific credits
along time. Here, we take advantage of the set of all 407 236
papers published between 1893 and 2006 in journals of the
Physical Review collection �see Sec. II for a detailed descrip-
tion of the set�. This collection is surely an exceptional proxy
of the activity in the physical sciences and the impact that
individual scientists have generated in the field �15�. The
Physical Review data set has been already exploited to ana-
lyze paper citation network and measure the impact of a
specific paper both with local �individual paper/author� met-
rics �number of citations� and with graph-based ranking al-
gorithms �9,14�. Here, we propose a system level algorithm
with the aim of ranking authors by mimicking the scientific
credit spreading process. We first construct an author-to-
author citation network that fully accounts for the bibliomet-
ric data relative to the credit given from any author to other
authors. We then define an appropriate graph-based ranking
algorithm that simulates the diffusion of credits exchanged
by the authors over the whole network. The algorithm takes
into account that citations from high rank authors have
higher relevance than citations from low rank authors and the
nonlocal nature of the diffusion process in which any author
can in principle impact the score of far away nodes through
the diffusion process. Finally, the proposed ranking tech-
nique is compared with other commonly used methods,
which are based only on local properties of the citation net-
work.

The paper is organized as follows. We first give a brief
description of the PR data set �Sec. II�. In Sec. III, the
weighted citation network between authors is defined and
analyzed. The description of the science author rank algo-
rithm �SARA� is performed in Sec. IV. This algorithm is
used for the estimation of the scientific impact of physicists
along time. We compare SARA with other ranking schemes

PHYSICAL REVIEW E 80, 056103 �2009�

1539-3755/2009/80�5�/056103�10� ©2009 The American Physical Society056103-1

http://dx.doi.org/10.1103/PhysRevE.80.056103


such as Citation Count and Balanced Citation Count in Sec.
V. In Sec. VI, we test SARA by using the list of the winners
of the major prizes in physics. This list of prominent physi-
cists is in fact the best benchmark on which we may test our
algorithm. We finally conclude and report final comments in
Sec. VII.

II. DESCRIPTION OF THE DATASET

Our database is composed of the set of all 407 236 papers
published between 1893 and 2006 in journals of the collec-
tion of Physical Review. The journals considered here are
Physical Review Series I, Physical Review, Physical Review
A, Physical Review B, Physical Review C, Physical Review
D, Physical Review E, Physical Review Letters, and Re-
views of Modern Physics. For each paper the editorial office
of Physical Review provided an xml file from which we can
extract the names of its author�s�, date, journal, volume and
page of publication, its references, the PACS �16� numbers,
and other additional information.

The list of references at the end of each paper allows to
construct a network of citations between papers. According
to our database, the total number of references �obtained by
summing all references over all papers� is 9 359 556 of
which 3 866 471 �17� are internal references �i.e., references
to papers appeared in Physical Review journals�.

In this work, we have neglected all references of the type
“First author et al. ” and all references pointing to papers
written by authors without any publication in the Physical
Review journals. Using these criteria, we identify 8 783 994
total references �including the 3 866 471 internal references�.

In the rest of the paper and all our analysis, we consider
all 8 783 994 references. As already stated, these references
include all papers, published or not in Physical Review jour-
nals, referenced by papers published only in Physical Review
journals.

III. CONSTRUCTION OF THE WEIGHTED
AUTHOR CITATION NETWORK

A weighted citation network between authors �weighted
author citation network �WACN�� can be easily determined
as a particular projection of the paper citation network �PCN�
constructed by the list of references described in Sec. II �see
Fig. 1�. Consider for instance a paper i, written by the n
coauthors i1, i2 , . . ., in, which cites a paper j, written by the m
coauthors j1, j2 , . . ., jm. A natural way to project the un-
weighted directed link i→ j between papers i and j into a
WACN is to create n ·m directed connections from each of
the n citing authors to every of the m cited authors �i.e.,
ik→ js , ∀k=1, . . . ,n and ∀s=1, . . . ,m�, where every con-
nection has weight equal to wik,js

=1 / �nm�. Given a set of
references �i.e., directed links between papers�, the weight of
a directed link between two authors will be the sum of all the
weights over all the references in the set.

It is important to stress here that while the list of refer-
ences does not have ambiguity, the analysis of the author
projection opens the issue of names disambiguation. Indeed,
common names may refer to different authors and not all

authors report their full names in publications. In other
words, we could have a multiplicity of authors identified by
the same identifier. In Appendix A we provide a detailed
analysis of this and other related problems, which are com-
mon issues in bibliometry.

As an example of the network construction, in Fig. 2 we
show the WACN of the top scientists in the field of “complex
networks.” In order to construct this network, we first select
out of the PR data set only papers whose titles contain key-
words as “complex network,” “scale-free network,” “small-
world network,” etc. We then consider their references and
based on this list we project the PCN into a WACN.

A. Dynamical Representation of the Weighted
Author Citation Network

In principle, a single WACN may be constructed based on
the full set of the 8 783 994 total references described in Sec.
II. This is, however, not very informative as very old cita-
tions are mixed with new ones, discounting the dynamical
information contained in the longitudinal nature of the data-
base. In addition, the rate of citation per unit time is steadily
increasing along the years. For this reason, we define dy-
namical slices of the database containing the same number of
citations. We first sort the full list of references according to
their date �i.e., the date of the publication of the citing pa-
per�. Then we divide this list in MI homogeneous intervals,
where homogeneous stands for intervals with the same num-
ber of references MR. In order to avoid abrupt changes, we
consider overlapping intervals, in the sense that the qth in-
terval shares its first MR /2 references with the �q−1�th in-
terval and its last MR /2 references with the �q+1�th interval.
It should be noticed that this sharp division may split refer-
ences of the same citing paper into different contiguous in-
tervals, but this “border effect” may be considered negligible
since we consider MR much larger than the average number
of references per paper �all results have been obtained by
using MI=39 and MR=488 000, while on average each paper
has 20–30 references�. Moreover, we should remark that we
can relate each interval with real time by simply associating
the average of the dates of all the references belonging to the

FIG. 1. �Color online� Projection of the PCN into a WACN. �a�
In the network of citations between papers, the article i, written by
two authors i1 and i2, cites two papers j and k, written by one author
j1 and two co-authors k1 and k2, respectively. �b� The WACN is then
simply generated by connecting with a directed link both i1 and i2 to
j1, each with weight of 1/2, and to k1 and k2, each with weight of
1/4.
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interval with the interval itself. However, since the rate of
citation per unit of time is increasing almost exponentially
with time, the homogeneity of references in each interval
does not correspond to homogeneity in time: for instance the
first interval spans more than 70 years of publications �1893–
1966�, while the last interval is representative for the publi-
cations of only one year �2006�. The choice MR=488 000
adopted in this paper ensures that intervals are representative
of periods of time not shorter than one year.

B. Properties of the Weighted Author Citation Network

We provide in this section a simple statistical analysis of
the WACNs. In particular, we monitor the number of authors
and their indegree and instrength distributions, where for ex-
ample the instrength of a node i is defined as

si
in = �

j

wji, �1�

i.e., the sum of all weights of the links pointing to i �18�.
First of all, it is interesting to note that quantitatively the

properties of the WACNs are not constant in time. This is
understandable since the production of scientists has strongly
changed during the last century.

From Fig. 3, one can qualitatively appreciate the former
observation: the total number of nodes in the network �i.e.,
the number of scientists citing or cited in a particular period
of time� is an increasing function of time. It should be
stressed that this behavior is mainly a consequence of the
increment of scientists in physics as one can deduce from the
time increment of the number of nodes with nonzero in-
strength �i.e., cited authors� that is growing in a much slower
fashion.

The indegree distributions calculated on different WACNs
are generally different. Nevertheless, if we consider the rela-
tive indicator given by the ratio of the citing authors �kin� to
a scientist in a given WACN divided by the average number
��kin�� of citing authors over all physicists in the same
WACN, the distributions of the rescaled variable kin / �kin�
obey the same universal curve �see Fig. 4�a��. This result is
in accordance with the remarkable scaling recently discov-

FIG. 2. �Color online� We generated the citation network based on all papers published in PR journals about the topic “complex
networks.” For clarity, only links with weight above a certain threshold have been plotted. As a consequence only top physicists in this field
are shown. The width of each connection is proportional to its weight and the size of the nodes is proportional to the sum of all weights of
incident links.
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ered on PCNs �19�. The same is not valid for the instrength
distribution since a simple scale transformation does not
seem to lead to a universal behavior.

IV. SCIENCE AUTHOR RANK ALGORITHM

The author-to-author network can be used to define a
graph-based ranking algorithm that uses the global features
of the network to account for the impact of each author.
Analogously to various ranking algorithms such as PageR-
ank �10�, CiteRank �14�, the HITS scores �11�, etc., we de-
fine an iterative algorithm based on the notion of diffusing
scientific credits. In practice, we imagine that each author
owns a unit of credit which is distributed to its neighbors

proportionally to the weight of the directed connection. Each
author thus receives a credit that is then redistributed to
neighbors at the next iteration and so on. In other words, the
SARA simulates the diffusion of credits on the global net-
work according to a diffusion probability proportional to the
weight of the links.

Let us be more specific. Once the WACN has been de-
fined as detailed in Sec. III, we calculate the SARA score for
each node i according to

Pi = �1 − q��
j

Pj

sj
outwji + qzi + �1 − q�zi�

j

Pj��sj
out� . �2�

Here Pi is the score of the node i, 1�q�0 is the damping
factor, wji is the weight of the directed connection from j to
i, sj

out is the outstrength of the node j �i.e., the sum of the
weights of all the links outgoing from the jth vertex, sj

out

=�kwjk� and finally ��x�=1, if x=0 and ��x�=0, otherwise.
The first term on the r.h.s. of Eq. �2� represents the diffusion
of credit through the network: scientist i receives a portion of
credit from each citing author j and each amount of credit is
linearly proportional to the weight wji of the arc linking j to
i. The second and the third terms stand from the redistribu-
tion of credits to all scientists in the network. A portion q of
the credit of each node is redistributed to everyone else �i.e.,
second term�, with the exception of dandling ends �i.e.,
nodes with null outstrength�, which distribute their whole
credit �i.e., third term�. The meaning of the redistribution of
credit is that everyone is in “scientific debit” with the whole
scientific community, since a general background is at the
basis of the knowledge of every scientist. In particular, the
credit is distributed homogeneously among papers in the net-
work. The factor zi takes into account the normalized scien-
tific credit given to the author i based on his productivity. zi
is calculated according to the formula

FIG. 3. �Color online� In the main plot, the total number of
authors Ntot �yellow circles�, number of authors with outstrength
larger than zero N�sout�0�=� j��sj

out� �green squares� and number of
authors with instrength larger than zero N�sin�0�=� j��sj

in� �red dia-
monds� are plotted as functions of the number of references �refer-
enced papers�, where �� · � is the step function equal to one when its
argument is larger than zero and null otherwise. In the inset the
same quantities as those of the main plot are considered, but now
they are plotted as functions of time. More specifically, each x value
corresponds to the average publication year of papers belonging to
the respective dynamical slice of the main plot.

(b)(a)
FIG. 4. �Color online� Probability densities for the indegree �a� and the instrength �b�. Calculations have been performed on different

WACNs based on papers published in different periods of time �yellow circles, 1893–2006; red squares, 1893–1966; and gray diamonds
2005�. The insets show the same distribution as in the main plots, but opportunely rescaled by their average values.
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zi =

�
p

�p,i1/np

�
j

�
p

�p,j1/np

, �3�

where p represents the generic paper p and np the number of
authors who have written the paper p. Moreover, �p,i=1 only
if the ith author wrote the paper p, otherwise it equals zero.
The sum runs over all different papers �citing and cited�.
Basically, each paper receiving a credit is going to redistrib-
ute it equally among all coauthors of the paper. The fact that
the zis are not homogeneous �differently from the original
formulation of PageRank �10�, where zi=1 /N , ∀ i with N
total number of authors� is of fundamental importance: each
paper is carrying the same amount of knowledge indepen-
dently of the number of co-authors. The denominator of the
right-hand side of Eq. �3� serves only for normalization pur-
poses. The stationary values of the Pis can be easily com-
puted recursively, by setting at the beginning Pi=zi , ∀ i �but
the results are independent of the choice of the initial values�
and iterating Eqs. �2� until they converge to values stable
within a priori fixed precision �20�.

The scores calculated according to Eq. �2� depend on the
particular value chosen for the damping factor q. In all re-
sults shown in this paper, we always set q=0.1. This is the
value for which the predictive power of SARA is maximized.
An exploration of the dependence of the performance of
SARA as a function of the damping factor q is reported in
Appendix B.

Ranking Authors

The SARA is used to provide a ranking of the authors in
the PR database. Given an author-to-author network, we cal-
culate the score of each author according to Eq. �2� and
assign a rank position to this scientist. The higher is the score
of a scientist, the higher is her/his rank. As described in Sec.
III, we decided to preserve the longitudinal nature of the
Physical Review database and construct WACNs correspond-
ing to dynamical slices of the database containing the same
number of citations. In this way, we can have a dynamical
perspective on the evolution of the merit of authors along the
years.

As prototypical examples, we show in Fig. 5 the evolution
of the relative rank of four Nobel Laureates. For each author
i we calculate its relative rank as

Ri = 1/N�
j�i

��Pj − Pi� , �4�

which basically stands as the probability to find an author
with better score than author i. N is the total number of
authors in the WACN, while the step function �� · � is equal to
one only when its argument is equal to or larger than one,
otherwise it is zero. The relative rank in other words defines
the top percentile of each scientist. It should be stressed that
the relative rank of Eq. �4� works better than the absolute one
in the case of comparison of scientific performances in dif-
ferent historical periods, since the number of authors in the
WACN is increasing rapidly in time �see Fig. 3�.

From Fig. 5, we can clearly see that relative rank dynam-
ics of Nobel laureates is qualitatively related in time with the

achievement of the prize: top performances are reached close
to the date of the assignment of the honor. Indeed, it is worth
remarking that the method naturally accounts for the fact that
the rate of citations per unit time is steadily increasing
through the years by defining dynamical slices of the data-
base containing the same number of citations. Discounting
old citations, the author’s rank becomes a dynamical quantity
that changes according to the author’s research activity as
well as the success of new research fronts. Thus, rank is
related to the actual impact of the research of an author at a
given time and is changing through the years.

V. COMPARISON WITH DIFFERENT METRICS

Assessing the reliability and the results of any ranking
method is not easy. The main question is to which extent the
SARA algorithm is providing a better rank than other rank-
ing methods commonly used in scientific impact analysis.
For this reason, we consider two basic measures which are
commonly used to rank authors. The first is the citation count
�CC� with which authors are simply ranked by the total num-
ber of citations received in a given time window �note that
the number of citations does not correspond to the indegree
of the author in the citation network�. CC is traditionally the
simplest and mostly used quantity for measuring the scien-
tific impact: popular indicators, as the h index �4� for in-
stance, are based on this simple metrics. The second measure
is the balanced citation count �BCC� that discounts the effect
of multiple authored papers in the citation count by normal-
izing the citation weight by the total number of authors of the
cited paper �i.e., authors are ranked on the basis of their
instrength as defined in Eq. �1��. As a first comparison of the

FIG. 5. �Color online� Evolution of the relative rank expressed
as top percentile of four Nobel laureates: “Bethe, HA” �1967, black
solid line�, “Anderson, PW” �1977, red dotted line�, “Wilson, KG”
�1982, blue solid line�, and “De Gennes, PG” �1992, yellow dashed
line�. Scientific merit is quantified by using Eq. �4�, which counts
the author’s percentile as the relative number of authors with better
rank than the considered scientist. The figure shows how relative
rank is related in time with the Nobel prize �date of the award
indicated by the symbol�. The diagram reports the entire scientific
career of the awardees with the only exception of “Bethe, HA,”
whose activity began much earlier than that of the other three
scientists.
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rankings obtained with the three different methods, we show
in Fig. 6 the scatter plot in which each author is identified by
its SARA ranking and CC or BCC rank. If the methods pro-
vide the same ranking all the points would fall on the diag-
onal. Fluctuations are indicated by the cloud of the scattered
plot about the line indicating the linear behavior. Indeed, it is
possible to show that, in the absence of degree-degree corre-
lations in the network, diffusion algorithms such as the
SARA are providing a score that is on average proportional
to the indegree dependence of the diffusion process �21�.
However, important fluctuations appear: some nodes can
have for example a low-SARA rank despite a modest inde-
gree, whereas some others can have a surprisingly large

SARA despite a high indegree, as it is possible to see in Fig.
6. We believe that the potential refinement offered by this
method is its ability to uncover such outliers. It is interesting
to see that most of the outliers corresponding to authors
badly ranked with the CC and BCC methods are indeed very
important scientists that are highly ranked with our method.

VI. BENCHMARKING THE SCIENCE
AUTHOR RANK ALGORITHM

The previous analysis is not an accurate author by author
analysis but a procedure to identify the most evident outliers.
In order to produce a more refined analysis on the effective-

(c) (d)

(a) (b)

FIG. 6. �Color online� Scatter plots of SARA rank versus CC rank ��a� and �b�� and BCC rank ��c� and �d��. Plots in �a� and �c� refer to
the author citation network based on papers published between 1893 and 1966, while plots in �b� and �d� have been generated by using the
author citation network based on papers published in 2005. In all insets, the same data as the ones analyzed in the respective main plots have
been logarithmically binned. For each bin we plot maximum and minimum values �error bars�, 90% confidence intervals �boxes� and median
�horizontal bars inside boxes� of the SARA rank. In all plots, outlier points stress the most significant differences between SARA and the
other techniques. Authors badly ranked in CC or BCC methods and well classified in SARA are generally very prominent physicists. By
looking at figures �a� and �c� for example, we see scientists of the caliber of “Jordan, P” and “Weyl, H” occupy the top positions in SARA
ranking, while their ranks are two orders of magnitude smaller according to CC or BCC methods. On the other hand, the majority of authors
poorly ranked by the SARA technique and well ranked by CC method correspond to poorly defined identifiers referring in general to multiple
physical persons �see figure �b��: names such as “Li, J” or “Yu, Z” are very common in China and for this reason their CC score is very high;
SARA differently is able to capture the low-scientific relevance of all these authors, ranking them at positions about three orders of
magnitude higher than the ones obtained with the CC method.
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ness of the SARA ranking, we test the predictive power of
the three ranking methods by studying the assignment of
major prizes and awards �in Ref. �22� it has been already

shown that scientists with high-CC scores have high prob-
ability to earn a Nobel prize in their discipline�. We expect
that a better performing ranking would identify most of the
award winning authors by placing those at very top ranks. In
other words, we assume that awards and prizes are an out-
come of a peer performed rank analysis that singles out the
most highly ranked authors. This human ranking process,
obtained with the hard work of committees and the help �in
many cases� of the whole community can be considered as a
benchmark for the ranking algorithms. We expect that the
better the algorithm is performing, the more awarded authors
will be found in the top rank brackets. In Fig. 7, we see how
SARA improves the prediction in the assignments of major
prizes in Physics with respect to both CC and BCC methods.
The probability to earn a prize is consistently higher for au-
thors who have reached top rank positions �23� according to
SARA than for scientists who have occupied the same posi-
tions in CC or BCC rankings.

Finally, we provide a table �see Table I� with best ranked
scientists at the end of years 1973 �period of 1967–1973� and
2004 �period of 2003–2004�, where we single out those who
have not yet received any of the major awards we considered
in the present analysis. It is important to stress that some
prizes are disciplinary and cannot apply to all authors. Nev-
ertheless, the majority of the scientists �16 out of 20� listed in
the left part of Table I �period of 1967–1973� have earned
one of the prizes considered in this analysis. On the other
hand, all scientists listed in the right part of Table I �year
2004� are, by our knowledge, top physicists in their field of
research and probably eligible to very important prizes in
physics not only in accordance with our criteria.

FIG. 7. �Color online� We consider some of the main prizes in
Physics �Nobel prize, Wolf prize, Boltzmann medal, Dirac medal,
and Planck medal�. To each prize, we associate the best perfor-
mance of the scientist who earned that honor. The performance of
an author at a given time is quantified by the author’s percentile
defined as the percentage of other authors who have a better rank at
the same time �see Eq. �4��: the lower is this percentage, the better
is the performance of the considered scientist. SARA is more pre-
dictive than both CC and BCC: according to SARA ranking, the
35% of the prizes have been assigned to scientists who have
reached a position below the 0.1%. The SARA tells that 77% of the
considered honors have been earned by scientists with a best per-
formance rank lower than 1%. As term of comparison, according to
CC and BCC ranking the former rate decreases to 66% and 67%,
respectively.

TABLE I. �Color online� Top 20 scientists according to the SARA method. The rankings are determined by considering all papers
published in the periods of 1967–1973 �left� and 2003–2004 �right�. We highlighted in gray scientists, who have not yet earned any of the
major prizes �NP=Nobel prize, WP=Wolf prize, BM=Boltzmann medal, DM=Dirac medal, and PM=Planck medal�. “Kohn, W” earned the
NP in Chemistry in 1998.
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VII. CONCLUSIONS

In this paper, we propose a measure for ranking scientists
mimicking the spread of scientific credits among authors.
The proposed technique, SARA, is similar in spirit to the
standard ranking procedure implemented for pages in the
world wide web �10�. SARA is based on a mixed process,
where a biased random walk is combined with a random
distribution of the credits among the nodes. On a global
level, the algorithm takes into account that inlinks from
highly ranked authors are more important than inlinks from
authors with low rank and measures the nonlocal effects of
the spreading of scientific credits into the network. The non-
local characteristics of this algorithm are evident as any au-
thor can in principle impact the score of far away nodes
through the diffusion process and the fact that the score of an
author is more affected by the score of its neighbors than the
raw number of inlinks.

We apply SARA on WACNs directly constructed from the
paper citation network based on articles published in the
Physical Review collection between 1893 and 2006. This
large data set allows the estimation through SARA scores of
the scientific relevance of physicists along time. The time
behavior can be monitored by simply using the longitudinal
nature of the Physical Review database and therefore con-
structing WACNs representative of different periods of time.
A quantitative comparison between rankings obtained via
SARA scores or other more popular heuristics shows the
great improvement that can be obtained by considering the
whole citation network instead of only its local properties.

As practical application of our ranking recipe, we have
developed a Web platform �http://www.physauthorsrank.org�
where the evolution of the scientific relevance of all physi-
cists, with at least a publication in Physical Review journals
before 2006, can be plotted. The website offers several addi-
tional features such as the evaluation of the authors’ rank in
their specific topical area.

While we believe that the methodology exemplified by
our approach entails more information than the simple
citation counts or the metrics derived from this quantity,
including the h index and its related measures, we want to be
the first to spell out clearly the many caveats deriving by a
noncritical approach to similar ranking approaches. First of
all it is worth remarking that the present algorithm takes into
account only the Physical Review data set. While this may
be appropriate to rank authors within the physics community,
it is clear that it does belittle the rank of authors who have
got a large impact in other areas or disciplines. This problem
might be mitigated by the inclusion of other databases
or very extensive citation repositories. The inclusion of
larger repositories however would amplify the disambigua-
tion problem and this endeavor might not be straight-
forward. For this reason we have added to our web platform
the user disambiguation process. The hope is that a collabo-
rative WEB2.0 approach may help in achieving progressively
cleaner data sets. A similar procedure has been
recently proposed by Thomson Reuters with the website
http://www.researcherid.com �24�, where authors are asked
to link their ResearcherID to their own articles. Another is-
sue is the fact that our scientific credit spreading is consid-

ering credits and citations just as a positive indicator of im-
pact. It is debated in the community how to consider the
effect of the so-called negative citations aimed at contradict-
ing previous results or conclusions. This is however a very
subtle point as it is almost impossible to say to which extent
this kind of citations are negative. In many cases even flaws
or error may have the merit to open new direction of research
or the path to novel approaches. While we prefer not to enter
this discussion here it has to be kept in mind that our method
could be extended to define negative scientific credit. A final
warning is concerning the general use and exploitation of the
global ranking approaches. It is clear that the obtained rank-
ing is just an indicator and cannot embrace the multifaceted
nature and the many processes at the origin of authors’ repu-
tation. The obtained ranking has therefore to be considered
as an extra element to be used with grain of salt and espe-
cially in terms of “order of magnitude” more than in absolute
value.
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APPENDIX A: IDENTIFICATION AND DISAMBIGUATION
OF AUTHORS

The list of references enables the construction of an error-
free network of citation between articles. However, in this
paper we are not interested in the analysis of PCNs, but on
one of their particular projections: the WACN. We present a
detailed description on the way in which we construct the
WACN in Sec. III. Here, we would like to focus about pos-
sible sources of error, caused by the format of the PR data set
itself, associated with the projection of a network of citation
between papers into the correspondent WACN.

Whether authors can be well identified or not is still an
open problem. Every author in the database has always a first
and a last name. Many of them also have additional names,
generically indicated as middle names. First �and middle�
names may appear in their full version or they can only be
represented by the first letter. Writing first �and middle�
names in their complete version is typically more common in
recent papers and in papers with short lists of authors. On a
total of 1 916 812 repetitions for the authors �this means the
sum of all authors, not only different authors, over all the
papers� the first names appear 1 564 251 times with just their
first letter and the remaining 352 561 times in their full ver-
sion. The simplest �and actually implemented� way to iden-
tify and distinguish authors is to assign to each author an
identifier �ID� in accordance with the following rule

�LAST-NAME, F.M.

LAST-NAME, FIRST-NAME MIDDLE-NAME
	

⇒ LAST-NAME, FM. �A1�
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This means for example that according to rule �A1� “Ein-
stein, Abert” has ID equal to “Einstein, A” while the ID of
“Bethe, Hans Albrecht” is “Bethe, HA”. Essentially, the last
name is taken in its full version, while for the first and the
middle names we consider only the first letters. Proceeding
in this way we are able to distinguish 216 623 “different”
authors. This approach is however biased by two main
sources of error. First, there is a problem of identification for
the authors. Unfortunately, scientists do not always sign their
papers using the same name and this has as a consequence
the impossibility to automatically relate different names to
the same physical person. This fact may happen for several
reasons: different order between first and last name; possible
presence or absence of middle names; change of last names
�this happens especially to ladies after their wedding�.

The second problem is basically the reverse of the for-
merly described source of error: the obvious impossibility to
distinguish authors having same initials and the same last
name by using only this information. We did not try to per-
form any kind of more elaborated analysis since this is still
an open problem in bibliometrics and mainly because this
was beyond the purposes of our paper. Furthermore, a simple
analysis revealed that the number of “pathological” cases is
expected to be small enough to be considered irrelevant for
the results reported in the paper.

In order to evaluate the relevance of the error introduced

by the impossibility to disambiguate IDs, we consider only
papers of our database signed by authors using the full ver-
sion of their first and last names �and eventually their middle
names�. Unfortunately, this happens only in recent papers
�from 1980 on� and only when the list of authors is suffi-
ciently short �less than four, in general�: this means that is
very unlikely to happen. As already mentioned, the total
number of “signatures” �i.e., the total number of nondistinct
authors who have signed all papers in our database� is
1 916 812, while the number of times in which an author has
signed with her/his “full signature” is only 352 561. Based
on this subset, we perform the reduction described in rule
�A1�. We then calculate the probability P�d� by simply
counting the ratio between the total number of IDs shared by
d different scientists and the total number of IDs. The result-
ing distribution is plotted in Fig. 8: in the 92% of the cases
an ID corresponds to a single author; the rest of the distribu-
tion has a power law decay �i.e., P�d�
d−�� as d increases
�the exponent ��3�.

FIG. 8. �Color online� We consider only the IDs of authors with
full version of their first names. Then, we count the number of times
d the same ID is obtained from authors with different first names
�plus middle names, if present�. The probability P�d� �plotted as
yellow circles� of finding an ID with “degeneracy” in the first name
equal to d has a power law decay as d increases �the dashed line has
exponent equal approximately to −3�.

(b)(a) (c)

FIG. 9. The rankings calculated with SARA for q=0.1 are plotted as function of the rankings obtained with the same algorithm but for
different values of q: �a� q=0.01, �b� q=0.15 and �c� q=0.3. All plots have been generated from the WACN based on all papers published
between 1893 and 1966 �the same data set as the one used in Figs. 6�a� and 6�c� of the main text�.

FIG. 10. �Color online� Percentage of prizes earned by physi-
cists who have reached a given rank position as their best perfor-
mance. Generally, the SARA is more predictive than the simple CC
criterion since top scientists in SARA ranking have higher chances
to earn a prize than top authors in the analogous ranking based on
CC.
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APPENDIX B: SCIENCE AUTHOR RANK ALGORITHM:
DEPENDENCE ON THE DAMPING FACTOR

SARA depends on the so-called damping factor q �see Eq.
�2��. q is a real number in the interval �0,1� and the results
calculated with SARA for different values of q may differ.
As a practical example, we report in Fig. 9 some scatter plots
between SARA rankings calculated for different values of q.
As expected, SARA rankings calculated for different q are
linearly correlated and the correlation strength decreases as
the difference between the q values increases.

The decision to set q=0.1 is based on a special analysis
which is graphically reported in Fig. 10. For each scientist,
who earned one of the major prizes in Physics, we computed
her/his best performance during her/his scientific history. We
then plotted the ratio of prizes assigned to scientists with the
best performance falling in a given interval �note that the
intervals’ division is totally arbitrary, but the results do not

strictly depend on this choice�. According to any reasonable
measure of scientific impact, the probability that a scientist
earns an important prize should be related to her/his scien-
tific relevance. In the case of SARA ranking, we generally
observed that the majority of prizes is assigned to scientists
who have reached a top position in the ranking. This allows
us to justify the use of such measure for the scientific impact
of authors. Moreover, as already stated and shown �see Fig.
7�, SARA is more effective than other well-known criteria
such as CC or BCC if one wants to predict future winners of
prizes. Anyway, also in the case of SARA, the predictivity of
the algorithm may quantitatively change as function of q.
Looking at Fig. 10, we see for instance that, in the top inter-
vals, the highest ratios are reached for values of q�0.1,
while values of q�0.1 or q�0.1 give lower ratios in these
first two bins. As a consequence, we can say that q=0.1 is
the optimal value for SARA since it is the value which maxi-
mizes the predictivity of our algorithm.
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