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Abstract
Space-time is one of themost essential, yetmostmysterious concepts in physics. In quantum
mechanics it is common to understand time as amarker of instances of evolution and define states
around all the space but at one time; while in general relativity space-time is taken as a combinator,
curved aroundmass. Herewe present a unified approach on both space and time in quantum theory,
and build quantum states across spacetime instead of only on spatial slices.We no longer distinguish
measurements on the same system at different timeswithmeasurements on different systems at one
time and construct spacetime states upon thesemeasurement statistics. As afirst step towards non-
relativistic quantum field theory, we consider how to approach this in the continuous-variablemulti-
mode regime.We propose six possible definitions for spacetime states in continuous variables, based
on four differentmeasurement processes: quadratures, displaced parity operators, positionmeasure-
ments andweakmeasurements. The basic idea is to treat different instances of time as different
quantummodes. They aremotivated by the pseudo-densitymatrix formulation among indefinite
causal structures and the path integral formalism.We show that these definitions lead to desirable
properties, and raise the differences and similarities between spatial and temporal correlations. An
experimental proposal for tomography is presented, construing the operationalmeaning of the
spacetime states.

1. Introduction

Physicists have been seeking a quantumunderstanding of spacetime formany years. However, space and time
are treated quite differently in ordinary quantum theory; this is different from relativity which treats space and
time in amore even-handedmanner, and contradicts with classical information theorywhich does not
distinguish spatio-temporal correlations. Time is regarded as afixed a priorinotion but not an observable in
quantumphysics. Quantum states, as a complete description of a physical system, are defined only on spatial
slices, i.e. at a given time, and evolve under certain prescribed dynamics. Thus a natural considerationwill be a
state across spacetime. Since a state can be built operationally uponmeasurement statistics [1], we consider the
possibility of constructing spacetime states frommeasurement correlations. In particular, a continuous-variable
[2, 3] system,with an infinite-dimensional Hilbert space and continuous eigenspectra of observables, is of great
interest as non-relativistic quantum field theory; therefore, it is crucial to build spacetime states in continuous
variables.
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Quite a few proposals have been introduced for amore equal treatment of space and time in quantum
theory, whichmay contribute to construct spacetime states.Well-known examples are the sum-over-histories
approach or so-called path integral formulation and consistent/decoherent histories [4, 5]. At the same time,
different spacetime formulations have been proposed independently by different authors, includingmulti-time
state [6], quantum comb [7, 8], processmatrix [9, 10], causaloid [11] or its later version as operator tensor [12],
process tensor [13, 14], super-density operator [15] and pseudo-densitymatrix [16], as well as an equivalent
general theory for quantumgames [17]. All these formulations can be shown to have amappingwith each other
from the view of indefinite causal structures.Most of these formulations are restricted tofinite dimensional
Hilbert spaces8. These indefinite causal structures aim for a probability theory of dynamical causal structures in
spacetime and to help understand quantum gravity [18]which combines quantumfield theory and general
relavitity. (Note that dynamical causal structures are lacking in quantumfield theory but crucial in general
relativity.)Thus, we need to formulate indefinite causal structures for quantumfield theory and before that,
continuous variablesfirst.

Here we follow the paradigmof the pseudo-densitymatrix [16], which is considered as a spacetime state. In
practice, it is not a state defined in terms of ( )x t, , but a state defined beyond a spatial slice across spacetime in
order to unify correlations in space and time in a single framework. The pseudo-densitymatrix uses only a single
Hilbert space for each spacetime event defined in terms ofmakingmeasurements in spacetime; while all the
other indefinite causal structures double theHilbert spaces to preserve the positivity of the densitymatrices.
Thus a pseudo-densitymatrix can be the best candidate for a spacetime state.We take the view fromWigner that
‘the function of quantummechanics is to give statistical correlations between the outcomes of successive
observations [19],’ and then construct the spacetime states in continuous variables from the observation of
measurements ofmodes.We treat different instances of time as different quantummodes and assume the tensor
product structure.We give six possible definitions for spacetime densitymatrices in continuous variables or
spacetimeWigner functions built uponmeasurement correlations. The choice ofmeasurements tomake is a
major issue here. They should form a complete basis to extract full information of states in spacetime.One
natural choice is the quadratures, which turn out to be efficient in analysingGaussian states. Analogous to the
Pauli operators as the basis for amulti-qubit system, another option in continuous variables would be the
displacement operators; however, they are anti-Hermitian. Instead, we apply their Fourier transforms ( )aT ,
which are twice of displaced parity operators, to the representation of generalWigner functions.We also
initialise the discussion of defining spacetime states frompositionmeasurements andweakmeasurements based
on previouswork on successivemeasurements [20–23], motivated by linking pseudo-densitymatrix to path
integral.We further show that these definitions for continuous variables satisfy natural desiderata, such as those
listed in [24] for quantum joint states over time, as well as additional criteria for spacetime states. An
experimental proposal for tomography is presented as well to showhow these definitions are operationally
meaningful.

In this paper, we proceed as follows. First we provide a background on pseudo-densitymatrices infinite
dimensions. Next we define spacetimeGaussian states via the characterisation of the first two statistical
moments and show that temporal correlations in continuous variables are different but related to spatial
correlations. Thenwe define spacetimeWigner function representation and the corresponding spacetime
densitymatrix, and desirable properties are satisfied analogous to the spatial case. Beforemoving on, we
comment on the pseudo-densitymatrix paradigm in terms of its properties and basic assumptions, and show its
relationwithChoi–Jamiołkowski isomorphism and path integral.We further discuss the possibility of defining
spacetime states via positionmeasurements andweakmeasurements. After that, we set up desirable properties
for spacetime quantum states and checkwhether all the above definitions satisfy themor not. An tomographical
scheme is suggested for experiments. Finally we summarise ourwork.

2. Pseudo-densitymatrix

The pseudo-densitymatrix formulation [16, 25–29] is afinite-dimensional quantum-mechanical formalism
which aims to treat space and time on an equal footing via unifying spatial and temporal correlations. Among all
indefinite causal structures, only the pseudo-densitymatrix assumes a singleHilbert space for each spacetime
eventwhile all the others use doubleHilbert spaces, e.g. for inputs and outputs in processmatrices. As a price to
pay, pseudo-densitymatricesmay not be positive semi-definite. In general, this formulation defines an event via
making ameasurement for a single qubit at one time and is built upon correlations frommeasurement results of
different events on arbitrary qubits at arbitrary times. Bymaking a tensor product of different eventHilbert

8
Note that a continuous-variable version of processmatrices defined e.g. in [10], posing a challenge for treating field theory scenarios with

such formulations.
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spaces, pseudo-densitymatrices treat temporal correlations operationally as spatial correlations and thus unify
spatio-temporal correlations.

An n-qubit densitymatrix can be expanded by Pauli operators in terms of Pauli correlations which are the
expectation values of these Pauli operators. Instead of considering n qubits on a spatially slice at one time, now
we pick up n events across space-time, where a single-qubit Pauli operator ismeasured for each. Then, the
pseudo-densitymatrix is defined as

ˆ { } ⨂ ( )å å s sº á ñ
= =

=
=

R
1

2
... , 1

n
i i

i j
n

j

n

i
0

3

0

3

1
1n

j j

1

where { }sá ñ=i j
n

1j
is the expectation value of the product of thesemeasurement results for a particular choice of

events with operators { }s =i j
n

1j
. Similar to a densitymatrix, it is Hermitian and unit-trace, but not positive semi-

definite aswementioned before. If themeasurements are spacelike separated or local systems evolve
independently, the pseudo-densitymatrix will reduce to a standard densitymatrix. Otherwise, for example
measurements aremade in time, the pseudo-densitymatrixmay have a negative eigenvalue. Thus it encodes
temporal correlations and becomes a spacetime densitymatrix. Note that this definition is only valid infinite
dimensions; a straightforward generalisation to infinite dimensions fails due to the normalisation factor leading
to singularities.

3.Gaussian representation

3.1. Preliminaries
Gaussian states are a special case in continuous variables with a representation in terms ofGaussian functions
[3, 30, 31]. Thefirst two statisticalmoments of the quantum states, themean value and the covariancematrix,
fully characterise Gaussian states, just as normalGaussian functions in statistics. Themean value d , is defined as
the expectation value of theN-mode quadraturefield operators { ˆ ˆ } =q p,k k k

N
1 arranged in

ˆ ( ˆ ˆ ˆ ˆ )=x q p q p, , , ,N N
T

1 1 , that is,

ˆ ( ˆ ˆ ) ( )r= á ñ ºrd x xTr , 2j j j

for theGaussian state r̂. The elements in the covariancematrix s are defined as

ˆ ˆ ˆ ˆ ˆ ˆ ( )s = á + ñ - á ñ á ñr r rx x x x x x2 . 3ij i j j i i j

The covariancematrix s is real and symmetric, and satisfies the uncertainty principle [32] as (note that in this
paperwe set = 1)

( )s W+ i 0, 4

inwhich the elements ofW is given by commutation relations as

[ ˆ ˆ ] ( )= Wx x, i , 5i j ij

thusW is the ´N N2 2 matrix
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1

This condition also implies the positive definiteness of s, i.e. s > 0. Thenwe introduce itsWigner
representation; theWigner function originally introduced in [33] is a quasi-probability distribution in phase
space and the characteristic function can be given via the Fourier transformof theWigner function. By
definition, theWigner representation of aGaussian state is Gaussian, that is, the characteristic function and the
Wigner function [31] are given by

( ) [ ( ) ( ) ] ( )x x s x xc W W W= - - dexp
1

4
i , 7T T T

( ) [ ( ) ( )] ( )s
sp

=
- - --

x
x d x d

W
exp

det
, 8

T

N

1

where x Î x, N2 .
Typical examples of Gaussian states include vacuum states, thermal states and two-mode squeezed states. A

one-mode vacuum state ∣ ñ0 has zeromean values and the covariancematrix as ´2 2 identitymatrix I. A one-
mode thermal state with themean number of photons n̄ [3] or inverse temperatureβ [30] is defined equivalently
as
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where ˆ ˆ†a a, are annihilation and creation operators. Note that ¯
¯

b = -
+
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n1
. The thermal state has zeromean

values and the covariancematrix proportional to identity as ( ¯ )+n I2 1 or +
-

b

b

-

- I1 e

1 e
, respectively to the above two

definitions. A two-mode squeezed state [30] is generated from the vacuum state ∣ ñ0 by actingwith a two-mode
squeezing operatorwhich is defined as

ˆ ( ) [ ˆ ˆ ˆ ˆ] ( )† †x x x= -S a b abexp , 112 *

where ˆ†a and ˆ†
b (â and b̂) are creation (annihilation) operators of the twomodes, ξ is a complex number where

∣ ∣x=r and x = yrei . Then the two-mode squeezed vacuum state is ˆ ( )∣x ñS 002 . Fromherewe omit the phaseψ
for simplicity. A two-mode squeezed statewith a real squeezed parameter r, known as an Einstein–Podolsky–

Rosen (EPR) state ˆ ( ) ˆ ( )∣ ∣ ˆ ( )†
r = ñár S r S r00 00epr

2 2 , has zeromean values and the covariancematrix as

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )s = -

-

r r
r r

r r
r r

cosh 2 0 sinh 2 0
0 cosh 2 0 sinh 2

sinh 2 0 cosh 2 0
0 sinh 2 0 cosh 2

. 12tmss

Taking the partial trace of the two-mode squeezed state, we get a one-mode thermal state:
[ ˆ ( )] ˆ ( ¯) ˆ ( )r r r b= =r nTr ,b a a

epr th th where ¯ =n rsinh2 or b = - rlntanh2 [30].

3.2. SpacetimeGaussian states
Instead ofGaussian states at a specific time as given before, nowwe defineGaussian states across spacetime.We
suppose thatwe are given data associatedwith single-modemeasurements labelled by some index = ¼k N1, , .
Wewill use the same recipe, given the data, to create the spacetime state, nomatter whether thesemeasurements
aremade on the samemode at different times or on separatemodes at the same time, ormore generally on both
differentmodes and different times. This follows the pseudo-densitymatrix paradigm, inwhich onewishes to
use the same quantumdensitymatrix formalism for all the cases.

We assume that we are given enough data to characterise a Gaussian state fully, i.e. themean value and the
covariancematrix. The expectation values of all quadratures are defined as before.Mean values hold the same.
The correlation { ˆ ˆ }á ñx x,i j of two quadratures x̂i and x̂j for two events is defined to be the expectation value for
the product ofmeasurement results on these quadratures. Particularly formeasurements or events at the same
time, this correlation is defined via a symmetric ordering of two quadrature operators. Then the covariance is
defined to be related to this correlation and correspondingmean values as the spatial covariance.

Definition 1.Wedefine theGaussian spacetime state in terms ofmeasurement statistics as being (i) a vector d of
2Nmean values, with jth entry

⟨ ⟩ ( ) ( )r= =rd x xTr 13j j j^ ^

and (ii) a covariancematrix s with entries as

{ ˆ ˆ } ˆ ˆ ( )s = á ñ - á ñ á ñr r rx x x x2 , 2 , 14ij i j i j

where { ˆ ˆ }á ñrx x,i j is the expectation value for the product ofmeasurement results; specifically

{ ˆ ˆ } ( ˆ ˆ ˆ ˆ )= +x x x x x x,i j i j j i
1

2
formeasurements at the same time. To get the reduced state associatedwithmode k

one picks out the entries in the d and s associatedwithmode k to create the correspondingGaussian state of
thatmode.

According to the above definition of reduced states, it is easy to see that the single timemarginal is consistent
with the spatial Gaussian state at that particular time. This is because themean values and covariances for one
time in the spacetime case are defined as the same as them in the spatial case.

3.3. Similarity anddifference of temporal and spatial correlations
Wediscuss two examples here to illustrate the similarity and difference of temporal and spatial correlations. The
temporal statistics are different from the spatial statistics but they are also verymuch related under certain cases.

First we take a vacuum state at two timeswith the identity evolution in between. A vacuum state is ∣ ñ0 at the
initial time t1 and under the identity evolution it remains ∣ ñ0 at a later time t2. Themean values remain as 0. The
covariancematrix in time is given as

4
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⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )s =

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. 15vs

For two-time correlations,

∬{ } (∣ ∣∣ ∣) (∣ ∣∣ ∣) ( )á ñ = ñá ñá ñá ñáx x x x x x x x x x x x, d d Tr 0 0 Tr . 16i j i j i j i i j j i i

For detailed calculation, see appendix A.Note that svs is not positive definite and violates the uncertainty
principle of equation (4). Thus it is an invalid spatial covariancematrix. This illustrates how the covariance
statistics for spatial and temporalmatrices are different, just as Pauli correlations in spatial and temporal cases
are different [25, 34], whichmakes the study of temporal statistics particularly interesting.

Since the determinant of the covariancematrix is 0, it is impossible to get the inverse of covariancematrix
directly to obtain the temporalWigner function from equation (8). Via the Fourier transformof temporal
characteristic function gained from equation (7), we get the temporalWigner function as

( ) ( ) ( ) ( ) ( )
p

d d= - - - + - + q p q p p q p p q q, , ,
1

4
exp 4 4 . 171 1 2 2 1

2
1
2

1 2 1 2

Note that here temporalWigner function is normalised properly as

∬ ∬ ( ) ( )= q p q p q p q p, , , d d d d 1. 181 1 2 2 1 1 2 2

Wealso compare spatial and temporal Gaussian states in the bipartite case to illustrate their relation. In
general, there is notmuchmeaning to comparing an arbitrary spatial state with an arbitrary temporal state.We
need to pick up the spatial state carefully andfigure out its temporal analogue. Recall in the preliminaries we
mentioned that the partial transpose of a two-mode squeezed state (or to say, the EPR state) is a one-mode
thermal state. Hence, the temporal analogue of the two-mode squeezed state is the one-mode thermal state at
two times. Take the one-mode thermal state as the initial state at tA and further assume that the evolution
between tA and tB corresponds to the identity operator. Thenwe construct theGaussian state in time. Themean
values remain to be zeros. The covariancematrix in time becomes

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )s =

r r
r r

r r
r r

cosh2 0 cosh2 0
0 cosh2 0 cosh2

cosh2 0 cosh2 0
0 cosh2 0 cosh2

. 19omts

Note that again somts is not positive definite and violates the uncertainty principle.
Nowwe compare temporal correlations in one-mode thermal state for two times and spatial correlations in

two-mode squeezed state. As themean values are the same, we compare somts given abovewith its spatial
analogue, the covariancematrix of the two-mode squeezed state stmss. Under the high temperature
approximation as b  0, »rtanh 1and »r rsinh 2 cosh 2 . That is, the absolute value of covariance are equal
under the high temperature approximation; then the only difference lies in the sign flip for covariance for p1 and

p2. Since ˆ ( ˆ ˆ )†= +q a a1

2
and ˆ ( ˆ ˆ)†= -p a ai

2
, it follows that ˆ ˆ=q qT and ˆ ˆ= -p pT . If we take the partial

transpose on thefirstmode, only s s=24 42 related tomeasurements p̂1, p̂2 change the sign.Note that s s=12 21

related tomeasurements q̂1, p̂1 aswell as s s=23 32 related tomeasurements p̂1, q̂2 remain 0. Thenwe conclude
that the temporal covariancematrix is equal to the spatial covariancematrix under the partial transpose and the
high temperature approximation. This can be understood as a continuous-variable analogue on temporal and
spatial correlations of bipartite pseudo-densitymatrices for the qubit case [25]. Note that taking the partial trace
of a two-qubitmaximally entangled state ∣ ∣ ∣ ∣y yñá = å ñá= ii jji j

1

4 , 0,1 where ∣ ∣yñ = å ñ= iii
1

2 0,1 we get a single-

qubitmaximallymixed state ∣ ∣= å ñá= i i ;i
1

2 0,1 the temporal analogue of a two-qubitmaximally entangled state

∣ ∣y yñá is the single-qubitmaximallymixed state  at two times under the identity evolution, that is represent by

∣ ∣ ( )å ñá = Ä + Ä + Ä + Ä=  ij ji X X Y Y Z Zi j
1

4 , 0,1
1

4
. The spatial and temporal bipartite pseudo-density

matrices are invariant under partial transpose. OurGaussian generalisations are consistent with this result; in
particular, the one-mode thermal state under the high temperature approximation is close to themaximally
mixed state  on the continuous-variable context.Wewill come back to this point of partial transpose again later
via Choi–Jamiołkowski isomorphism.

4. SpacetimeWigner function and corresponding densitymatrix in continuous variables

Nowwemove on to define spacetime states for general continuous variables.Wefirst define the spacetime
Wigner function by generalising correlations to spacetime domain, following the paradigmof pseudo-density
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matrices. Then demanding the one-to-one correspondence between a spacetimeWigner function and a
spacetime densitymatrix, we gain a spacetime densitymatrix in continuous variables from this spacetime
Wigner function. This spacetime densitymatrix in continuous variables can be regarded as the extension of
pseudo-densitymatrix to continuous variables.We further analyse the properties of this spacetimeWigner
function based on the corresponding spacetime densitymatrix in continuous variables and rediscover the five
properties of a uniquely-determinedWigner function.

4.1. Preliminaries
TheWigner function is a convenient representation of non-relativistic quantummechanics in continuous
variables and fully equivalent to the densitymatrix formalism. The one-to-one correspondence between the
Wigner function and the densitymatrix [35, 36] states that,

ˆ ( ) ( ) ( )òr a a p a= -W T d , 201 2

( ) [ ˆ ( )] ( )a r a=W TTr . 21

Above ( )aT is defined as

( ) ( ) ( ) ( )òa x ax a x p x= - -T D exp d , 221 2* *

where ( )xD is the displacement operator defined as ( ) ( ˆ ˆ)†x x x= -D a aexp * . It can be seen that ( )aT is the
complex Fourier transformof ( )xD . Besides, ( )aT can be reformulated as ( ) ( )a a=T U2 where

( ) ( )( ) ( )ˆ ˆ ††a a a= -U D D1 a a is the displaced parity operator. ( )aT isHermitian, unitary, unit-trace, and an
observable with eigenvalues±2.

We can also see from equation (21) that theWigner function is the expectation value of ( )aT [37]. For an n-
modeWigner function, a straightforward generalisation is

( ) ⨂ ( ) ( )a a a¼ = á ñ
=

W T, , , 23n
i

n

i1
1

as [38] gives the two-mode version.

4.2. SpacetimeWigner function
Let us start to construct theWigner function in spacetime. It seems a bit ambitious tomerge position and
momentumwith time in a quasi-probability distribution at first sight, butwewill see that it is possible to treat
instances of time just as howwe treatmodes. Againwe borrow the concept of events from the pseudo-density
matrix infinite dimensions and consider n events instead of nmodes.We notice that the only difference between
a pseudo-densitymatrix and a standard densitymatrix in construction is the correlationmeasure. Herewe
change correlationmeasures of an n-modeWigner function given in equation (23) in a similar way.

Definition 2.Consider a set of events { }¼E E E, , , N1 2 . At each eventEi, ameasurement of ( )aT i operator on a
singlemode ismade. Then for a particular choice of events with operators { ( )}a =T i i

n
1, the spacetimeWigner

function is defined to be

( ) { ( )} ( )a a a¼ = á ñ= T, , , 24n i i
n

1 1

where { ( )}aá ñ=T i i
n

1 is the expectation value of the product of the results of themeasurements on these operators.

For spacelike separated events, the spacetimeWigner function reduces to the ordinary n-modeWigner
function, for the order of product andmeasurement does notmatter and it remains the same aftermaking aflip
(remember that n-modeWigner function is the expectation value of themeasurement results of the tensor
product of these operators). If themeasurements are taken in time, thenwe can construct a temporalWigner
function aswell. Thus, it is a generalisation ofWigner function to the spacetime domain.

It is easy to check that the spacetimeWigner function is real and normalised to 1. Since themeasurement
results of ( ) ( )a a=T U2i i is±2 (remember that ( )aU i is the displaced parity operator), the expectation value
of the product of themeasurement results is tomake products of±2with certain probability distribution. Thus,

( )a a¼ , , n1 is real. For the normalisation, we give a proof for the bipartite case in appendix B; for n events, it
can be proven directly following the same logic.

4.3. Spacetime densitymatrix in continuous variables
Though it is not always convenient to use the densitymatrix formalism in continuous variables, we are still
interested in the possible formof spacetime densitymatrices as it is the basic construction for states. Remember
thatwe establish a one-to-one correspondence between theWigner function and the densitymatrix. Here we

6
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demand that a similar one-to-one correspondence holds for the spatio-temporal version. Thenwe can define a
spacetime densitymatrix in continuous variables from the above spacetimeWigner function.

Definition 3.A spacetime densitymatrix in continuous variables is defined as

ˆ ( )⨂ ( ) ( ) ò ò a a a p a a= ¼
=

-R T, , d d . 25n
i

n

i
n

n1
1

2
1

2

This follows the direction froma spacetimeWigner function to a spacetime densitymatrix in continuous
variables just as equation (20). Analogous to equation (21), the opposite direction from a spacetime density
matrix in continuous variables to a spacetimeWigner function automatically holds:

( ) {[⨂ ( )] ˆ} { ( )} ( )a a a a¼ = = á ñ
=

= T R T, , Tr . 26n
i

n

i i i
n

1
1

1

For the proof, see appendix C.
It is also convenient to define the spacetime densitymatrix in continuous variables directly from ( )aT

operators, without the introduction of a spacetimeWigner function.

Definition 4.An equivalent definition of a spacetime densitymatrix in continuous variables is

ˆ { ( )} ⨂ ( ) ( ) ò ò a a p a a= á ñ=
=

-R T T d d . 27i i
n

i

n

i
n

n1
1

2
1

2

If we compare this definitionwith the definition of the pseudo-densitymatrix infinite dimensions given as
equation (1) elements by elements, wewillfind a perfect analogy. Thismay suggests the possibility for a
generalised continuous-variable version of pseudo-densitymatrices.

4.4. Properties
Nowwe investigate the properties of the spacetimeWigner function and spacetime densitymatrix for
continuous variables.

We can easily check this spacetime densitymatrix R̂ isHermitian and unit-trace. Since ( )aT i isHermitian
and ( )a a¼ , , n1 is real, R̂ is Hermitian. From the normalisation property of spacetimeWigner function and
the fact that ( )aT i has unit trace, we can conclude that ˆ =RTr 1.

Analogous to the normal spatialWigner function, we can analyse the properties for the spacetimeWigner
function. For example, we find thatwe can calculate the expectation value of an operator from the spacetime
densitymatrix and spacetimeWigner function via a similarmanner. For an operator Â in theHilbert space

Ä n,

∬ˆ [ ˆ ˆ ] ( ) ( ) ( )a a a a p a aá ñ = = ¼ ¼ -A RA ATr , , , , d d , 28R n n
n

n1 1
2

1
2

where

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ⨂ ( ) ˆ ( )a a a¼ =
=

A T A, , Tr . 29n
i

n

i1
1

It is obvious that a spacetimeWigner function for a single event does not discriminate between space and
time; that is, for a single event the spacetimeWigner function is the same as an ordinary one-modeWigner
function in space. From the followingwe consider a bipartite spacetimeWigner function and generalisation to
arbitrary events is straightforward.

Thefive properties to uniquely determine a two-modeWigner function in [39, 40] are: (1) that it is given by a
Hermitian formof the densitymatrix; (2) that themarginal distributions hold for q and p and it is normalised;
(3) that it is Galilei covariant; (4) that it has corresponding transformations under space and time reflections; (5)
that for twoWigner functions, their co-distribution is related to the corresponding densitymatrices. They all
hold in a similar way for a bipartite spacetimeWigner function and the corresponding spacetime densitymatrix
in continuous variables. For a bipartite spacetimeWigner function, thefive properties are stated as follows:

Property 1. ( ) q p q p, , ,1 1 2 2 is given by aHermitian formof the corresponding spacetime densitymatrix as

( ) [ ˆ ( ) ˆ] ( )= q p q p M q p q p R, , , Tr , , , 301 1 2 2 1 1 2 2
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for

ˆ ( ) ˆ ( ) ( )†=M q p q p M q p q p, , , , , , . 311 1 2 2 1 1 2 2

Therefore, it is real.

Property 2.Themarginal distributions q and p as well as the normalisation property hold.

∬
∬
∬∬

( ) ∣ ˆ∣

( ) ∣ ˆ∣

( ) ˆ ( )

= á ñ

= á ñ

= =







p p q p q p q q R q q

q q q p q p p p R p p

q q p p q p q p R

d d , , , , , ,

d d , , , , , ,

d d d d , , , Tr 1. 32

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2

1 2 1 2 1 1 2 2

Property 3. ( ) q p q p, , ,1 1 2 2 is Galilei covariant9, that is, if

∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á + + ¢ + ¢ + ñq q R q q q a q b R q a q b, , , ,1 2 1 2 1 2 1 2

then

( ) ( ) + + q p q p q a p q b p, , , , , ,1 1 2 2 1 1 2 2

and if

∣ ˆ∣ {[ ( ) ( )] } ∣ ˆ∣á ¢ ¢ñ  ¢ - + ¢ + ¢ - + ¢ á ¢ ¢ñfot q q R q q p q q p q q q q R q q, , exp i i , , ,1 2 1 2 1 1 1 2 2 2 1 2 1 2

then

( ) ( ) - ¢ - ¢ q p q p q p p q p p, , , , , , .1 1 2 2 1 1 1 2 2 2

Property 4. ( ) q p q p, , ,1 1 2 2 has the following property under space and time reflections10: if

∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á- - - ¢ - ¢ñq q R q q q q R q q, , , ,1 2 1 2 1 2 1 2

then

( ) ( ) - - - - q p q p q p q p, , , , , ,1 1 2 2 1 1 2 2

and if

∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á ¢ ¢ ñq q R q q q q R q q, , , ,1 2 1 2 1 2 1 2

then

( ) ( ) - - q p q p q p q p, , , , , , .1 1 2 2 1 1 2 2

Property 5.Two spacetimeWigner functions are related to the two corresponding spacetime densitymatrices as

∬( ) ( ) ( ) ( ) ( )p=   R R q p q p q pTr 2 d d , , , 33R R1 2 1 2

for ( ) q p,R1
and ( ) q p,R2

are spacetimeWigner functions for spacetime densitymatrices in continuous
variables R̂1 and R̂2 respectively.

All these six properties (five plus the previous one for the expectation value of an operator in this subsection)
are proven in appendixD.

5. A few comments on pseudo-densitymatrix formulation

The pseudo-densitymatrix for n qubits is neatly defined and satisfies the properties listed in [24]. These
properties are: (1) that it isHermitian; (2) that it represents probabilisticmixing; (3) that it has the right classical
limit; (4) that it has the right single-timemarginals; (5) for a single qubit evolving in time, composing different
time steps is associative. ForGaussian spacetime states, the first four properties easily hold; for the fifth one, it
remains true forGaussian evolution. For general continuous variables, except the one for single-timemarginals,
all the others hold. This property for single-timemarginals is non-trivial. The correlation of a single Pauli
operator for each single-timemarginal is preserved aftermaking themeasurement of that Pauli operator. As
each single-timemarginal is just the spatial state at that time, the total correlation for all Pauli operators is
independent of themeasurement collapse. It is a perfect coincide.

Another concern about this pseudo-densitymatrix formulation is that it treats temporal correlations as
spatial correlations. That is the basic principle for the formalism. In [25], they showed a symmetry between

9
The original paper [39] use theword ‘Galilei invariant’.

10
Again the original paper [39]use theword ‘invariant under space and time reflections’.
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spatial correlations and temporal correlations in bipartite pseudo-densitymatrix; that is, the sets of all possible
bipartite spatial correlations and certain temporal correlations flip into each other from the á ñ - á ñXX ZZ plane.
This shows a relationship as well as difference of spatial and temporal correlations.We are a bit worried about
whether this principle real holds. Here is a simple argument in terms ofmonogamy of entanglement.
Entanglement is a kind of spatial correlations; nevertheless, we cannot observe themonogamy of any temporal
correlation. Themaximally temporal correlated states are the states under the identity evolution. Thismeanswe
canmake asmany copies as wewant. Thus temporal correlations have nomonogamy constraint while
entanglement has; this suggests an intrinsic difference between spatial correlations and temporal correlations
again.

The relationwithChoi–Jamiołkowski isomorphism is important in deriving the above properties. Consider
a single qubit ormode evolving under a channel ∣B A from tA to tB. Then define an operator ∣EB A as the
Jamiołkowski isomorphism of ∣B A:

( )(∣ ∣ ) ( )∣ ∣= Ä F ñáF+ + G E , 34B A B A

where ∣F ñ+ is the unnormalisedmaximally entangled state on the doubleHilbert space Ä A A at tA andΓ
denotes partial transpose. ∣ ∣ ∣F ñ = å ñ Ä ñ+

= i ii 0,1 for the qubit case. ∣ ∣ ∣a aF ñ = å ñ Ä ñ+
=

¥ n n, ,n 0 for
continuous variables; inwhich ∣ ( )∣a añ = ñn D n, with the displacement operator ( )aD and the number
eigenstates ∣ ñn . Then the spacetime state in terms of pseudo-densitymatrix formulation is given as the Jordan
product

[ ( ) ( ) ] ( )∣ ∣r r= Ä + ÄR E I I E
1

2
. 35AB B A A B A B B A

The qubit version is proved in [24] andwe can follow its argument for the continuous-variable versionwe
defined above. It is particularly interesting whenwe consider temporal correlations for two times. The orders
between ∣EB A and r Ä IA B automatically suggest a symmetrised order of operators in two-time correlations. For
a special case that rA ismaximallymixed as proportional to the identity I, ∣=R EAB B A. Consider the identity
evolution ∣B A as  , then ∣ ∣∣ = F ñáF+ + GEB A . The spatial and temporal analogy discussed in theGaussian
section is recovered by partial transpose again.

One thing of particular interest to look at in continuous variables is the relation betweenwith pseudo-
densitymatrix and path integral formulation. In [28], we establish the connection between pseudo-density
matrix and decoherence functional in consistent histories. The only thing left unrelated in different spacetime
approaches listed in the introduction is the path integral formulation.Here we consider the propagator

∣ ˆ ∣á ñy t U y t, ,2 2 1 1 , ormore specifically, the absolute square of this propagator as the probability for transforming

∣ ñy1 at t1 to ∣ ñy2 at t2. The initial state evolves under the unitary ˆ ( ˆ )ò= - U H texp i d
t

t

1

2 . ForGaussian case, ∣ ñy1

at the time t1 and ∣ ñy2 at t2may be two eigenstates of x̂ or p̂ or amixture of themover a period. For general
continuous variables, they should be two eigenstates of ( )aT and ( )bT , that is, amixture of ∣ añn, and ∣ bñm, .
Via this propagator, we can calculate two-time correlations. It gives the same results as pseudo-densitymatrix
does, which suggests the two formulationmay be equivalent.

6.Othermeasurement choices

Herewe go beyond the pseudo-densitymatrix formulation, in the sense generalising spatial correlations to
spacetime domain.Nevertheless, we still build spacetime states uponmeasurements.We consider position
measurements for the special diagonal case. To reduce the additional effects caused bymeasurement processes,
we discuss weakmeasurements and construct spacetime states from them.Here the connectionwith path
integral ismore obvious.

6.1. Positionmeasurements
Besides quadratures and ( )aT operators, we can also expand a continuous-variable densitymatrix in the
position basis since it is an orthogonal and complete basis. Here we consider a special case which is the diagonal
matrix for convenience.

In principle, a densitymatrix in the continuous variables can be diagonalised in the position basis as

ˆ ( )∣ ∣ ( )òr = ñá
-¥

¥
x p x x xd , 36

where

( ) [∣ ∣ ˆ ] ( )r= ñáp x x xTr . 37
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In the standard theory of quantummechanics, we assume that themeasurement results are arbitrarily precise to
get the probability density ( )p x with the state updated to ∣ ∣ñáx x after themeasurement of x̂. It is hard to achieve
in the actual setting andwewill employ imprecisemeasurements in the following discussion.

Thenwe define the spacetime densitymatrix in exactly the samewaywith the probability density now in the
spatio-temporal domain.

Definition 5.Consider a set ofN events labelled { }E E, , N1 . At each event Ei, ameasurement of the position
operator x̂i ismade. For a particular choice of the event, for example, { }=Ei i

n
1, we can define the spacetime

densitymatrix from the joint probability of all thesemeasurements as

( )∣ ∣ ∣ ∣ ( )   ò òr = ñá Ä Ä ñá
-¥

¥

-¥

¥
x x p x x x x x xd d , , . 38n n n n1 1 1 1

The remaining problem is how to calculate the joint probability ( )p x x, , n1 . For spacelike separated events, the
problem reduces to results given by states in ordinary quantummechanics. Sowe only need to consider how to
formulate states in time. Successive positionmeasurements have been discussed properly in the path integral
formalism, effect and operation formalism andmulti-time formalism [20, 21].

Based on the discussion in [21], we consider n events of instantaneousmeasurements of ( )x t at times
t t, , n1 ( < <t tn1 ). In reality, such ameasurement cannot be arbitrarily precise; a conditional probability

amplitude called resolution amplitude ( ¯ )¡ -x x is introduced for x̄ as themeasurement result with the initial
position of the system at x. Denote the state of the system as ∣ ( )y ñt with thewave function ( ) ∣ ( )y y= á ñx t x t, .
For ameter prepared in the state ∣¡ñwith thewave function ( ¯) ¯ ∣¡ = á ¡ñx x , the total systembefore the
measurement will be ∣ ∣ ∣ ( )yYñ = ¡ñ Ä ñti with thewave function ¯ ∣ ( ¯) ( )yá Yñ = ¡x x x x t, ,i . Consider the

interaction for themeasurement process as ˆ ¯̂xp at some particular time. The total system after themeasurement

will be ∣ ∣ ∣ ∣ ( )( ) ˆ ¯̂ ( ) ¯̂ò yY ñ = Yñ = ¡ñ Ä ñ- - x x x te d e ,f
xp

i
xpi i , with thewave function

∣ ¯ ( ¯ ) ( ) ∣ ( ¯ ˆ)∣ ( )y yñY ñ = ¡ - = á ¡ - ñx x x x x t x x x t, ,f . Following the calculation in [21], for thewave function
of the system ( ( ) )y x t t,1 1 at some initial time t1, the joint probability formeasurement results ( ¯ ¯ )x x, , n1 is given
by a path integral as

( ¯ ¯ ) ( )[ ( ¯ ( ))] ( ( ) ) ( )( ) [ ( )] ò  y= ¡ -
n

n n
=

 p x x x t x x t x t t, , e , , 39n
t

t n
S x t

1
1

i
1 1

n

1

where

⎡
⎣⎢

⎤
⎦⎥( ) ( )ò ò=

¥ = -¥

¥
x t xlim d , 40

t

t

N k

N

k
1

n

1

with the insertion of -N 2 times between the initial time t1 and thefinal time =t t ;n N and note that all the
measurement times are included in the insertion. This integral sums over all path ( )x t from ( )x t1 to ( )x tn with
arbitrary initial values ( )x t1 and arbitrary final positions ( )x tn . Here

[ ( )] ( ) ( )ò=S x t tL x x td , , 41
t

tn

1

is the action for the path ( )x t with the Lagrangian of the system as ( )L x x t, , .
Note that ( ¯ ¯ )p x x, , n1 is normalised, i.e.

¯ ¯ ( ¯ ¯ ) ( )  ò ò =
-¥

¥

-¥

¥
x x p x xd d , , 1; 42n n1 1

thus, the spacetime densitymatrix defined above has unit trace.
Here the diagonalised spacetime densitymatrix in the position basis is fully equivalent to the path integral

formalism.Orwe can take this definition as the transition from the path integral. Thus, this definition suggests a
possible link between pseudo-densitymatrix formulation and path integral formalism; based on otherwork on
consistent histories, thewhole spacetime formulation family seem to be connected closely.

6.2.Weakmeasurements
Weakmeasurements are themeasurements that only slightly disturb the state, with POVMelements close to the
identity. They are often continuous. It is particularly interesting here asweakmeasurementsminimise the
influence ofmeasurements andmaximally preserve the information of the original states. There are several
slightly differentmathematical definitions forweakmeasurements. Here we take it as a generalised
measurement based on the formulation of effects and operations [41].

Following the calculation in [23], we can define a generalised observable corresponding to a simultaneous
inaccuratemeasurement of position andmomentum for a densitymatrix r̂; consider continuous
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measurements, we get the density of this generalised effect-valuedmeasure as

ˆ ( ) [ [( ˆ ) ( ˆ ) ]] ( )a l= - - + -f q p C q q p p, exp , 432 2

whereC is somenormalisation factor.We set

( )a gt= , 44

where τ is the time interval between two subsequentmeasurements.When t  0, themeasurement is
continuous andwe call it weak. For an initial densitymatrix r̂ at time =t 0, wemake continuousmeasurements
in time andfind the probability density of obtainingmeasurement results q p, at time t=t is given by

( ∣ ˆ ) ( ) ˆ ( )t r t r= p q p q p, , Tr , ; , 45

where

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ˆ [ ( ) ( )] ( ) ( ) ˆ

[( ˆ ( ) ( )) ( ˆ ( ) ( )) ] ˆ

[( ˆ ( ) ( )) ( ˆ ( ) ( )) ] ˆ ( )

ò ò ò

ò

ò

t r m d
t

d
t

t

g
l r

g
l t

= - - -

- - + -

- - + -

t t

t

t











q p q t p t q tq t p tp t H

t q t q t p t p t

t q t q t p t p t H

, ; d ,
1

d
1

d exp
i

exp
2

d

exp
2

d exp
i

, 46

G

H H

H H

0 0

0

2 2

0

2 2*

here

⎛
⎝⎜

⎞
⎠⎟[ ( ) ( )] ( ) ( ) ( )m

gt l
p

=
¥ =

q t p t
N

q t p td , lim d d , 47G
N s

N

s s
1

and

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ) ˆ ˆ ˆ

ˆ ( ) ˆ ˆ ˆ ( )

= -

= -

 

 

q t Ht q Ht

p t Ht p Ht

exp
i

exp
i

,

exp
i

exp
i

. 48

H

H

Definition 6.Apossible form for the temporalWigner function ( ¯ ¯ ¯ ¯ ¯ ¯ )¼ n n nW x p t x p t, , ; ; , ,1 1 1 is given by the
probability density of simultaneousmeasurement results ¯ ¯x p,i i at the time t̄i for n= ¼i 1, , with r̂ as the initial
densitymatrix at the initial time t̄1 in [23]:

( ¯ ¯ ¯ ¯ ¯ ¯ ) ( ¯ ¯ ¯ ¯ )
( ¯ ¯ ¯ ¯ ) ( ¯ ¯ ¯ ¯ ) ( ¯ ¯ ) ˆ ( )


 r

= -
´ - -

n n n n n n n

n n n n

-

- - - -



  

W x p t x p t x p t t

x p t t x p t t x p

, , ; ; , , Tr , ;

, ; , ; , ; 0 . 49
1 1 1 1

1 1 1 2 2 2 2 1 1 1

Herewe employ the probability density inweakmeasurements to define a temporalWigner function. This
generalises the formofmeasurements we take. As shown in the next section, this temporalWigner function
turns out to be a desirable spacetime quantum state and expand the possibility for relating generalised
measurement theorywith spacetime. In general, a unified spacetimeWigner function defined fromweak
measurements is possible aswell. For n-mode spatialWigner function fromweakmeasurements, it is defined as

( ) ( ) ( ) ˆ ( )  r= Ä Ä W q p q p q p q p, , , , Tr , ; 0 , ; 0 . 50n n n n1 1 1 1

Thus spacetimeWigner function is amixture of product and tensor product of  .We gain the spacetime states
fromweakmeasurements.

7.Desirable properties of spacetime quantum states

Reference [24] suggests five criteria for a quantum state over time to satisfy as the analogue of a quantum state
over spatial separated systems.Herewe set up desirable properties of quantum states in thewhole spacetime.
The basic assumption here is that the correlation statistics calculated using the spacetime state should be
identical to those calculated using standard quantum theory on spatial slices. Since this assumptionmay not
hold, there is no surprise that some of the definitionswe give cannot satisfy all the criteria.

Criterion 1.A spacetime quantum state has aHermitian form, that is, the spacetime densitymatrix is self-
adjoint and the spacetimeWigner function is given by the expectation value of aHermitian operator.
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Criterion 2.The probability related to all themeasurements at different spacetime events is normalised to one,
that is, the spacetime densitymatrix is unit-trace and the spacetimeWigner function is normalised to one.

Criterion 3.A spacetime quantum state represents probabilisticmixing appropriately, that is, a spacetime state
of different systemswith amixture of initial states is the correspondingmixture of spacetime states for each
system, as well as themixture of channel evolutions.

Criterion 4.A spacetime quantum state provides the right expectation values of operators. In particular, it gives
the same expectation values of time-evolving operators as theHeisenberg picture does.

Criterion 5.A spacetime quantum state provides the right propagator/kernel which is the probability amplitude
evolving fromone time to another.

Criterion 6.A spacetime quantum state has the appropriate classical limit.

It is easy to check that theGaussian characterisation satisfies Criterion 1, 2, 4, 5, 6 and the second half of
Criterion 3; the first half of Criterion 3 does not hold since themixture ofGaussian states is not necessarily
Gaussian.

For theWigner function and corresponding densitymatrix representation, Criterion 1, 2, 3, 4, 6 hold.
Criterion 5 remains to be further analysed.

All of the Criterion 1–6 hold for positionmeasurements andweakmeasurements, though the spacetime
densitymatrix for positionmeasurements assumes diagonalisation. It seems that the spacetimeWigner function
fromweakmeasurements is best-defined under these criteria.

Note that we have consideredwhether the single timemarginals of a spacetime quantum state reduce to the
spatial state at that particular time. It unfortunately fails for definition 2–6 in general due to a property in the
measurement theorywhich suggests the irreversibility of the time evolution in the repeated observations [23];
only the initial timemarginal is reduced to the initial state. Thus, we prefer not to list it as one of the criteria.

8. Experimental proposal for tomography

Quantum tomography is to reconstruct the quantum state frommeasurements via a source of systems [1].
Especially the tomographic probability picture represents quantum states in terms of probability distributions,
based on theRadon transformofWigner function [42]. In practice, it can be achieved by phase dependent
measurement process like homodynemeasurements, or direct photon counting [43].

Here we propose an experimental tomography for spacetimeGaussian states in quantumoptics. Especially,
we construct the temporal Gaussian states, in terms ofmeasuringmean values and the temporal covariance
matrix for two events in time. The covariance of quadratures are defined in terms of the correlation of
quadratures andmean values. Thus, we only need tomeasuremean values and correlations of quadratures.

With the balanced homodyne detection, we canmeasure themean values of single quadratures = á ñd xi i ,
the correlation of the same quadrature á ñx xi i (the diagonal terms of the covariancematrix), and the correlation
of both position operators or bothmomentumoperators at two times á ñq qj k or á ñp pj k ( ¹j k for this section).
Mean values of single quadratures aremeasured by the balanced homodyne detection as usual. For á ñx xi i , we can
measure by almost the samemethod, only do additional square for eachmeasurement outcome of x̂i. For á ñq qj k

or á ñp pj k , we record the homodyne results for a long timewith small time steps and calculate the expectation

values of the product themeasurement results at two times to get the correlation.
It is a bit difficult tomeasure the correlation for amixture of position andmomentumoperators. For such

correlations at the same time tj, themeasurement of qj and pj cannot be precise due to the uncertainty principle.
An eight-port homodyne detectormay be a suggestion; that is, we split the light into half and half by a 50/50
beam splitter, andmeasure each quadrature separately with a local oscillatorwhich is splited into two aswell for
the homodyne detection.However, we cannot avoid the vacuumnoisewhenwe split the light and the local
oscillator. A bettermethod formeasuring qj and pj at time tjwill be resort to quantum-densemetrology in [44].
For the correlation á ñq pj k , we use the same protocol as before. As the two-time correlation for the same

quadrature, we record the homodyne results for a long timewith small time steps and calculate the expectation
values of the product themeasurement results at two timeswithfixed time interval in between to get the
correlation.

Thenwe gain all the correlations to construct the temporal covariancematrix. The corresponding temporal
densitymatrix or temporalWigner function is easily built withmean values and the temporal covariancematrix;
thus, we achieve the experimental tomography.

12

New J. Phys. 22 (2020) 023029 TZhang et al



9. Conclusion

Inspired by the idea from the pseudo-densitymatrix approach to define states viameasurement correlations, the
paper provides six possible definitions for spacetime states in continuous variables: theGaussian
characterisation, theWigner function representation and the corresponding densitymatrix, the densitymatrix
frompositionmeasurements with diagnolisation aswell as theWigner function fromweakmeasurements, by
treating different instances of time as differentmodes.We also analyse properties, provide examples, and check
whether they are desirable spacetime states by setting up criteria. In general, this approach should be closely
relatedwith the other spacetime formulationsmentioned in the introduction.Hopefully wewant to use this
spacetime state to extend continuous-variable quantum information science to the general spatio-temporal
regime. Furthermore, it is the first step to formulate quantum field theory under spacetime formulations by
extending finite dimension non-relativistic quantummechanics to infinite dimensions. It is also a small step
towards the ultimate goal to formulate quantum gravity via amore even-handed treatment of space and time.
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AppendixA. Gaussian example: vacuum state at two times

Herewe consider a vacuum state ∣ ñ0 at t1 and it evolves under the identity evolution between two times t1 and t2
and construct the spacetime state for these two times.

Remember that a one-mode vacuum state ∣ ñ0 is aGaussian state with zeromeans and the covariancematrix
as identity as stated in themain text. That is, at a single time t1 or t2,

ˆ ˆ ˆ ˆ ( )á ñ = á ñ = á ñ = á ñ =q p q p 0; A.11 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆá ñ = á ñ = á ñ = á ñ =q q p p q q p p
1

2
,1 1 1 1 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )á + ñ = á + ñ =q p p q q p p q 0. A.21 1 1 1 2 2 2 2

Formeasurements at both time t1 and time t2,

∬

∬

∬

∬

{ ˆ ˆ } { ˆ ˆ } (∣ ∣∣ ∣) (∣ ∣∣ ∣) ˆ ˆ

{ ˆ ˆ } { ˆ ˆ } (∣ ∣∣ ∣) (∣ ∣∣ ∣)

{ ˆ ˆ } { ˆ ˆ } (∣ ∣∣ ∣) (∣ ∣∣ ∣) ˆ ˆ

{ ˆ ˆ } { ˆ ˆ } (∣ ∣∣ ∣) (∣ ∣∣ ∣) ( )

á ñ = á ñ = ñá ñá ñá ñá = á ñ =

á ñ= á ñ = ñá ñá ñá ñá =

á ñ= á ñ = ñá ñá ñá ñá = á ñ =

á ñ= á ñ = ñá ñá ñá ñá =

q q q q q q q q q q q q q q q q

q p p q q p q p q q p p q q

p p p p p p p p p p p p p p p p

p q q p p q p q p p q q p p

, , d d Tr 0 0 Tr
1

2
,

, , d d Tr 0 0 Tr 0,

, , d d Tr 0 0 Tr
1

2
,

, , d d Tr 0 0 Tr 0. A.3

1 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1

1 2 2 1 1 2 1 2 1 1 2 2 1 1

1 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1

1 2 2 1 1 2 1 2 1 1 2 2 1 1

According to the definition given in equations (13) and (14), themean values are 0 and the covariancematrix
in time is

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )s =

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. A.4vs

From themean values and the covariancematrix, we gain the temporal characteristic function from
equation (7) as
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( ) ( ) ( )c = - - - - - -q p q p p p p p q q q q, , , exp 2 2 , A.51 1 2 2 1
2

1 2 2
2

1
2

1 2 2
2

Via the Fourier transform, the temporalWigner function is given as

( ) ( ) ( ) ( ) ( )
p

d d= - - - + - + q p q p p q p p q q, , ,
1

4
exp 4 4 , A.61 1 2 2 1

2
1
2

1 2 1 2

It is easy to check that the temporalWigner function is normalised to 1:

∬ ∬ ( ) ( )= q p q p q p q p, , , d d d d 1. A.71 1 2 2 1 1 2 2

However, if we consider the condition that theWigner function of a pure state is bounded by
h

2 , then this
temporalWigner function is invalid. Thismay be taken as the temporal signature of theWigner function.

Appendix B.Normalisation of bipartite spacetimeWigner function definedwith ( )aT

Herewe prove the normalisation of a bipartite spacetimeWigner function definedwith ( )aT , i.e.

( )ò a b p a b =-W , d d 1.2 2 2

For general spacetimeWigner function for arbitrary events, the normalisation property can be provenwith the
same logic.

It is easy to check that a bipartite spacetimeWigner function reduces to two-modeWigner function for two
spacelike separated events. The normalisation obviously holds in this case.

For a spacetimeWigner function between two times t1 and t2, we assume the initial state r̂ is arbitrary and
the evolution between t1 and t2 is an arbitrary CPTPmap from r̂ to ( ˆ )r . At the time t1, wemeasure ( )aT . Note
that ( ) [ ( ) ( )]a a a= P - PT 2 2 1 where ( ) ∣ ∣a a aP = å ñá=

¥ n n2 , 2 ,n2 0 and
( ) ∣ ∣a a aP = å + ñá +=

¥ n n2 1, 2 1,n1 0 . That is, wemake projections ( )aP1 and ( )aP2 to the odd and even
subspaces for the eigenvalues−2 and+2. According to themeasurement postulation, we get the state
ˆ ( ) ˆ ( ) [ ( ) ˆ ( )]r a r a a r a= P P P PTri i i i1 with the probability [ ( ) ˆ ( )]a r aP PTr i i aftermaking themeasurement
of ( )aPi ( )=i 1, 2 . Note that projection operators ( ) ( )†a aP = Pi i and ( ) ( )a aP = Pi i

2 . Then from t1 to t2, r̂1
evolves to r1. At the time t2, wemeasure ( )bT .Wemake projections ( )bP1 and ( )bP2 for the eigenvalues−2
and+2 again. So the temporalWigner function, or { ( ) ( )}a bT T, correlation, is given by

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎫
⎬
⎭

( ) ⟨{ ( ) ( )}⟩

( ) [ ( ) ( )] ) ( ) ( )
[ ( ) ( )]

(

( ) { ( ) [ ( ) ( )]}

( ) { ( ) [ ( ) ( )]}

( )
å

å

å

a b a b

a r a b
a r a
a r a

b

b a r a

b a r a

=

= - P P P
P P
P P

P

= - P P P

= - P P

=

+

=

+

=

W T T

E

E

T E

, ,

4 1 Tr Tr
Tr

4 1 Tr

2 1 Tr .

B.1
i j

i j
i i j

i i

i i
j

i j

i j
j i i

i

i
i i

, 1,2

, 1,2

1,2

^
^
^

^

^

Now let us check the normalisation property. Note that ( ) ( )ò òb p b a p a= =- -T T Id d1 2 1 2 and  is
trace-preserving. Thenwe have

∬ ∬( ) ( ) { ( ) [ ( ) ˆ ( )]}

( ) { [ ( ) ˆ ( )]}

( ) [ ( ) ˆ ( )]

[ ( ) ˆ ]

( )

ò
ò
ò

a b p a b b a r a p a b

a r a p a

a r a p a

a r p a

= å - P P

= å - P P

= å - P P

=

=

-
=

-

=
-

=
-

-

 



T

T

, d d 2 1 Tr d d

2 1 Tr d

2 1 Tr d

Tr d

1. B.2

i
i

i i

i
i

i i

i
i

i i

2 2 2
1,2

2 2 2

1,2
1 2

1,2
1 2

1 2

Thus, the normalisation property holds.

AppendixC. Transforming a spacetime densitymatrix in continuous variables to a
spacetimeWigner function

Herewe prove equation (26) as a transform from the spacetime densitymatrix in continuous variables to the
spacetimeWigner function. Applying the definition of the spacetime densitymatrix in continuous variables to
the left hand side of equation (26), we get
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⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥⨂ ( ) ˆ ( )⨂ ( ) ( ) ( ) ò òa b b a b p b b= ¼

= =

-T R T TTr Tr , , d d . C.1
i

n

i n
i

n

i i
n

n
1

1
1

2
1

2

Note that

( ) ( ) [ ( )] ( ) ( )a b a b ab a b= - -T T D4 exp 2 2 2 , C.2* *

( ) ( ) ( ) ( ) ( )( )x pd x d x pd x= =DTr , C.3I R
2

and ( ) ( )( ) ( )d x d x=22 1

4
2 .

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭

⨂ ( ) ˆ

( )⨂ [ ( )] ( )

( ) [ ( )] ( )

( ) { ( )} ( )

( )

 

 

ò ò

ò ò

a

b b a b a b a b p b b

b b a b a b d a b b b

a a a

= ¼ - -

= ¼  - -

= ¼ = á ñ

=

=

-

=

=







T R

D

T

Tr

Tr , , 4 exp 2 2 2 d d

, , 4 exp 2 2 2 d d

, , . C.4

i

n

i

n
i

n

i i i i i i
n

n

n i
n

i i i i i i n

n i i
n

1

1
1

2
1

2

1 1
2 2

1
2

1 1

* *

* *

Thus, equation (26) holds as

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭⨂ ( ) ˆ ( ) { ( )}a a a a= ¼ = á ñ
=

=T R TTr , , .
i

n

i n i i
n

1
1 1

AppendixD. Proof for the six properties in spacetimeWigner representation

Herewe provide the proof for six properties for spacetimeWigner functions. The additional one is listed before
thefive properties in themain text, about the expectation value of an arbitrary operator Â. Before that, we
introduce theWigner representation in Liouville Space [45].

D.1.Wigner representation in Liouville Space
[45] gives an introduction to theWigner representation in Liouville Space. In Liouville space, operators are
treated as vectors in a superspace. For a bra-ket notation, we call ∣ }A a L-ket and { ∣A a L-bra for an operatorA,
with the scalar product as

{ ∣ } { } ( )†=B A B ATr . D.1

Different from [45], we take = 1. Define a Liouville basis

⎜ ⎟
⎛
⎝

⎞
⎠∣ } ∣ } ( )

p
= Pqp

2
, D.2qp

1 2

wherePqp is given by

( )( ˆ ) ( ˆ )

ò

ò

ò òp

P = + -

= + -

=

-¥

¥

-¥

¥
-

-¥

¥

-¥

¥
- - -

 

 

s q s x s

k p k p k

k s

1

2
d e

2 2

1

2
d e

2 2
1

4
d d e . D.3

qp
sp

kq

k q q s p p

i

i

i i

In factPqp is the parity operator about the phase point ( )x p, :

( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( )P - P = - - P - P = - -q q q q p p p p, . D.4qp qp qp qp

It is the same as the displaced parity operator ( )aU with themapping ( )a = +q pi1

2
.

∣ }qp forms an orthogonal and complete basis:

{ ∣ } ( ) ( ) ( )d d¢ ¢ = ¢ - ¢ -q p qp q q p p D.5

∣ }{ ∣ ˆ̂ ( )ò ò =
-¥

¥

-¥

¥
q p qp qpd d 1, D.6

where ˆ̂1 is a unit L-operator. However, we need to remember that ∣ }qp is not a valid quantum state because Pqp is
not positive definite.
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TheWeyl formof an operator Â is defined as

( ) ( ) { ∣ } [ ˆ ] ( )pº = PA q p qp A A, 2 2 Tr . D.7qp
1 2

Then theWigner function of a state r̂ is given by

( ) ( ) { ∣ } ( ) ( )òp r p rº = + -- - -  W q p qp se q s q s, 2 2 d
1

2

1

2
, D.8isp1 2 1

where the normalisation holds for ∬ ( ) =q pW q pd d , 1. For an operator Â measured in the state r̂, its
expectation value is given as

∬ ∬ˆ { ∣ } { ∣ }{ ∣ } ( ) ( ) ( )r rá ñ = = =rA A q p A qp qp q pA q p W q pd d d d , , . D.9*

D.2. Proof
Wewill prove all the six properties listed as (0) to (5) in this subsection. Following the notation in the previous
subsection, we have the bipartite spacetimeWigner function

( ) ( ) { ∣ } [( ) ˆ] ( )p= = P Ä P- q p q p q p q p R R, , , 2 , 4 Tr , D.10q p q p1 1 2 2
1

1 1 2 2 1 1 2 2

for a bipartite spacetime densitymatrix in continuous variables R̂.
(0) For bipartite case,

∬ ∬ˆ [ ˆ ˆ] ( ) ( ) ( )á ñ = = A AR q q p p A q p q p q p q pTr d d d d , , , , , , , D.11R 1 2 1 2 1 1 2 2 1 1 2 2*

where

( ) ( ){ ∣ } [( ) ˆ ] ( )p= = P Ä PA q p q p qp A A, , , 2 4 Tr . D.12q p q p1 1 2 2 1 1 2 2

Note that ( ) ( ) ( )a a= = PT U q p2 2 ,1 1 and ( ) ( ) ( )b b= = PT U q p2 2 ,2 2 . The above statement is equivalent
to

∬ˆ [ ˆ ˆ] ( ) ( ) ( )a b a b a bá ñ = = A AR ATr d d , , , D.13R
2 2 *

where

( ) {[ ( ) ( )] ˆ} ( )a b a b= ÄA T T A, Tr . D.14

Proof.Compared to equation (D.9),

∬∬
∬∬

ˆ { ∣ }
{ ∣ }{ ∣ }

( ) ( ) ( )

á ñ =

=

= 

A A R

q q p p A q p q p q p q p R

q q p p A q p q p q p q p

d d d d , ,

d d d d , , , , , , . D.15

R

1 2 1 2 1 1 2 2 1 1 2 2

1 2 1 2 1 1 2 2 1 1 2 2*

,

Generalisation ton events is straightforward.
(1) ( ) q p q p, , ,1 1 2 2 is given by ( ) q p q p, , ,1 1 2 2 = [ ( ) ]M q p q p RTr , , ,1 1 2 2 for ( )M q p q p, , ,1 1 2 2 =
( )†M q p q p, , ,1 1 2 2 . Therefore, it is real.

Proof.Compared to equation (26), ( ) = P Ä PM q p q p, , , 4 q p q p1 1 2 2 1 1 2 2
, thus it is obvious that ( )M q p q p, , ,1 1 2 2

= ( )†M q p q p, , ,1 1 2 2 .
Because a spacetime densitymatrix isHermitian, the spacetimeWigner function is real. ,

Note that we prove theHermicity of a spacetime densitymatrix from the property that spacetimeWigner
function is real.

(2)

∬
∬
∬∬

( ) ∣ ˆ∣

( ) ∣ ˆ∣

( ) ˆ ( )

= á ñ

= á ñ

= =







p p q p q p q q R q q

q q q p q p p p R p p

q q p p q p q p R

d d , , , , , ,

d d , , , , , ,

d d d d , , , Tr 1. D.16

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2

1 2 1 2 1 1 2 2
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Proof.Taking Â in the property (0) to be

ˆ ( ˆ ) ( ˆ ) ( )d d= - -A q q q q , D.171 1 2 2

then

( ) ( ˆ ) ( ˆ ) ( )d d= - -A q p q p q q q q, , , . D.181 1 2 2 1 1 2 2*

Thus

[ ˆ ˆ] ∣ ˆ∣ ( )= á ñAR q q R q qTr , , , D.191 2 1 2

and

∬ ∬ ∬( ) ( ) ( ) ( )= q q p p A q p q p q p q p p p q p q pd d d d , , , , , , d d , , , . D.201 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2*

Via equation (D.11), thefirst equality holds.
Similar for the second equality. The normalisation property is already proven in appendix B. ,

(3) ( ) q p q p, , ,1 1 2 2 is Galilei covariant, that is, if ∣ ∣á ¢ ¢ñq q R q q, ,1 2 1 2
 ∣ ∣á + + ¢ + ¢ + ñq a q b R q a q b, ,1 2 1 2

,

then ( ) q p q p, , ,1 1 2 2
 ( )+ + q a p q b p, , ,1 1 2 2 and if ∣ ∣á ¢ ¢ñq q R q q, ,1 2 1 2



{[ ( ) ( )] } ∣ ∣¢ - + ¢ + ¢ - + ¢ á ¢ ¢ñip q q ip q q q q R q qexp , ,1 1 1 2 2 2 1 2 1 2
, then ( ) q p q p, , ,1 1 2 2

 ( )- ¢ - ¢ q p p q p p, , ,1 1 1 2 2 2
.

Proof. If

∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á + + ¢ + ¢ + ñq q R q q q a q b R q a q b, , , , ,1 2 1 2 1 2 1 2

that is,

ˆ ˆ† † Ä ÄR D D RD D ,a b a b0 0 0 0

then

( ) [( ) ˆ]

[( )( ˆ )] ( )† †

= P Ä P 

P Ä P Ä Ä = + +





q p q p R

D D RD D q a p q b p

, , , 4 Tr

4 Tr , , , .

q p q p

q p q p a b a b

1 1 2 2

0 0 0 0 1 1 2 2

1 1 2 2

1 1 2 2

If

∣ ˆ∣ {[ ( ) ( )] } ∣ ˆ∣á ¢ ¢ñ  ¢ - + ¢ + ¢ - + ¢ á ¢ ¢ñq q R q q ip q q ip q q q q R q q, , exp , , ,1 2 1 2 1 1 1 2 2 2 1 2 1 2

that is,

ˆ ˆ† † Ä Ä- ¢ - ¢ - ¢ - ¢R D D RD D ,
p p p p0, 0, 0, 0,

1 2 1 2

then

( ) [( ) ˆ]

[( )( ˆ )] ( )† †

= P Ä P 

P Ä P Ä Ä = - ¢ - ¢
- ¢ - ¢ - ¢ - ¢





q p q p R

D D RD D q p p q p p

, , , 4 Tr

4 Tr , , , .

q p q p

q p q p p p p p

1 1 2 2

0, 0, 0, 0, 1 1 1 2 2 2

1 1 2 2

1 1 2 2 1 2 1 2

,

(4) ( ) q p q p, , ,1 1 2 2 has the following property under space and time reflections: if ∣ ˆ∣á ¢ ¢ñq q R q q, ,1 2 1 2


∣ ˆ∣á- - - ¢ - ¢ñq q R q q, ,1 2 1 2
, then ( ) q p q p, , ,1 1 2 2

 ( )- - - - q p q p, , ,1 1 2 2 and if ∣ ˆ∣á ¢ ¢ñq q R q q, ,1 2 1 2


∣ ˆ∣á ¢ ¢ ñq q R q q, ,1 2 1 2 , then ( ) q p q p, , ,1 1 2 2
 ( )- - q p q p, , ,1 1 2 2 .

Proof. If ∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á- - - ¢ - ¢ñq q R q q q q R q q, , , ,1 2 1 2 1 2 1 2
, that is,

ˆ ˆ P PR R ,00 00

then

( ) [( ) ˆ]

[( )( ˆ )] ( )

= P Ä P 

P Ä P P P - - - -





q p q p R

R q p q p

, , , 4 Tr

4 Tr , , , .

q p q p

q p q p

1 1 2 2

00 00 1 1 2 2

1 1 2 2

1 1 2 2

For ∣ ˆ∣ ∣ ˆ∣á ¢ ¢ñ  á ¢ ¢ ñq q R q q q q R q q, , , ,1 2 1 2 1 2 1 2 , it is similar to transpose. Consider ˆ =q qT and ˆ = -p pT ,

( ) ( ) - - q p q p q p q p, , , , , , .1 1 2 2 1 1 2 2

,
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(5)Take = 1.

∬( ˆ ˆ ) ( ) ( ) ( ) ( )p=  R R q p q p q pTr 2 d d , , , D.21R R1 2 1 2

for ( ) q p,R1
and ( ) q p,R2

are pseudo-Wigner functions for pseudo-densitymatrices R̂1 and R̂2 respectively.

Proof.

∬ ∬( ˆ ˆ ) { ∣ } { ∣ }{ ∣ } ( ) ( ) ( ) ( )p= = =  R R R R q p R qp qp R q p q p q pTr d d 2 d d , , . D.22R R1 2 1 2 1 2 1 2

,
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