
Dense and well-connected subgraph detection in dual networks

Tianyi Chen∗ Francesco Bonchi† David Garcia-Soriano‡ Atsushi Miyauchi§

Charalampos E. Tsourakakis¶

Abstract

Dense subgraph discovery is a fundamental problem in
graph mining whose goal is to extract a dense subgraph
from a given graph, and it has a wide range of applica-
tions [18]. However, numerous real-world applications,
ranging from computational biology and computational
neuroscience to computational social science, take as in-
put a dual graph, namely a pair of graphs on the same
set of nodes. Despite the large number of such appli-
cations, research on dense subgraph discovery has fo-
cused on a single graph input, with few notable excep-
tions [9, 22, 35, 36]. In this work, we contribute to this
line of research by studying the following novel algorith-
mic problem:

Given a pair of graphs G,H on the same set
of nodes V , how do we find a subset of nodes
S ⊆ V that induces a well-connected subgraph
in G and a dense subgraph in H?

Our formulation generalizes previous research [11, 44,
45], by enabling to control the connectivity constraint
on G. We propose a mathematical formulation and
prove that it is solvable exactly in polynomial time. We
compare our method to state-of-the-art competitors and
find empirically that controlling the connectivity con-
straint enables the practitioner to obtain information
that is otherwise inaccessible. Finally, we show that
our proposed mining tool can be used to better un-
derstand how users interact on Twitter and connectiv-
ity aspects of human brain networks with and without
Autism Spectrum Disorder (ASD).
Keywords: dense subgraph discovery, k-edge connec-

tivity, dual graph, algorithm design, graph mining

1 Introduction

Dense subgraph discovery (DSD) is a major graph min-
ing area of research that has mostly focused on ex-

∗Boston University. ctony@bu.edu
†ISI Foundation, Turin. francesco.bonchi@isi.it
‡ISI Foundation, Turin. d.garcia.soriano@isi.it
§University of Tokyo. miyauchi@mist.i.u-tokyo.ac.jp
¶Boston University and ISI Foundation. tsouro-

lampis@gmail.com

tracting a dense cluster from a single graph given as
(part of the) input [18]. However, numerous real-world
settings involve a pair of graphs on the same vertex
set. For example, in neuroscience, an important pair
of brain networks is given by the structural connectiv-
ity and functional connectivity graphs, defined on the
basis of correlation on the time series of activity of the
different brain regions (co-activation) [16, 27]. In bioin-
formatics, differential coexpression network analysis of
gene expression data is used to analyze gene-to-gene co-
expression jointly across two different networks, espe-
cially in cancer research [20]. In computational social
science, we are interested in understanding better how
users interact on social media such as Twitter, where
for instance, users may retweet each other, and may fa-
vorite certain tweets of other users. These interactions
naturally induce two graph layers, the retweet layer and
the favorite layer. Qi et al. [34] use two Flickr graph
topologies to mine online communities; one topology is
naturally induced by online friendships between users,
while the second one is created from log files by adding
an edge between two users if there is a photo liked by
both of them. In reality mining, we are interested in
understanding relationships defined by Bluetooth scans
and phone calls respectively [13,14]. Furthermore, dual
graphs are a special case of multilayer networks [29],
when the number of layers is equal to 2. Despite the
large amount of research on DSD, only few works study
the problem of dense subgraph discovery across more
than one graphs [9, 22,25,35,36,44,45].

In this work we introduce the following problem
that generalizes the works of Wu et al. [44, 45] and Cui
et al. [11]:

Problem 1. Given two simple, unweighted, undirected
graphs G = (V,EG) and H = (V,EH), find a set of
nodes S ⊆ V such that G[S] is well-connected and H[S]
is dense.

In those works [11, 44, 45] the goal is to ensure G[S] is
(simply) connected andH[S] is dense. To the best of our
knowledge, our work is the first contribution towards
enabling full control over the connectivity constraint,
a powerful feature of our method. Specifically, our

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited361

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(a) (b)

Figure 1: Visualization of our algorithm’s output on
the Twitter retweet (G) and reply (H) graphs, with
connectivity requirement k = 8. (a) 8-edge-connected
retweet subgraph. (b) Dense reply subgraph with min
degree 51.

contributions include the following:

• Problem formulation. We carefully formal-
ize Problem 1 using for the connectivity and den-
sity constraints the well-established graph theoretic no-
tions of k-edge-connectivity and minimum degree re-
spectively. Specifically, we study algorithmically the
following problem:

Problem 2. Given two simple, unweighted, undirected
graphs G = (V,EG) and H = (V,EH), and positive
integer k, find a set of nodes S ⊆ V such that G[S] is
k-edge connected and the minimum degree in H[S] is
maximized.

We shall also refer to k value as the connectivity require-
ment. Perhaps surprisingly, the choice of the minimum
degree over the average degree as the density measure
allows to solve Problem 2 efficiently. In contrast the
average degree objective leads to an intractable formu-
lation (see Section 2).
• Algorithm design. We prove that Problem 2

is solvable in polynomial time. Our proof is construc-
tive, i.e., we design a polynomial-time exact algorithm
that scales to large networks. Figure 1 shows the output
of our algorithm on two layers of the Twitter network,
namely the retweet and the reply layers. Specifically,
Figure 1(a) depicts the 8-edge-connected retweet sub-
graph, and Figure 1(b) the resulting dense subgraph on
the reply layer, both induced by the optimal set of nodes
found by our algorithm. For more details, see Section 4.
• Ranging connectivity. A key contribution of

our work over prior methods is our ability to control
the connectivity requirement. Figure 2 shows a preview
of the range of connectivity values on the dual Twit-
ter graph (reply, quote) that the existing approaches
BFF [36] and k-CCO [11] output. The plot for BFF is
annotated by the specific version of the BFF problem

(see Section 2 for more details). Observe that maximiz-
ing the average degree over the union of the two graphs
results in a densest subgraph that is 1-edge-connected.
k-CCO also outputs a simply connected graph on G,
that can be disconnected by the removal of a single
edge. While BFF-MM achieves high edge connectiv-
ity, only our method can control fully the connectivity
requirement. This is a powerful feature of our work that
enables the practitioner to obtain insights, not accessi-
ble by other competitors.

Figure 2: The four variants (AA, AM, MA, and MM) of
Best Friends Forever (BFF) [36] result in four different
increasing connectivity values, and k-CCO [11] yields a
simply connected subgraph on the dual Twitter graph
(reply, quote). Only our Dual-DC method allows to
fully control the connectivity constraint.

• Application #1: Mining multilayer net-
works. We use our algorithmic primitive to mine differ-
ent layers of the Twitter network. The characteristics of
the two subgraphs induced by the optimal set of nodes
provide insights into the different types of interactions
of users on Twitter.
• Application #2: Mining human brain net-

works. We use our algorithmic primitive on 101 human
children brain datasets available from the Brain Imag-
ing Data Exchange (ABIDE) project [10]. Among these
datasets, 52 correspond to typically developed (TD)
children, and 49 to children with Autism Spectrum Dis-
order (ASD). We show that our algorithm can be used
to extract a clear signal of separation on average be-
tween a pair of brain networks corresponding to two
typically developed (TD) kids, and a pair of networks
each corresponding to a TD child and a child suffering
from ASD.

2 Related Work

We briefly review work that lies closest to ours. All
graphs considered in this paper are simple, unweighted,
and undirected.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited362

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 1: Comparison of our proposed framework Dual-DC to other prior work. Here, for a graph G and a
subset of nodes S ⊆ VG, quantities dG(S), δG(S) are the average degree of G[S] and the minimum induced degree
min-degG(S) := minv∈S degG[S](v) respectively.

Methods Density measure (max) Connectivity constraint on G[S] Hardness
Wu et al. [44] Avg. degree dH(S) Connected NP-hard
Cui et al. [11] Maximal k-core Connected P
BFF-MM [36] min(δG(S), δH(S)) N/A P [36]

BFF-AM δG(S) + δH(S) N/A NP-hard [9]
BFe-MA min(dG(S), dH(S)) N/A NP-hard [9]
BFF-AA dG(S) + dH(S) N/A P [8,36]

Dual-DC (Ours) δH(S) k-edge connected P

Mining dual graphs. Closest to our work lies the

work of Wu et al. [44, 45], who pose the question of
finding a subset of nodes S ⊆ V such that G[S] forms
a connected graph and H[S] maximizes the average de-
gree; they prove that this problem is NP-hard and de-
sign a heuristic. There is a large amount of research
work related to multilayer graphs for other problems
such as core decomposition [17] and community detec-
tion [25]. Yang et al. [46], Tsourakakis et al. [42], and
Lanciano et al. [27] study the problem of finding a sub-
set of nodes that induces a dense subgraph on G and a
sparse subgraph on H. Also related to our work from
an experimental point of view is the work of Lanciano et
al. [27] who use human brain networks to generate easy-
to-interpret graph features that can be used to diagnose
autism disorders.

Despite the existence of numerous heuristics for
mining dual graphs, and more generally multi-layer net-
works, there are significantly fewer results related to
optimizing concrete mathematical objectives simulta-
neously over two or more graphs on the same set of
nodes. Notably, Bhangale et al. recently designed a
near-optimal algorithm for the simultaneous Max-Cut
problem [4], and proved a hardness result [3] that shows
that simultaneous optimization of Max-Cut over more
than one graphs is harder than a single graph in terms
of approximation.

Semertzidis et al. introduce the Best Friends For-
ever (BFF) problem [36]; see also Charikar et al. [9] for
improved complexity and algorithmic results. Specifi-
cally, Semertzidis et al. [36] propose four different for-
mulations for finding a subset of nodes S ⊆ V that
induces a dense subgraph across a collection of graphs
with vertex set V . They use the minimum and the av-
erage degree to measure edge density, and then maxi-
mize either the average or the minimum measure of edge
density across the collection of graphs. This results in
four variants abbreviated as MM, MA, AM, and AA.
The second letter indicates the density measure, while

the first whether we consider the average (A) or the
minimum (M) across the collection. For example, AM
aims to maximize the average induced minimum degree
over all graphs, whereas AA aims to maximize the aver-
age induced average degree over all graphs. It is worth
emphasizing that BFF variants impose no connectivity
constraint, but according to the classic Mader’s theorem
we know that every graph of average degree (at least)
4k has a k-connected subgraph [28].

k-edge connectivity. A major connectivity notion
is k-edge-connectivity. An unweighted graph G is said to
be k-edge-connected if the removal of any k−1 or fewer
edges leaves G connected, or equivalently, by Menger’s
theorem (see [12]), if there are at least k edge-disjoint
paths between every pair of distinct vertices.

Dense subgraph discovery. One of the most
popular optimization models in DSD is the densest
subgraph problem, which asks to find a subset of nodes
S ⊆ V that maximizes the average degree of G[S].
Unlike most of the other models, this problem is known
to be polynomial-time solvable [19]. In addition to
its original form, there are a large number of problem
variations. The most well-studied variants are the size-
restricted ones [2,5,15,24]. For example, in the densest
k-subgraph problem [15], given a graph G and a positive
integer k, we are asked to find S ⊆ V that maximizes
the average degree of G[S] subject to the size constraint
|S| = k. It is known that such a restriction makes
the problem much harder to solve; in fact, the densest
k-subgraph problem is NP-hard and the best known
approximation ratio is O(|V |1/4+ε) for any ε > 0 [5].
The average degree has recently been generalized in
various ways to obtain more sophisticated structures
[23,31,39,40,43]. Bonchi et al. [6] very recently proposed
a family of algorithms for finding densest k-connected
subgraphs on the single network topology.

Partitioning a graph into well-connected
components. A line of research closely related to DSD
aims to partition a graph into well-connected compo-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited363

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

nents. For instance, Zhou et al. [47] recently studied the
problem to find a family of maximal k-edge-connected
subgraphs. To find that, a naive approach is to iter-
atively compute a minimum cut on each of connected
components until every connected component is either
k-edge-connected or a singleton. However, such an ap-
proach is computationally quite expensive and thus pro-
hibitive for large graphs. To overcome this issue, Zhou
et al. [47] devised some techniques and incorporated
them into the naive approach. Later, Akiba et al. [1]
and Chang et al. [7] developed much more efficient al-
gorithms. The algorithm by Akiba et al. [1] runs in
O(|E| log |V |) time, whereas Chang et al.’s algorithm [7]
runs in O(hl|E|) time, where h is the height of the so-
called decomposition tree and l is the number of iter-
ations of some subroutine, both of which are instance-
dependent parameters typically bounded by a small con-
stant.

3 Proposed Method

We design a polynomial-time exact algorithm for Prob-
lem 2. Our algorithm is shown in pseudocode as Algo-
rithm 1, which takes as input the two graphs G,H on
the same vertex set V and a parameter k that specifies
the k-edge connectivity constraint on G. The algorithm
is recursive, and carefully breaks down G in its k-edge
connected components. Once the vertex set S induces
a k-edge connected component in G, the algorithm re-
moves a node v ∈ S having the lowest degree in H and
returns as its output the best between S and the result
of a recursive invocation of the algorithm on S \ {v}.
The idea is to maintain the invariant that any solution
which is k-connected in G and with higher minimum H-
degree than the current best must be entirely contained
in one of the subgraphs that we recurse into.

Our main theoretical result concerns the correctness
of our algorithm, and is stated as the next theorem.

Theorem 3.1. Algorithm 1 outputs an optimal solu-
tion for Problem 2.

Proof. We argue by induction on the size of the common
vertex set V . Let S∗ denote the optimal solution for
(G,H). If |V | ≤ 1, then S∗ = V (Line 18). So assume
|V | ≥ 2.

Consider first the case where G is not k-connected.
Any k-connected subgraph of G is entirely contained in
one of the maximal k-connected components C1, . . . , Cr,
so one of them contains S∗, say Cj . By induction, the
optimal solution within Cj is computed in Line 7 (when
i = j), and no other solution computed in Line 7 is
feasible and has a higher minimum degree in H than
S∗ (otherwise S∗ would not be optimal). Thus the

Algorithm 1: Dual-DC(G(V,EG), H(V,EH), k)

Input: G = (V,EG), H = (V,EH), k ≥ 1 (edge
connectivity)

Output: S∗ such that the minimum degree in
H[S∗] is maximized subject to G[S∗]
being k-edge connected; or NO
SOLUTION

1 if G is not k-edge-connected then
2 Let F ← {C1, . . . , Cr} be the maximal

k-edge-connected components of G;
3 if r = 0 then
4 return NO SOLUTION

5 else
6 for i = 1 to r do
7 Si ← Dual-DC(G[Ci], H[Ci], k);

8 t← argmax{min-degH(Si) | i ∈ [r] ∧ Si 6=
NO SOLUTION};

9 return St

10 else if |V | > 1 then
11 Let v be the vertex in V of minimum degree

in H[V] (ties broken arbitrarily);
12 T ← Dual-DC(G[V \ {v}], H[V \ {v}], k);
13 if T = NO SOLUTION or

min-degH(T) ≤ min-degH(V) then
14 return V

15 else
16 return T

17 else
18 return V

algorithm returns an optimal solution with the same
minimum degree as S∗ in Line 9.

If G is k-connected, let v ∈ V be a vertex with the
minimum degree in H. We distinguish the following two
cases:

Case (i): V is an optimal solution (i.e.,
min-degH(V) = min-degH(S∗)). Then V is
returned in Line 14.

Case (ii): V is not an optimal solution. In this case
min-degH(V) < min-degH(S∗) holds. But this
implies that no optimal solution includes v, because
the degree of v in H[S∗] cannot be larger than its
degree in H. Hence Line 12 computes an optimal
solution for the pair (G[V], H[V]) by the induction
hypothesis, which is returned in Line 16.

Time complexity. An efficient implementation

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited364

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

of Algorithm 1 runs in time O(nm log n) in the RAM
model, where n is the number of nodes and m > 1
is the maximum number of edges in G and H. To
see this, observe that in Line 11 of Algorithm 1, after
removing the minimum degree vertex of degree d, we can
iteratively remove all nodes of degree d in the induced
subgraph, i.e., find the set of nodes C in the (d + 1)-
core of H and replace G and H with G[C] and H[C]
respectively. This reduces the number of k-connected
component computations in the algorithm and doesn’t
affect its correctness because in Case (ii) above, none
of the additional vertices removed can be part of an
optimal solution: the minimum degree of an optimal
solution must be at least d+ 1, so it must be contained
in the (d+ 1)-core of H.

Let d be the minimum degree of the optimal solution
in H (or 0 if none exists). We argue inductively that the
running time of Algorithm 1 (with the aforementioned
faster implementation) is O(n + (d + 1)m log n) =
O(nm log n). Indeed, the total running time spent
between Lines 11 and 16, excluding recursive calls, is
O(n + m), and the maximum depth of recursive calls
is at most d. Each computation of k-edge-connected
components in a subgraph with n′ ≤ n vertices and
m′ ≤ m edges takes time O(m′ log n) by [1]. In Line 2, r
subgraphs are found with m′1, . . . ,m

′
r and

∑
im
′
i ≤ m′,∑

i n
′
i ≤ n′. Each recursive invocation takes time

O(n′i + (d + 1)m′i log n) by induction, for a total time
of O(

∑
i(n
′
i + (d+ 1)m′i log n)) = O(n+ (d+ 1)m log n),

as claimed. We summarize the above analysis with the
following theorem statement.

Theorem 3.2. Algorithm 1 can be implemented to
run in O(nm log n) time, where n = |V | and m =
max(|EG|, |EH |).

Remarks. Our algorithm naturally extends to the fol-

lowing version of Problem 2, where we are given a graph
G and a collection of graphs H = {H1, . . . ,HT } and our
goal is to find a set of nodes S ⊆ V such that G[S] is
k-edge connected, and the minimum degree across the
collection H is maximized. The only difference in the
algorithm is that the peeling in Line 11 is done across
the set of graphs H, i.e., the node being removed is the
node that has the smallest degree across H1, . . . ,HT .
The proof follows our inductive proof and the argument
in Proposition 1 [36].

Finally, if instead of using the minimum degree
δH(S), we use the average degree dH(S), the formu-
lation of Problem 1 becomes NP-hard. This is a direct
corollary of Wu et al. [44] for the special case of our
problem with 1-edge connectivity constraint.

Table 2: Statistics of dual graphs from Twitter multi-
layer networks and Enron (mail, cc) networks.

Dual graphs
(G,H)

common
nodes

edges
in G

edges
in H

(Reply, Quote) 0.15M 0.46M 0.48M
(Reply, Retweet) 0.23M 0.61M 2.14M
(Retweet, Follow) 0.32M 2.39M 3.49M

4 Experimental results

4.1 Setup

Datasets. For our synthetic experiments, we
generate graphs with stochastic block models [21]. The
real-world Twitter datasets we use in our experiments
are summarized in Table 2. We experiment with
Twitter multilayer networks [37] crawled from Twitter
traffic generated during the month of February 2018 by
Greek-speaking users using a publicly available crawler
twAwler [33]. Specifically, we use four layers each
corresponding to the type of interaction reply, quote,
retweet, and follow. For each pair of graphs we test,
we report the number of common nodes (i.e., Twitter
accounts) that appear in both graphs, and the number
of edges in each graph.

We also use brain network datasets [27] prepro-
cessed from the public dataset released by the Autism
Brain Imagine Data Exchange project. Experiments are
done on 101 brain networks of children patients, 52 Typ-
ically Developed (TD) and 49 suffering from Autism
Spectrum Disorder (ASD). Each network is undirected
and unweighted with 116 nodes, summarizing patient’s
brain activity.

Machine specs. The experiments were performed
on a single machine, with Intel i7-10850H CPU @
2.70GHz and 32GB of main memory.

Implementation and competitors. Our code is
available at https://github.com/tsourakakis-lab/

dense-kedge-connected. We use the code of Akiba
et al. [1] to decompose our graph into k-edge connected
components. Although we introduce Problem 2 for the
first time, two competitors, i.e., BFF1 and k-CCO2, are
considered in this section.

4.2 Ranging connectivity requirement An im-
portant aspect of our proposed framework is the fact
that we can range the connectivity requirement in con-
trast to other methods that use different formulations

1We use the code from https://github.com/ksemer/

BestFriendsForever-BFF-
2The original code was not provided to us by the authors, so

we provide our own implementation of k-CCO in Python3.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited365

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/tsourakakis-lab/dense-kedge-connected
https://github.com/tsourakakis-lab/dense-kedge-connected
https://github.com/ksemer/BestFriendsForever-BFF-
https://github.com/ksemer/BestFriendsForever-BFF-

or heuristics to mine dense subgraphs or communities
from multilayer networks. We illustrate the power of our
framework by comparing to the elegant Best-Friends-
Forever (BFF) formulations [36], as well as the k-CCO
model [11]. We generate two random graphs G and H
on the same node set according to the stochastic block
model. Both graphs contain five blocks B1, . . . , B5,
where each block has 50 nodes. The internal edge den-
sity of each block Bi in graph G, i.e., the probability any
two nodes within Bi are connected, is 0.1·i, i = 1, . . . , 5;
edges across blocks are generated with low probability
2×10−4 in order to ensure that the graph is connected,
but not well-connected. The edge probability of block
Bi in graph H is 0.1 + 0.1 · (5 − i), i = 1, . . . , 5; edges
across blocks are generated with probability 0.1. Note
the densities of blocks in G are increasing from B1 to
B5, while they are decreasing in H.

Figure 3: Blocks found by our method for different
connectivity requirement k values, visualized on graph
G.

The BFF algorithm for the AA formulation (see
Section 2 and [36]) returns the whole graph, while the
other three formulations (AM, MM, and MA) return
the subgraph induced by blocks B3 ∪ B4 ∪ B5. The k-
CCO algorithm always returns the whole graph given
different k core value constraint on H. However, our
method can mine the interesting connectivity structure
for different k values on G, and return the cluster has
the highest core value on H. Figure 3 visualizes the
different blocks on G obtained for different k values,
and Figure 4 shows our method has more comprehen-
sive k-edge connectivity control when comparing with
benchmarks.

Figure 4: Subgraph connectivity on G ranged by all
methods.

4.3 Mining Twitter Table 3 shows our results for
some pairs of Twitter graphs, and for various values of
the connectivity requirement k. We show the output
difference by using the pairs (Reply, Quote), (Reply,
Retweet), and (Retweet, Follow) and their reverse or-
dering. Recall that for a given pair (G,H) we impose
the connectivity requirement on G. Table 3 shows the
number of nodes in the optimal solution S∗, as well as
some basic graph statistics of the subgraph H[S∗]. We
observe that |S∗| is largest for the follow and retweet
pairs of interactions. If this were not the case, this would
have been surprising since the corresponding 2-layered
graph for follow and retweet shares more nodes (0.32M)
than the other two pairs of interactions. The average
shortest path among all induced subgraphs on H is al-
ways less than 2, and as can be seen by comparing |S∗|
and the maximum degree, there is typically a hub node
connecting almost all pairs via its ego-network. Fur-
thermore, as we can see by the average degree in H[S∗],
those induced subgraphs are quasi-clique-like [41]. Fig-
ure 5 visualizes the output for our algorithm for the
pairs (follow, retweet), (quote,reply) when k = 2.

The problem of finding large-near cliques in a
single graph is NP-hard, but in recent years tools
that work efficiently on large-scale networks have been
proposed (see [26, 30, 40, 41]). It is worth emphasizing
an interesting side-effect of our algorithm that appears
to hold on real-world dual graphs. Once you are able
to find a well-connected subgraph across two networks,
it appears in practice that it is a large near-clique.
Our findings on the large near-cliques we find on H,
agree with the theorems of Konar and Sidiropoulos [26]
concerning the existence of large-near cliques in the ego-
networks of certain nodes.

4.4 Mining brain networks Finally we apply our
algorithm to all possible dual graphs defined by typ-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited366

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 3: Twitter dual graph results. Statistics are calculated on subgraphs of H.

Graph pair k # of nodes min deg max deg avg deg diameter # of triangles avg shortest path
(Reply, Quote) 2 369 84 286 133.2 2 452293 1.64
(Reply, Quote) 6 306 79 238 121.7 2 345408 1.6
(Quote, Reply) 2 368 51 222 81.8 3 148437 1.78
(Quote, Reply) 6 334 50 203 78.8 3 130708 1.76

(Reply, Retweet) 2 470 275 468 362.9 2 8.4M 1.23
(Reply, Retweet) 6 501 256 494 360.8 2 8.6M 1.28
(Retweet, Reply) 2 359 52 217 82.5 3 149782 1.77
(Retweet, Reply) 6 515 51 276 88 3 214812 1.84
(Retweet, Follow) 2 1030 219 966 356.6 2 9.1M 1.65
(Retweet, Follow) 6 931 198 874 324.9 2 6.9M 1.65
(Follow, Retweet) 2 620 285 613 415.1 2 13.5M 1.33
(Follow, Retweet) 6 612 285 606 413 2 13.2M 1.32

ically developed (TD) children and children suffering
from Autism Spectrum Disorder (ASD). We report our
findings for the 52 × 51 possible (i.e., ordered) pairs of
brain graphs of TD children, and 49× 52 possible pairs
of children suffering from ASD and TD children.

Figure 6 shows the box plot of the output sizes for
k = 14. Our results are stable over the choice of k in
the range we tried (i.e., k values between 10 and 20).
Despite the existence of several outlier pairs of (TD,TD)
graphs with respect to their output size (e.g., plenty of
(TD,TD) pairs share about 40 nodes as the joint optimal
solution), there is still a separation of the averages; for
k = 14 the respective average value of |S∗| is 95 and 90
for (TD,TD), (ASD,TD) dual graphs respectively. We
observe that even if the range of values is similar for the
two types of dual graphs, the medians are also separated
as shown by the box plot. We conclude that there exists
a weak but measurable signal that indicates that healthy
individual brains are at least on average well connected
across a larger subset of nodes, a finding that agrees
with [27] in spirit, and is consistent with other studies
in the context of other diseases that argue that “better
connected brains, healthier brains”; see, e.g., [32, 38]
and references therein. We highlight the importance of
ranging connectivity to observe such phenomenon, as
it is invisible from the results of k-CCO that always
returns the whole graph.

4.5 Scalability analysis Figure 7 shows the running
time of the four variants of BFF, our method for k =
5, 20, 35, 50, and k-CCO algorithms on the Twitter
(reply, quote) dual graph respectively. We observe
that controlling the connectivity requirement comes at
the cost of the run time, compared to the competitor
methods. Dual-DC runs in at most 25 minutes for k = 5.
As k grows, the depth of the recursion decreases, and
thus we observe that the total run time decreases and

becomes comparable to the competitor methods. For
instance, for k = 5, 50 the depth of the recursion (i.e.,
the number of calls to Dual-DC) is equal to 294 and
20 respectively. The bar plot illustrates the run time
required for the k-connected components computation
for this specific dataset. In general, our method handles
the graphs from Table 2 in at most thirty minutes on
a single machine for any k connectivity value, with the
single exception of the largest pair (Retweet, Follow),
for which our code requires 5 hours to execute.

5 Conclusions

In this work we introduced a new problem on a dual
graph (G,H), that aims to find a set of nodes that
induces a well-connected subgraph on G and a dense
subgraph on H. We proved that our formulation admits
an exact solution, and we propose an algorithm that
runs in polynomial time. In practice, our algorithm
scales on graphs with several millions of edges on a
simple laptop, and runs reasonably fast. Compared to
competitor methods, our Dual-DC method enables to
control the connectivity constraint on H. Designing a
faster algorithm is an interesting open question. We
show that our method can be used in practice to mine
layers of Twitter and human brain networks.

Our work opens various interesting directions. Op-
timizing objectives over dual graphs can be harder than
a single graph, not only from a formal complexity point
of view (e.g., [3]), but even for designing heuristics. Can
we design approximation algorithms when we choose
the average degree as density measure? Another in-
teresting direction is to choose a different connectivity
notion, such as the graph conductance. Can we extend
the analysis simultaneously to multiple graphs, except
than just two? Finally, and more broadly, how do we
design algorithms that mine dual graphs efficiently?

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited367

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(a) (b)

(c) (d)

Figure 5: Visualization of our algorithm’s output on
the Twitter graphs, with connectivity requirement k =
2. (a), (b) Follow[S∗], Retweet[S∗], (c),(d) Quote[S∗],
Reply[S∗].

References

[1] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time
enumeration of maximal k-edge-connected subgraphs
in large networks by random contraction. In Proc.
CIKM ’13, pages 909–918, 2013.

[2] R. Andersen and K. Chellapilla. Finding dense sub-
graphs with size bounds. In Proc. WAW ’09, pages
25–37, 2009.

[3] A. Bhangale and S. Khot. Simultaneous max-cut
is harder to approximate than max-cut. In Proc.
CCC ’20, pages 9:1–9:15, 2020.

[4] A. Bhangale, S. Khot, S. Kopparty, S. Sachdeva, and
D. Thiruvenkatachari. Near-optimal approximation al-
gorithm for simultaneous max-cut. In Proc. SODA ’18,
pages 1407–1425, 2018.

[5] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige,
and A. Vijayaraghavan. Detecting high log-densities:
An O(n1/4) approximation for densest k-subgraph. In
Proc. STOC ’10, pages 201–210, 2010.

[6] F. Bonchi, D. Garćıa-Soriano, A. Miyauchi, and C. E.
Tsourakakis. Finding densest k-connected subgraphs.
Discrete Applied Mathematics, 305:34–47, 2021.

[7] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and
W. Liang. Efficiently computing k-edge connected
components via graph decomposition. In Proc. SIG-
MOD ’13, pages 205–216, 2013.

Figure 6: Box plots for the size |S∗|, over all possible
(TD, TD) and (TD, ASD) dual graphs. The average
size of |S∗| is 95 and 90 respectively. The competitor
k-CCO always returns the whole graph.

Figure 7: Running time(sec) of Our algorithm with
ranged k value, together with four variants of BFF and
k-CCO.

[8] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In Proc. AP-
PROX ’00, pages 84–95, 2000.

[9] M. Charikar, Y. Naamad, and J. Wu. On finding dense
common subgraphs. arXiv preprint arXiv:1802.06361,
2018.

[10] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard,
A. Evans, A. Jakab, B. S. Khundrakpam, J. D. Lewis,
Q. Li, M. Milham, C. Yan, and P. Bellec. The
neuro bureau preprocessing initiative: Open sharing
of preprocessed neuroimaging data and derivatives.
Frontiers in Neuroinformatics, 7, 2013.

[11] L. Cui, L. Yue, D. Wen, and L. Qin. K-connected cores
computation in large dual networks. Data Science and
Engineering, 3(4):293–306, 2018.

[12] R. Diestel. Graph Theory. Springer, 2005.
[13] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefe-

dov. Clustering with multi-layer graphs: A spectral

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited368

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

perspective. IEEE Transactions on Signal Processing,
60(11):5820–5831, 2012.

[14] N. Eagle and A. S. Pentland. Reality mining: Sensing
complex social systems. Personal and Ubiquitous
Computing, 10(4):255–268, 2006.

[15] U. Feige, D. Peleg, and G. Kortsarz. The dense k-
subgraph problem. Algorithmica, 29(3):410–421, 2001.

[16] K. J. Friston. Functional and effective connectivity: A
review. Brain Connectivity, 1(1), 2011.

[17] E. Galimberti, F. Bonchi, and F. Gullo. Core decom-
position and densest subgraph in multilayer networks.
In Proc. CIKM ’17, pages 1807–1816, 2017.

[18] A. Gionis and C. E. Tsourakakis. Dense subgraph
discovery: KDD 2015 tutorial. In Proc. KDD ’15,
pages 2313–2314, 2015.

[19] A. V. Goldberg. Finding a maximum density subgraph.
University of California Berkeley, 1984.

[20] L. B. H. Differential coexpression network analysis for
gene expression data. Methods in Molecular Biology,
1754:155–165, 2018.

[21] P. W. Holland, K. B. Laskey, and S. Leinhardt.
Stochastic blockmodels: First steps. Social Networks,
5(2):109–137, 1983.

[22] V. Jethava and N. Beerenwinkel. Finding dense
subgraphs in relational graphs. In Proc. ECML
PKDD ’15, pages 641–654, 2015.

[23] Y. Kawase and A. Miyauchi. The densest subgraph
problem with a convex/concave size function. Algo-
rithmica, 80(12):3461–3480, 2018.

[24] S. Khuller and B. Saha. On finding dense subgraphs.
In Proc. ICALP ’09, pages 597–608, 2009.

[25] J. Kim and J.-G. Lee. Community detection in multi-
layer graphs: A survey. ACM SIGMOD Record,
44(3):37–48, 2015.

[26] A. Konar and N. D. Sidiropoulos. Mining large quasi-
cliques with quality guarantees from vertex neighbor-
hoods. In Proc. KDD ’20, pages 577–587, 2020.

[27] T. Lanciano, F. Bonchi, and A. Gionis. Explainable
classification of brain networks via contrast subgraphs.
In Proc. KDD ’20, pages 3308–3318, 2020.

[28] W. Mader. Existenzn-fach zusammenhängender teil-
graphen in graphen genügend großer kantendichte.
In Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg, volume 37, pages 86–97.
Springer, 1972.

[29] M. Magnani and L. Rossi. The ML-model for multi-
layer social networks. In Proc. ASONAM ’11, pages
5–12, 2011.

[30] M. Mitzenmacher, J. Pachocki, R. Peng, C. E.
Tsourakakis, and S. C. Xu. Scalable large near-clique
detection in large-scale networks via sampling. In Proc.
KDD ’15, pages 815–824, 2015.

[31] A. Miyauchi and N. Kakimura. Finding a dense
subgraph with sparse cut. In Proc. CIKM ’18, pages
547–556, 2018.

[32] S. Navlakha, A. L. Barth, and Z. Bar-Joseph.
Decreasing-rate pruning optimizes the construction of
efficient and robust distributed networks. PLoS Com-

putational Biology, 11(7):e1004347, 2015.
[33] P. Pratikakis. twawler: A lightweight twitter crawler.

arXiv preprint arXiv:1804.07748, 2018.
[34] G.-J. Qi, C. C. Aggarwal, and T. Huang. Community

detection with edge content in social media networks.
In Proc. ICDE ’12, pages 534–545, 2012.

[35] A. Reinthal, A. Törnqvist, A. Andersson, E. Norlan-
der, P. St̊allhammar, and S. Norlin. Finding the dens-
est common subgraph with linear programming. B.S.
thesis, Chalmers University of Technology & University
of Gothenburg, 2016.

[36] K. Semertzidis, E. Pitoura, E. Terzi, and P. Tsaparas.
Finding lasting dense subgraphs. Data Mining and
Knowledge Discovery, 33(5):1417–1445, 2019.

[37] K. Sotiropoulos, J. W. Byers, P. Pratikakis, and
C. E. Tsourakakis. Twittermancer: Predicting in-
teractions on twitter accurately. arXiv preprint
arXiv:1904.11119, 2019.

[38] K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D.
Greicius. Network analysis of intrinsic functional brain
connectivity in alzheimer’s disease. PLoS Computa-
tional Biology, 4(6):e1000100, 2008.

[39] C. E. Tsourakakis. A novel approach to finding near-
cliques: The triangle-densest subgraph problem. arXiv
preprint arXiv:1405.1477, 2014.

[40] C. E. Tsourakakis. The k-clique densest subgraph
problem. In Proc. WWW ’15, pages 1122–1132, 2015.

[41] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph: Ex-
tracting optimal quasi-cliques with quality guarantees.
In Proc. KDD ’13, pages 104–112, 2013.

[42] C. E. Tsourakakis, T. Chen, N. Kakimura, and J. Pa-
chocki. Novel dense subgraph discovery primitives:
Risk aversion and exclusion queries. In Proc. ECML
PKDD ’19, pages 378–394. Springer, 2019.

[43] N. Veldt, A. R. Benson, and J. Kleinberg. The
generalized mean densest subgraph problem. In Proc.
KDD ’21, page 1604–1614, 2021.

[44] Y. Wu, R. Jin, X. Zhu, and X. Zhang. Finding dense
and connected subgraphs in dual networks. In Proc.
ICDE ’15, pages 915–926, 2015.

[45] Y. Wu, X. Zhu, L. Li, W. Fan, R. Jin, and X. Zhang.
Mining dual networks: Models, algorithms, and appli-
cations. ACM Transactions on Knowledge Discovery
from Data, 10(4):40:1–40:37, 2016.

[46] Y. Yang, L. Chu, Y. Zhang, Z. Wang, J. Pei, and
E. Chen. Mining density contrast subgraphs. In Proc.
ICDE ’18, pages 221–232, 2018.

[47] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and
J. Li. Finding maximal k-edge-connected subgraphs
from a large graph. In Proc. EDBT ’12, pages 480–
491, 2012.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited369

D
ow

nl
oa

de
d

06
/2

9/
22

 to
 1

30
.1

92
.6

8.
13

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Related Work
	Proposed Method
	Experimental results
	Setup
	Ranging connectivity requirement
	Mining Twitter
	Mining brain networks
	Scalability analysis

	Conclusions

