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Abstract
Low-dimensional node embeddings play a key
role in analyzing graph datasets. However, little
work studies exactly what information is encoded
by popular embedding methods, and how this
information correlates with performance in down-
stream learning tasks. We tackle this question by
studying whether embeddings can be inverted to
(approximately) recover the graph used to gener-
ate them. Focusing on a variant of the popular
DeepWalk method (Perozzi et al., 2014; Qiu et al.,
2018), we present algorithms for accurate embed-
ding inversion – i.e., from the low-dimensional
embedding of a graph G, we can find a graph G̃
with a very similar embedding. We perform nu-
merous experiments on real-world networks, ob-
serving that significant information about G, such
as specific edges and bulk properties like triangle
density, is often lost in G̃. However, community
structure is often preserved or even enhanced. Our
findings are a step towards a more rigorous under-
standing of exactly what information embeddings
encode about the input graph, and why this infor-
mation is useful for learning tasks.

1. Introduction
Low-dimensional node embeddings are a primary tool in
graph mining and machine learning. They are used for node
classification, community detection, link prediction, and
graph generative models. Classic approaches like spectral
clustering (Shi & Malik, 2000; Ng et al., 2002), Lapla-
cian eigenmaps (Belkin & Niyogi, 2003), IsoMap (Tenen-
baum et al., 2000), and locally linear embeddings (Roweis &
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Saul, 2000) use spectral embeddings derived for the graph
Laplacian, adjacency matrix, or their variants. Recently,
neural-network and random-walk-based embeddings have
become popular due to their superior performance in many
settings. Examples include DeepWalk (Perozzi et al., 2014),
node2vec (Grover & Leskovec, 2016), LINE (Tang et al.,
2015), NetMF (Qiu et al., 2018), and many others (Cao
et al., 2016; Kipf & Welling, 2016; Wang et al., 2016). In
many cases, these methods can be viewed as variants on
classic spectral methods, producing an approximate low-
dimensional factorization of an implicit matrix representing
graph structure (Qiu et al., 2018)

Problem definition. In this work we focus on the following
high-level question:

What graph properties are encoded in and can be
recovered from node embeddings? How do these
properties correlate with learning tasks?

We study the above question on undirected graphs with non-
negative edge weights. Let G denote the set of all such
graphs with n nodes. We formalize the question through
Problems 1 and 2 below.

Problem 1 (Embedding Inversion). Given an embedding
algorithm E : G →Rn×k and the embedding E (G) for some
G ∈ G , produce G̃ ∈ G with E (G̃) = E (G) or such that
‖E (G̃)−E (G)‖ is small for some norm ‖ · ‖.

We refer to k as the embedding dimension. A solution to
Problem 1 lets us approximately invert the embedding E (G)
to obtain a graph. It is natural to ask what structure is com-
mon between G, G̃. Using the same notation as Problem 1,
our second problem is as follows.

Problem 2 (Graph Recovery). Given G, G̃ such that
‖E (G̃)−E (G)‖ is small for some matrix norm ‖ · ‖, how
close are G, G̃ in terms of common edges, degree sequence,
triangle counts, and community structure?

Answering Problems 1 and 2 is an important step towards a
better understanding of a node embedding method E . In this
work, we focus on the popular DeepWalk method of Perozzi
et al. (2014). DeepWalk embedding can be interpreted as
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low-rank approximation of a point-wise mutual informa-
tion (PMI) matrix based on node co-occurrences in random
walks (Goldberg & Levy, 2014). The NetMF method of Qiu
et al. (2018) directly implements this low-rank approxima-
tion using SVD, giving a variant with improved performance
in many tasks. Due to its mathematically clean definition,
we focus on this variant. Many embedding methods can
be viewed similarly – as producing a low-rank approxima-
tion of some graph-based similarity matrix. We expect our
methods to extend to such embeddings.

Our contributions. We make the following findings:

•We prove that when the embedding dimension k is equal
to n and the node embedding method is NetMF in the limit
as the co-occurrence window size parameter goes to infinity,
then solving a linear system can provably recover G from
E (G), i.e., find G̃ = G.

• We present two algorithms for solving Problem 1 on
NetMF embeddings in typical parameter regimes. The
first is inspired by the above result, and relies on solv-
ing a linear system. The second is based on minimizing
‖E (G)− E (G̃)‖F , where ‖ · ‖F is the matrix Frobenius
norm, using gradient based optimization.

• Despite the non-convex nature of the above optimization
problem, we show empirically that our approach success-
fully solves Problem 1 on a variety of real word graphs, for a
range of embedding dimensions used frequently in practice.
We show that, typically our optimization based algorithm
outperforms the linear system approach with respect to pro-
ducing a graph G̃ with embeddings closer to those of the
input graph G.

•We study Problem 2 by applying our optimization algo-
rithm to NetMF embeddings for a variety of real world
graphs. We compare the input graph G and the output of
our inversion algorithm G̃ across different criteria. Our key
findings include the following:

1. Fine-Grained Edge Information. As the embedding
dimension k increases up to a certain point G̃ tends
closer to G, i.e., the Frobenius norm of the difference
of the adjacency matrices gets smaller. After a certain
point, the recovery algorithm is trying unsuccessfully
to reconstruct fine grained edge information that is
“washed-out” by NetMF.

Figure 1 illustrates this finding for a popular benchmark
of datasets (see Section 4 for more details).

2. Graph properties. We focus on two fundamental
graph properties, counts of triangles and community
structure. Surprisingly, while the number of triangles
in G and G̃ can differ significantly, community struc-
ture is well-preserved. In some cases this structure
is actually enhanced/emphasized by the embedding

Figure 1: Relative Frobenius error ‖A−Ã‖F/‖A‖F between
the adjacency matrices of G and G̃.

Figure 2: Relative error between G and G̃ for the con-
ductance of the five largest communities (corresponding
to biological states) in a human protein-protein interaction
network.

method. I.e., the conductance of the same community
in G̃ is even lower than in G.

Figure 2 shows the relative error between the conduc-
tance of a ground-truth community in G and the con-
ductance of the same community in G̃ vs. k for the
five largest communities in a human protein-protein
interaction network.

2. Related work
Graph recovery from embeddings. To the best of our
knowledge, Problem 1 has not been studied explicitly in
prior work. Hoskins et al. (2018) study graph recovery
using a partial set of effective resistance measurements be-
tween nodes – equivalent to Euclidean distances for a certain
embedding, see Section 4 (Spielman & Srivastava, 2011).
Close to our work lies recent work on node embedding pri-
vacy, and in particular graph reconstruction attacks on these
embeddings. Ellers et al. (2019) identify neighbors of a
given node v with good accuracy by considering the change
in embeddings of the other nodes in G and G \ v. Duddu
et al. (2020) study a graph reconstruction attack that inverts
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Figure 3: G (left), a stochastic block model graph with 1000
nodes and 4 clusters, and G̃ (right), a reconstruction of G
from a 32-dimensional NetMF embedding. While G and G̃
differ in the exact edges they contain, we can see that the
community structure is preserved.

a simple spectral embedding using a neural network. Train-
ing this network requires knowledge of a random subgraph
of G, used as training data, and can be viewed as solving
Problem 1, but with some auxiliary information provided
on top of E (G).

Graph sketching algorithms study the recovery of informa-
tion about G (e.g., approximations to all its cuts or shortest
path distances) from linear measurements of its edge-vertex
incidence matrix (McGregor, 2014). These linear measure-
ments can be thought of as low-dimensional node embed-
dings. However, generally they are designed specifically to
encode certain information about G, and they differ greatly
from the type of embeddings used in graph learning appli-
cations. Recently, Chanpuriya et al. (2020) showed that any
graph with degree bounded by ∆ admits an embedding into
2∆+1 dimensions that can be exactly inverted. These exact
embeddings allow for a perfect encoding of the full graph
structure in low-dimensions, and circumvent limitations of
a large family of embeddings that cannot capture triangle
richness and edge sparsity provably in low dimensions (Se-
shadhri et al., 2020).

DeepWalk and NetMF. We focus on inverting embeddings
produced by the Qiu et al. (2018) NetMF variant of the
popular DeepWalk method of Perozzi et al. (2014). Con-
sider an undirected, connected, non-bipartite graph G, with
adjacency matrix A ∈ {0,1}n×n, diagonal degree matrix
D∈Rn×n and volume vG = tr(D)=∑i, j Ai, j. Qui et al. show
that, for window size hyperparameter T (typical settings are
T = 10 or T = 1), DeepWalk stochastically factorizes the
point-wise mutual information (PMI) matrix:

M̂T = log

(
vG

T

T

∑
r=1

(D−1A)rD−1

)
,

where the logarithm is applied entry-wise to its n×n argu-
ment. Note that if the diameter of G exceeds T , then at least
one entry of ∑

T
r=1(D

−1A)rD−1 will be 0. To avoid the issue

of taking the logarithm of 0, NetMF instead employs the
positive point-wise mutual information (PPMI) matrix:

MT = log

(
max

(
1,

vG

T

T

∑
r=1

(D−1A)rD−1

))
. (1)

Via truncated eigendecomposition of MT , one can find an
eigenvector matrix V ∈ Rn×k and a diagonal eigenvalue
matrix W ∈ Rk×k such that MT,k = VWV> is the best pos-
sible k-rank approximation of MT in the Frobenius norm.
The NetMF embedding is set to the eigenvectors scaled
by the square roots of the eigenvalue magnitudes. I.e.,
E (G) =V

√
|W |, where the absolute value and the square

root are applied entry-wise. In practice, these node embed-
dings perform at least as well as DeepWalk in downstream
tasks. Further, their deterministic nature lets us to define a
straightforward optimization model to invert them.

3. Proposed methods
In Sections 3.1 and 3.2 we present our two proposed NetMF
embedding inversion methods. The first is inspired by our
constructive proof of Theorem 1 and relies on solving an
appropriately defined linear system. The second is based
on optimizing a natural objective using a gradient descent
algorithm. Since the NetMF embedding E (G) encodes the
best k-rank approximation MT,k = VWV T to the positive
point-wise mutual information (PPMI) matrix MT , we will
assume throughout that we are given MT,k directly and seek
to recover G̃ from this matrix. We also assume knowledge
of the number of edges in G in terms of the volume vG.

While all networks used in our experiments are unweighted,
simple, undirected graphs, i.e., their adjacency matrices are
binary (A ∈ {0,1}n×n), our inversion algorithms produce G̃
with Ã∈ [0,1]n×n. The real valued edge weights in G̃ can be
thought of as representing edge probabilities. We will also
convert G̃ to an unweighted graph with binary adjacency
matrix Ãb ∈ {0,1}n×n. We describe the binarization process
in detail in the following sections.

3.1. Analytical Approach

We leverage a recent asymptotic result of Chanpuriya &
Musco (2020), which shows that as the number of samples
and the window size T for DeepWalk/NetMF tend to infinity,
the PMI matrix tends to the limit:

lim
T→∞

T · M̂T = M̂∞

= vG ·D−1/2(L̄+− I)D−1/2 + J,
(2)

where L̄ = I−D−1/2AD−1/2 is the normalized Laplacian,
L̄+ is the Moore-Penrose pseudoinverse of this matrix, and
J is the all-ones matrix. Our first observation is that if, in
addition to M̂∞, we are given the degrees of the vertices in
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G, then we know both D and vG, and we can simply invert
equation (2) as follows:

L̄ =

(
D1/2

(
M̂∞− J

vG

)
D1/2 + I

)+

A = D1/2 (I− L̄)D1/2.

(3)

In Appendix A.1, we show using just the graph volume vG,
that one can perfectly recover the degree matrix D from M̂∞

via a linear system, provided the adjacency matrix of G is
full-rank. Combining this fact with Equations (2) and (3)
we obtain the following:

Theorem 1 (Limiting Invertibility of Full-Rank PMI Em-
beddings). Let G be an undirected, connected, non-bipartite
graph with full-rank adjacency matrix A ∈ {0,1}n×n and
volume vG. Let M̂T be the PMI matrix of G which is pro-
duced with window size T . There exists an algorithm that
takes only M̂T and vG as input and recovers A exactly in the
limit as T → ∞.

In our embedding inversion task, rather than the exact limit-
ing PMI matrix M̂∞, we are given the low-rank approxima-
tion MT,k of the finite-T PPMI matrix, through the NetMF
embeddings. Our first algorithm is based on essentially
ignoring this difference. We use MT,k to obtain an approx-
imation to M̂∞, which we then plug into (3). This approx-
imation is based on inverting the following limit, shown
by Chanpuriya & Musco (2020):

lim
T→∞

M̂T = log
( 1

T M̂∞ + J
)
, (4)

where the logarithm is applied entry-wise.

Due to the various approximations used, the elements of
the reconstructed adjacency matrix Ã may not be in {0,1},
and may not even be in [0,1]; for this reason, as in (Se-
shadhri et al., 2020), we apply an entry-wise clipping func-
tion, clip(x) = min(max(0,x),1), after the inversion steps
from Equations (3) and (4). The overall procedure is given
in Algorithm 1.

Binarization. To produce a binary adjacency matrix Ãb ∈
{0,1}n×n from Ã, we use a slight modification of Algo-
rithm 1: rather than clipping, we set the highest vG off-
diagonal entries above the diagonal to 1, and their symmet-
ric counterparts below the diagonal to 1. This ensures that
the matrix represents an undirected graph G̃ with the same
number of edges as G.

3.2. Optimization Approach

Our gradient based approach parameterizes the entries of a
real valued adjacency matrix Ã∈ (0,1)n×n with independent
logits for each potential edge, and leverages the differentia-
bility of Equation (1). Based on Ã, we compute the PPMI

Algorithm 1 DeepWalking Backwards (Analytical)
input approximation MT,k of true T -step PPMI, window-
size T , degree matrix D, graph volume vG
output reconstructed adjacency matrix Ã ∈ [0,1]n×n

1: M̃∞← T ·
(
exp
(
MT,k

)
− J
)

. exp is applied entry-wise, J is the all-ones matrix

2: ˜̄L←
(

D1/2
(

M̃∞−J
vG

)
D1/2 + I

)+
3: Ã← clip

(
D1/2

(
I− ˜̄L

)
D1/2

)
4: return Ã

Algorithm 2 DeepWalking Backwards (Optimization)
input approximation MT,k of true T -step PPMI, window-
size T , graph volume vG, number of iters. N
output reconstructed adjacency matrix Ã ∈ (0,1)n×n

1: Initialize elements of X ∈ Rn×n to 0 . logits of
the reconstructed adjacency matrix

2: for i← 1 to N do
3: Ã← σvG(X) . construct adjacency matrix

with target volume, see Appendix A
4: M̃T ← PPMI

(
Ã
)

via Eq. (1)
5: L←‖M̃T −MT,k‖2

F . squared error of PPMI
6: Calculate ∂X L via automatic differentiation

through Steps 3 to 5
7: Update X to minimize L using ∂X L
8: end for
9: return σv(X)

matrix M̃T , and then the squared PPMI error loss, i.e., the
squared Frobenius error between M̃T and the low-rank ap-
proximation MT,k of the true PPMI, given by the NetMF
embeddings. We differentiate through these steps, update
the logits, and repeat. Pseudocode is given in Algorithm 2.
Note that we invoke a function σv which constructs an adja-
cency matrix with a given target volume. The details of the
latter can be found in Appendix A.2.

Since the input to the algorithm is a low-rank approximation
of the true PPMI, and since this approximation is used for
the computation of error, it may seem more appropriate to
also compute a low-rank approximation of the reconstructed
PPMI matrix M̃T prior to computing the error; we skip this
step since eigendecomposition within the optimization loop
is both computationally costly and unstable to differentiate
through.

Our implementation uses PyTorch (Paszke et al., 2019) for
automatic differentiation and minimizes the loss using the
SciPy (Jones et al., 2001) implementation of the L-BFGS
(Liu & Nocedal, 1989; Zhu et al., 1997) algorithm with
default hyperparameters and up to a maximum of 500 itera-
tions.
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Binarization. We binarize the reconstructed adjacency
matrix Ã ∈ (0,1)n×n differently from the prior approach.
Here, we treat each element of Ã as the parameter of a
Bernoulli distribution and sample independently to produce
Ãb ∈ {0,1}n×n. Since we set Ã’s volume to be approxi-
mately vG using the σv function, the number of edges in the
binarized network after sampling is also approximately vG.

3.3. Baseline Approach

As a point of comparison to our proposed methods, we also
evaluate the following natural baseline, which is inspired
by Yin et. al (Yin & Wei, 2019). Namely, we view the
input matrix, the low-rank approximation MT,k of the PPMI
matrix, as a generic node similarity matrix, and take as
edges of the reconstructed adjacency matrix Ã the indices
(i, j) that correspond to the top-vG entries of MT,k.

4. Experimental results
4.1. Experimental setup

Datasets. We apply the NetMF inversion algorithms de-
scribed in Section 3 to a benchmark of networks, summa-
rized in Table 1. As part of our investigation of how well the
output G̃ of our methods matches the underlying graph G,
we examine how community structure is preserved. For this
reason, we choose only test graphs with labeled ground-truth
communities. All datasets we use are publicly available: see
Qiu et al. (2018) for BLOGCATALOG and PPI, Sen et al.
(2008) for CITESEER and CORA, and SNAP (Leskovec &
Krevl, 2014) for EMAIL and YOUTUBE. The YOUTUBE
graph we use is a sample of 20 communities from the raw
network of (Leskovec & Krevl, 2014). For all networks,
we consider only the largest connected component. The
community labels that we report for various datasets, such
as those reported in the legends of Figure 6, refer to the
labels as given in the input datasets.

Table 1: Datasets used in our experiments

Name Nodes Edges # Labels

YOUTUBE 10,617 55,864 20
BLOGCATALOG 10,312 333,983 39
PPI 3,852 76,546 50
CORA 2,485 10,138 7
CITESEER 2,110 7,388 6
EMAIL 986 16,064 42

Hyperparameter settings. We experiment with a set of
different values for the embedding dimension k, starting
from 24 and incrementing in powers of 2, up to 211 = 2048,
except for the EMAIL dataset, which has fewer than 210

nodes. For this dataset we only test for k up to 29. Through-
out the experiments, we set the window-size T to 10, as this

is the most commonly used value in downstream machine
learning tasks.

Evaluation. Our first step is to evaluate how well the two
algorithms proposed in Section 3 solve embedding inver-
sion (Problem 1). To do this, we measure the error in terms
of the relative Frobenius error between the rank-k approxi-
mations of the true and reconstructed PPMI matrices, MT,k
and M̃T,k respectively. These matrices represent the NetMF
embeddings of G and G̃. The relative Frobenius error for
two matrices X and X̃ is simply ‖X− X̃‖F/‖X‖F .

We next study how the reconstructed graph G̃ obtained via
embedding inversion compares with the true graph G (Prob-
lem 2). Here, we binarize the reconstructed adjacency ma-
trix to produce Ãb. See Section 3.1 and Section 3.2 for
details. Thus, like G, G̃ is an undirected, unweighted graph.
Most directly, we measure the relative Frobenius error be-
tween G’s adjacency matrix A and G̃’s adjacency matrix Ãb.
We also measure the reconstruction error for three other key
measures:

• Number of triangles (τ). The total number of 3-
cliques, i.e., triangles, in the graph.

• Average path length (`). The average path length
between any two nodes in the graph.

• Conductance (φ ) of ground-truth communities. For
a community S, the conductance is defined as: φ(S) =

e(S:S̄)
min(vol(S),vol(S̄)) where e(S : S̄) is the number of edges
leaving community S and vol(S) is number of edges
induced by S. S̄ is the complement V \S.

For the above measures we report the relative error between
the measure x for the true network and the one of the recov-
ered network x̃, defined as (x̃− x)/x.

Finally, we evaluate how well G̃’s low-dimensional em-
beddings perform in classification, where the goal is to
infer the labels of the nodes of G. We train a linear model
using a fraction of the labeled nodes of G and the low-
dimensional embedding of G̃, and try to infer the labels of
the remaining nodes. We report accuracy in terms of micro
F1 score and compare it with the accuracy when using the
low-dimensional embedding of G itself. For this task, we
use both the recovered real-valued adjacency matrix of G̃
and its binarized version. We observe that, contrary to the
previous measures, performance is sensitive to binarization.

Code. All code is written in Python and is available
at https://github.com/konsotirop/Invert_
Embeddings.

Summary of findings. Before we delve into details, we
summarize our key experimental findings.

https://github.com/konsotirop/Invert_Embeddings
https://github.com/konsotirop/Invert_Embeddings
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Figure 4: Relative Frobenius error vs. embedding rank k
for the low-rank PPMI matrices of the graphs reconstructed
using the inversion algorithms: the baseline (top), the an-
alytical approach, Alg. 1 (middle), and the optimization
approach, Alg. 2 (bottom). For details, see Section 4.2.

• The optimization approach (Alg. 2), significantly outper-
forms the analytical approach (Alg. 1), in terms of how
closely the NetMF embeddings of the reconstructed graph
G̃ match those of the true graph G (i.e., in solving Problem
1). Both of the proposed approaches generally outperform
the baseline. See Figure 4.

• Focusing on G̃ produced by Algorithm 2, the NetMF
embedding is close to the input at all ranks. The adjacency
matrix error of G̃ trends downwards as the embedding rank

k increases. However, for small k, the two graph topologies
can be very different in terms of edges and non-edges. See
Figure 5.

• G̃ preserves and or even enhances the community structure
present in G, and tends to preserve the average path length.
However, the number of triangles in G̃ greatly differs from
that in G when the embedding rank k is low. See Figure 5.

• G̃’s NetMF embeddings perform essentially identically
to G’s in downstream classification on G. However, bina-
rization has a significant effect: if we first binarize G̃’s edge
weights, and then produce embeddings, there is a drop in
classification performance.

• Overall, we are able to invert NetMF embeddings as laid
out in Problem 1 and, in the process, recover G̃ with similar
community structure to the true graph G. Surprisingly, how-
ever, G̃ and G can be very different graphs in terms of both
specific edges and broader network properties, despite their
similar embeddings.

4.2. Analytical vs. Optimization Based Inversion

Figure 4 reports the relative Frobenius error of the analytical
method (Alg. 1) and the optimization approach (Alg. 2) in
embedding inversion as we range k. We can see that Alg. 2
significantly outperforms Alg. 1. While Alg. 1 comes with
strong theoretical guarantees (Theorem 1) in asymptotic
settings (i.e., T → ∞, k = n), it performs poorly when these
conditions are violated. In practice, the embedding dimen-
sion k is always set to be less than n (typical values are
128 or 256), and T is finite (T is often set to 10). At these
settings, the approximations used in Alg. 1 seem to severely
limit its performance. Additionally, both Alg. 1 and Alg. 2
significantly outperform the baseline of Section 3.3, except
at the highest of the embedding ranks which we evaluate,
where Alg. 1 performs comparably to the baseline.

Given the above, in the following sections we focus our at-
tention on the optimization approach. This approach makes
no assumption on the rank k, or the window-size T . We can
see in Figure 4 that the embedding error stays low across
different values of k when using Alg. 2, indicating that per-
formance is insensitive to the dimension parameter.

4.3. Evaluating Graph Recovery

Adjacency matrix reconstruction. We next examine how
closely the output of Alg. 2, the binarized adjacency matrix
Ãb, matches the original adjacency matrix A, especially as
we vary the embedding dimensionality k. As can be seen
in Figure 5, at low ranks, the relative Frobenius error is
often quite high – near 1. In combination with Figure 4
(middle), this shows an interesting finding: two graphs may
be very different topologically, but still have very similar
low-dimensional node embeddings (i.e., low-rank PPMI ma-
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Figure 5: From left to right: Relative Frobenius error for the binarized adjacency matrix; relative error for the number of
triangles; and relative error for the average path length. All plots are versus the embedding rank.

trices). We do observe that as the embedding dimension
grows, the adjacency matrix error decreases. This aligns
with the message of Theorem 1 that, in theory, high di-
mensional node embeddings yield enough information to
facilitate full recovery of the underlying graph G. We re-
mark that, by construction, G and G̃ have approximately the
same number of edges. Thus, the incurred Frobenius error
is purely due to a reorientation of the specific edges between
the true and the reconstructed networks.

Recovery of graph properties. Bearing in mind that the
recovered G̃ differs substantially from the input graph G in
the specific edges it contains, we next investigate whether
the embedding inversion process at least recovers bulk graph
properties.

Figure 5 shows the relative error of the triangle count versus
embedding dimensionality k. We observe that the number
of triangles can be hugely different among the true and the
reconstructed networks when k is small. In other words,
there exist networks with similar low-dimensional NetMF
embeddings that differ significantly in their total number of
triangles. This is surprising: since the number of triangles
is an important measure of local connectivity, one might
expect it to be preserved by the node embeddings. In con-
trast, for another important global property, the average path
length, the reconstruction error is always relatively low (also
shown in Figure 5).

In Figure 6, we plot the relative errors for the conductance of
the five most populous communities of the networks under
consideration. We see that the conductance of ground-truth
communities is generally preserved in the reconstructed
networks, with the error becoming negligible after rank
27 = 128, an embedding rank which is often used in practice.
This finding is intuitive – since NetMF embeddings are used
for node classification and community detection, it is to be
expected that they preserve community structure.

Synthetic graphs. We repeat the above experiments using
several synthetic networks produced by the stochastic block
model (SBM) (Abbe et al., 2015). This random graph model

assigns each node to a single cluster, and an edge between
two nodes appears with probability pin if the nodes belong
to the same cluster and pout otherwise, where generally it
sets pout < pin. We observe similar results for these graphs,
with figures included in Appendix A.

As with the real-world datasets, the networks recovered by
applying NetMF embedding inversion to these synthetic
datasets differ substantially from the true networks in terms
of adjacency matrix and triangle count. However, we ob-
serve that community structure is well preserved – see Fig-
ure 3 for a visual depiction.

Finally, we note that when we use the full rank PPMI matrix
as our input (i.e., k = n), we succeed in reconstructing G
exactly (i.e., G̃ = G) for the SBM networks. This further
supports the message of Theorem 1 that, when embedding
dimensionality is sufficiently high, node embeddings can
be exactly inverted. However, at low dimensions, the em-
beddings seem to capture some important global properties,
including community structure, while washing out more
local structure.

Node classification. In a typical classification setting for
a graph G, when we know only a fraction of the labels
of its nodes and want to infer the rest, we can use a low-
dimensional embedding of its nodes as our feature matrix
and employ a linear classifier to infer the labels for the
remaining nodes. While our reconstructed networks G̃ dif-
fer from G edge-wise, they have similar low-dimensional
NetMF embeddings. As another indicator of the preserva-
tion of community structure, we measure the performance
in this node classification task when using the embeddings
E (G̃) as our feature matrix in place of E (G). We report the
performance of two embeddings made from reconstructed
networks: by applying NetMF to G̃ before and after binariz-
ing its edges as described in Section 3.2.

Our classification setting is the same as that of Qiu et al.
(2018): we use a one-vs-rest logistic regression classifier,
sampling a certain portion of the nodes as the training set.
We repeat this sampling procedure 10 times and report the
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Figure 6: Relative error for the conductance of the five largest communities for three selected networks.

Figure 7: Multi-label classification using embeddings from reconstructed networks. Performance when using embeddings
from a random graph is included as a baseline.

mean micro F1 scores. We also repeat the experiments as
we vary the embedding dimensionality k and as we change
the ratio of labeled examples from 10% to 90%.

As shown in Figure 7, when we use E (G̃) generated from the
non-binarized (i.e., expected) G̃ as the input to our logistic
regression classifier, we achieve almost equal performance
to when we use the true embedding E (G). This finding can
be interpreted in two ways. First, it shows that the low error
observed in Figure 4 (bottom) extends beyond the Frobe-
nius norm metric, to the perhaps more directly meaningful
metric of comparable performance in classification. Sec-
ond, it makes clear that losing local connectivity properties
in the inversion process (like total triangle count and the
existence of specific edges) does not significantly affect clas-
sification performance. The reconstructed networks seem to
preserve more global properties that are important for node
classification, like community structure.

While binarization does not significantly affect other met-
rics used to compare G̃ to G (e.g. adjacency error, triangles,
etc.), the classification task seems to be more sensitive, as
performance falls when we use the embedding for the bina-
rized G̃. It is an interesting open direction to investigate this
phenomenon, and generally how the low-dimensional em-
beddings of a probabilistic adjacency matrix change when

that matrix is sampled to produce an unweighted graph.

4.4. Additional Considerations

Impact of Window Size T

For the experiments discussed previously, we set the window
size to T = 10, as this is the value most commonly used for
skip-gram node embeddings. We also investigate whether
the performance of Algorithm 2 is sensitive to the window
size used for the embeddings. These results are presented
in Figure 8 for the PPI network. We find that the related
Frobenius error for the reconstructed adjacency matrix is not
very sensitive by the window size T . The same is true for the
average path length. By contrast, we find that triangle count
does differ significantly as window size is varied. These
plots, along with more complete results for other datasets,
can be found in the Appendix.

Effect of network structure on embedding inversion

As discussed previously, when inverting the low-
dimensional embedding of a stochastic block model (SBM)
network, we can effectively capture its community structure,
even if more fined grained information (like exact edges)
is lost. One question is how well we can approximate the
embeddings of random graphs that lack the community
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Figure 8: Impact of window size T on the reconstruction
of the adjacency matrix and the average path length for the
PPI network.

structure of the SBM. To investigate this, we again use the
SBM and fix the probability of an edge between two nodes
belonging to the same cluster as pin = 0.1. Then, we gener-
ate different networks, by varying the probability of an edge
between nodes in different clusters, pout = [0.01, . . . ,0.1].
Notice that as pout approaches pin, the SBM approaches
an Erdős-Rényi (ER) graph. We observed that as pout ap-
proaches pin (so the graph approaches an ER graph), the em-
bedding error increases. We conjecture that this is because
the graph no longer has low-rank community structure. A
better understanding of the embeddings of random networks
that lack a clear community structure (as the ER model, or
the Barabási-Albert model) is an interesting direction for
future research.

Table 2: Embedding error for a range of values of pout. pin
is fixed at 0.100. The networks have 1,000 nodes, and the
embedding rank is 32.

pout 0.005 0.010 0.030 0.050 0.100

Error 0.009 0.033 0.191 0.204 0.192

5. Conclusion
Modern node embeddings have been instrumental in achiev-
ing state-of-the-art empirical results for many graph-based
machine learning tasks. Our work is a step towards a deeper
understanding of why this is the case. We initiate the study
of node embedding inversion as a tool to probe the informa-
tion encoded in these embeddings. For the NetMF embed-
ding method, we propose two methods based on different
techniques, and we show that the inversion problem can be
effectively solved. Building on this, we show that while
these embeddings seem to wash out local information in the
underlying graph, they can be inverted to recover a graph
with similar community structure to the original. Two inter-
esting questions are whether our framework can be extended
beyond the NetMF node embedding method, and whether
we can formalize our empirical findings mathematically. We
believe that our framework can be used for the broader fam-
ily of node embedding methods that are based on low-rank
factorization of graph similarity matrices. In this way, we
hope to shed further light on the differences and similarities
between various node embedding methods.
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