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Urban transportation networks, from pavements and bicycle
paths to streets and railways, provide the backbone for
movement and socioeconomic life in cities. To make urban
transport sustainable, cities are increasingly investing to
develop their bicycle networks. However, it is yet unclear how
to extend them comprehensively and effectively given a limited
budget. Here we investigate the structure of bicycle networks in
cities around the world, and find that they consist of hundreds
of disconnected patches, even in cycling-friendly cities like
Copenhagen. To connect these patches, we develop and apply
data-driven, algorithmic network growth strategies, showing
that small but focused investments allow to significantly
increase the connectedness and directness of urban bicycle
networks. We introduce two greedy algorithms to add the most
critical missing links in the bicycle network focusing on
connectedness, and show that they outmatch both a random
approach and a baseline minimum investment strategy. Our
computational approach outlines novel pathways from car-
centric towards sustainable cities by taking advantage of urban
data available on a city-wide scale. It is a first step towards a
quantitative consolidation of bicycle infrastructure development
that can become valuable for urban planners and stakeholders.
1. Introduction
Most modern cities have followed a car-centric development in
the twentieth century [1] and are today allocating a privileged
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Figure 1. (Map plots, left) Networks representing various layers of transport infrastructure (pedestrian paths, bicycle paths, rail lines
and streets) for Copenhagen and London, with data from OpenStreetMap. (Right) Connected component size distribution P(Ncc) as a
function of the ranking of the component for all considered network layers and cities. All layers are well connected except the bicycle
layer: Copenhagen has 321 bicycle network components despite being known as a bicycle-friendly city, while London’s bicycle layer
is much more fragmented, featuring over 3000 disconnected components. Copenhagen’s largest connected bicycle component
(leftmost data point) spans 50% of the network, but London’s only less than 5%.
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amount of urban space to automobile traffic [2,3]. From a network perspective, this space can be described
as the street layer of a larger mathematical object, the multiplex transport network [4–6]. A city’s multiplex
transport network contains other network layers that have co-evolved with the street layer, such as the
bicycle layer or the rail network layer (figure 1). Owing to the car-centric development of most cities,
street layers are the most developed layers and define or strongly limit other layers: for example,
pavements are by definition footpaths along the side of a street and make up a substantial part of a
city’s pedestrian space [2]; similarly, most bicycle paths are part of a street or are built along the side.

From an urban sustainability perspective, this situation is suboptimal because the unsustainable
mode of automobile transportation dominates sustainable modes like cycling. Consequently, urban
planning movements in a number of pioneering cities are increasingly experimenting with drastic
policies, such as applying congestion charges (London) [7] and repurposing or removing car parking
(Amsterdam, Oslo) [8–10]. These efforts agree in one common goal, together with the literature on
cycling safety [11–14] and with cost–benefit analysis [15]. Protected bicycle lanes need to be extended
considerably to create complete bicycle networks that provide a safe infrastructure for cycling citizens.
Although scattered efforts in this direction have shown preliminary success, a quantitative framework
for developing and assessing systematic strategies is missing [16].

Here we analyse the bicycle infrastructure network of 14 world cities, from leading bicycle-culture
countries like The Netherlands, to car-centric countries like Great Britain, the USA or Colombia. We
first uncover network fragmentation within the bicycle-dedicated infrastructure. Then, to improve
a city’s vital dedicated bicycle infrastructure [17–20], we develop algorithms for connecting
disconnected graphs based on concrete quality metrics from bicycle network planning [21] and apply
them to the empirical bicycle networks via network growth simulations. We find that localized
investment into targeted missing links can rapidly consolidate fragmented bicycle networks, allowing
to significantly increase their connectedness and directness, with potentially crucial implications for
sustainable transport policy planning.
2. Data acquisition and network construction
We acquired street and bicycle infrastructure networks from multiple cities around the world using
OSMnx [22], a Python library to download and construct networks from OpenStreetMap (OSM).
OSMnx simplifies the OpenStreetMap’s raw data to retain only nodes at the intersections and dead
ends of streets, and the spatial geometry of the edges, generating a length-weighted non-planar
directed graph [23]. These datasets are of high quality [24,25] in terms of correspondence with
municipal open data [26] and completeness: more than 80% of the world is covered by OSM [27]. In
particular, OSM’s bicycle layer has better coverage than proprietary alternatives like Google Maps
[28]. We collect data from a diverse set of cities to capture different development states of bicycle
infrastructure networks; from consolidated networks like Amsterdam and Copenhagen, less
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developed ones like Manhattan and Mexico City, to rapidly developing cities like Jakarta and Singapore.

The various analysed urban areas and their properties are reported in the electronic supplementary
material, table SI.1. Code to replicate our results is available as Jupyter Notebooks (https://github.
com/nateraluis/bicycle-network-growth) and has been archived within the Zenodo repository: http://
doi.org/10.5281/zenodo.4267871; the data can be downloaded from Harvard Dataverse [29].

We characterize each city street and bicycle infrastructure as a primal network, [30] in which nodes are
intersections, while links represent bicycle paths, and designated bicycle infrastructure. This recent approach
has been useful to demonstrate how cities grow [31,32], how efficient [33] and dense they are, and to capture
the tendency of travel routes to gravitate towards city centres [34]. This network is described by an adjacency
matrix A ¼ {a[a]ij } where aij = 1 if there is a link between nodes i and j and 0 otherwise.
rnal/rsos
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3. Defining bicycle network growth strategies and quality metrics
Across all cities considered, we find that almost all network layers are made up of one giant component,
except for the bicycle layer which is always fragmented into many disconnected components (see
electronic supplementary material, table SI.1). This discovery is remarkable given that the
fragmentation occurs also in bicycle-friendly cities like Copenhagen (figure 1), showing that cycling
infrastructure can be suboptimal even in the leading cycling cities on the planet. To quantify such an
underdevelopment in the sustainable mobility infrastructure of cycling, we focus on the single layer of
bicycle networks and on two well-established metrics in bicycle infrastructure quality assessment
[21,35–38]: connectedness and directness. Connectedness indicates ‘the ease with which people can travel
across the transportation system’ [21], and it is related to answering the question ‘can I go where I
want to, safely?’. Directness addresses the question ‘how far out of their way do users have to travel
to find a facility they can or want to use?’, and can be measured by how easy it is to go from one
point to another in a city using bicycle infrastructure versus other mobility options, like car travel.

As our main approach, we choose to measure connectedness and directness over the designated
bicycle infrastructure only, without considering travel on streets. Although it is possible to cycle on
streets, growing evidence from bicycle infrastructure and safety research is unveiling serious safety
issues for cycling when mixed with vehicular traffic [11–13]. However, we also tested our algorithms
on a combination of bicycle infrastructure plus streets for which the maximum speed is 30 km h−1,
following common best-practice reasoning that low speed limits can make streets safe for cycling [39].
The results of these additional simulations are available in the electronic supplementary material; they
do not differ significantly from the case of designated bicycle infrastructure presented below, as the
developed algorithms follow the same rules to connect the multiple components in both cases of
segregated bicycle infrastructure only and of included bikeable streets.

To quantify connectedness, we first measure the number of disconnected components of each city’s
bicycle network. It is no surprise that car-centric cities have a highly fragmented bicycle infrastructure: for
example, London has more than 3000 disconnected bicycle infrastructure segments. However, even
bicycle-friendly cities like Copenhagen have over 300 disconnected bicycle path components—see the
connected component size distribution P(Ncc) in figure 1. This infrastructure fragmentation in the bicycle
layer poses a challenge for a city’s multimodal mobility options [40] and for the safety of its cycling
citizens [41,42].

There are various approaches in developing automated strategies for bicycle infrastructure planning.
Hyodo et al. [43] have proposed a bicycle route choice model to plan bicycle lanes taking into account
facility characteristics. Other studies have used input data from bicycle share systems [44] or origin
destination matrices [45] to plan bicycle lanes. More recently, taxi trips have been used to identify
susceptible clusters for bicycle infrastructure [46]. Here we attempt an alternative approach: since hundreds
of bicycle network components already exist in most cities, we aim at consolidating the existing
infrastructure by making strategic connections between components rather than starting from scratch.

Our approach takes into account the currently available bicycle infrastructure and uses an algorithmic
process to improve the network by finding themost importantmissing links step by step. This waywe focus
on optimizing the connectedness metric, growing the bicycle infrastructure by making it more connected,
merging parts into fewer and fewer components.We develop two iterative greedy algorithms that we check
against a random and a minimum investment approach. The first algorithm, Largest-to-Second (L2S),
identifies in each step the largest connected component in the bicycle infrastructure network and
connects it to the second largest. The second algorithm, Largest-to-Closest (L2C), also identifies the largest
connected component, but connects it to the closest of the remaining bicycle infrastructure components.

https://github.com/nateraluis/bicycle-network-growth
https://github.com/nateraluis/bicycle-network-growth
https://github.com/nateraluis/bicycle-network-growth
http://doi.org/10.5281/zenodo.4267871
http://doi.org/10.5281/zenodo.4267871
http://doi.org/10.5281/zenodo.4267871
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See the electronic supplementary material for details. In both algorithms, components are connected

through a direct link between their two closest nodes. We use this technique as an approximation to the
underlying street-shortest path—since the most relevant shortest 100 connections typically range from
14 to 500m, roughly the length of two blocks, this approximation is reasonable. The algorithms repeat
this process until there are no more disconnected components in the network.

To have a random baseline, we compare our algorithms with a Random-to-Closest (R2C) component
approach. In each step of this baseline approach, one component is picked at random and connected with
the closest remaining one. This baseline allows us to model a scenario where infrastructure is developed
following a systematic but random linking approach—in urban development this corresponds to
uncoordinated local planning that randomly connects close pieces of bicycle infrastructure. We also
implement a second baseline, the extreme case of Closest-Components (CC), which prioritizes
connecting the closest two components disregarding their size. This CC approach is equivalent to an
‘invest as little as possible’ development strategy—it builds up a minimum-spanning-tree-like
structure following a modified Kruskal’s algorithm [47]. All four algorithms connect components
optimizing a well-defined criterion, finding the critical missing links in the network, and adding one
new link per iteration. See figure 2a for a schematic of the four algorithms.

We apply the algorithms to the bicycle infrastructure inside the political demarcation of the cities;
however, it is possible to extend the methods and include bicycle highways and cross-city trails, since
they use as input a set of spatial network components to connect. We opt to not include cross-city
links, since they are a special case only available in a few regions and where adequate intra-urban
bicycle infrastructure has already been established [48,49].

To test howmuch cities improve their bicycle layers using these four algorithms, we define two metrics
on the bicycle layer that operationalize the notion of connectedness: (i) nLCC =NLCC/N, the fraction of nodes
from the bicycle infrastructure inside the largest connected component (NLCC) compared with the total
number of nodes from the same type of infrastructure (N), and (ii) ℓLCC = LLCC/L, the fraction of link
kilometres inside the bicycle infrastructure largest connected component (LLCC) compared with the total
number of link kilometres in the bicycle network (L). Both metrics take values between 0 and 1, where 1
means that there is only one connected component. An intermediate value, for example 0.2, means that
the largest connected component contains 20% of all bicycle intersections or path kilometres. Executing
our algorithms step by step these metrics can only grow, approaching 1 when the process is complete
and they terminate. What distinguishes the algorithms is how fast these values grow.

We quantify directness through the metric: (iii) bicycle-car directness Δ, which answers the question
‘how direct are the average routes of bicycles compared with cars?’ via the ratio between average distance
by car and average distance by bicycle. For example, if the shortest car-route from west to east Manhattan
is 4 km and the shortest route on the bicycle network between these two points is 5 km, the bicycle-car
directness is 4/5 = 0.8. Note that if the bicycle network is a subset of the street network, then Δ cannot be
larger than 1. Formally, we write D ¼ hdbijiij=hdsijiij, where hdsijiij is the average car-route distance, and hdbijiij
is the average length of the shortest bike-route between i and j. In each iteration of any of our algorithms,
we implement this measure by randomly selecting 1000 pairs of origin–destinations nodes and then
averaging the corresponding street/bicycle distance. To avoid undefined values due to disconnected
components in the bicycle layer, we add the following condition: if a node from the pair i and j is in a
different component, we assign the value dbij ¼ 0. This condition also ensures consistency of growing
directness values while the algorithm merges more and more nodes into the same component.

Finally, in order to measure the cumulative efficiency of our algorithms, we define the metric: (iv)
GLCC as the relative gain of bicycle path kilometres in the largest connected component. For example,
GLCC = 1.5 means that the algorithm has increased the largest connected component’s original size by
150%. Formally, GLCC ¼ (LLCC � LLCC0 )=LLCC0 , where LLCC0 is the sum of kilometres in the largest
connected component before the algorithm runs. As with all other metrics, GLCC is monotonically
increasing with the growth algorithm, and reaches (1� ‘LCC0 )=‘LCC0 at the end of the dynamics.
4. Growing bicycle networks shows stark improvements with small
investments

We demonstrate in figure 2 the power of the various growth strategies by showing the initial state of the
bicycle layer for the case of Budapest and its state after 85 iterations of the Largest-to-Closest algorithm: At
this point, the network has almost quadrupled the size of its largest connected component (from 82 to
313 km), with a negligible investment of just less than 5 km (corresponding to 1:4% of the previously
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Figure 2. (a) Schematic of algorithms to improve bicycle network infrastructure: Largest-to-Closest (L2C) finds the largest component
and connects it with the closest one; Largest-to-Second (L2S) connects the largest component with the second largest; Closest-
Connected (CC) connects the two closest components; and Random-to-Closest (R2C) picks a random component and connects it
to the closest. (b) Normalized increase in nodes inside the largest connected component (nLCC). (c) Normalized increase in
kilometres inside the largest connected component (ℓLCC). (d ) Kilometres gain (GLCC). (e) Bicycle-car directness (Δ). Measures
in (b–e) are plotted as a function of the sum of added links in kilometres, for the case of Budapest ( for all cities, see
electronic supplementary material, figure SI.1).
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existing bicycle infrastructure) in new connecting bicycle paths. In terms of connectedness, it goes from
15 to 56% connected. This rapid increase shows that the city can easily improve its bicycle infrastructure
with small investments. For some extreme cases, like Bogota, with the same 5 km investment (an increase
of 1:3% to the previously existing infrastructure) the bicycle-car directness increases from 6% to almost
48% and connectedness from 34 to 89%. Similar encouraging results hold for other cities, and for all
the cities when taking into account the combination of bicycle infrastructure and safely bikeable
streets (less than or equal to 30 km h−1; see electronic supplementary material).
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The fraction of nodes inside the largest connected component increases rapidly with newly added links
for all considered algorithms except Random-to-Closest, figure 2b. The Largest-to-Closest algorithm performs
better than the others, even more than Closest-Components which prioritizes minimum investments in the
network. Since we are considering bicycle infrastructure, a better practical measure than the number of
intersections is the number of kilometres that can be cycled using only designated paths. Figure 2c shows
how this measure improves in a similarly explosive way: with an investment of only 20 km (5:9% of the
existing infrastructure), the largest connected component will contain 80% of the original bicycle
infrastructure. Results for the kilometre gain GLCC are shown in figure 2d. Three of the four algorithms
rapidly gain new kilometres, but as the invested new kilometres grow, each algorithm follows a different
gain rate. Also for this metric, Largest-to-Closest is the algorithm with the best performance.

We also measure the bicycle-car directness ratio, figure 2e. The bicycle-car directness Δ improves as
the algorithms consolidate the network. These improvements are, however, indirectly driven by the
improvement of connectedness, which boosts the accessibility of bicycles to different areas of the city.
The flattening of the curves at a value considerably smaller than 1 (around 0.65) shows that cars will
always outperform bicycles in terms of directness, having on average at least 33% shorter paths in the
city. This suboptimal flattening is a natural consequence of the algorithms optimizing for
connectedness only, not adding ‘redundant’ connections. Nevertheless, the measure shows that,
similar to connectedness, with a relatively negligible investment of bicycle path kilometres into the
system, the bicycle network’s directness improves drastically, even in the greediest case where the
shortest possible missing link is added in every iteration. This result holds for all analysed cities (see
electronic supplementary material). The large differences between the baseline Random-to-Closest and
our two algorithms (Largest-to-Second and Largest-to-Closest) show the importance of following an
approach that consolidates and grows the largest connected component.
5. Different cities have different optimal investment strategies
Differences arise in the state of the bicycle layer and its improvement after applying a growth algorithm.
To see this effect, we rank how cities improve using the Largest-to-Closest algorithm in two different
investment scenarios: investing either (i) 5 km, or (ii) 30 km. Figure 3a shows how cities improve when
investing 5 km of bicycle infrastructure. We see that some cities get above 75% of their existing
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infrastructure connected, meaning that their bicycle layer only needs a small extension. On the other

hand, cities like London, Los Angeles and Jakarta need a larger investment to improve. Concerning
bicycle-car directness, cities reach lower values due to the focus of the algorithms on completeness. In
the worst performing cities like Los Angeles, a covered length close to 50% can be reached easily,
while the bicycle-car directness ratio stays below 20%, showing that it is much harder to gain an
acceptable bicycle infrastructure in cities where cars are overprioritized. The 35 km investment strategy
shows that most cities can get at least 75% of their bicycle infrastructure connected, figure 3b. The
worst performing outlier is London, due to its bicycle layer containing more than 3000 connected
components scattered around 1600 km2 (see electronic supplementary material, table SI.1). In terms of
bicycle-car directness London also performs badly, while Amsterdam is the best performing one.

The four proposed metrics capture the impact of newly created connections on the various
components of the bicycle network. By linking previously disconnected neighbourhoods with a
sustainable mode of transport, our approach focuses on consolidating bicycle infrastructure networks,
thus making cities more cohesive and green. It does not, however, focus on growing the bicycle
network into large areas of the city not currently served. To test to which extent such connectedness-
based algorithms bring an indirect benefit for coverage, we measured the proportion of the city that is
covered and reachable by bicycle with an epsilon of 500m around the bicycle infrastructure of the
largest connected component, and calculated the percentage of nodes in the street layer that are
covered by the bikeable area. The results of this measurement show a wide range of effects: cities with
an already high coverage above 80% (Amsterdam, Copenhagen) reach near instantly 100%, cities with
an intermediate coverage (Manhattan, Bogota, Budapest) follow a more linear progression per added
kilometre, while underdeveloped or sprawling cities (LA, London, Jakarta) show negligible growth
(electronic supplementary material, figure SI.7). While our present goal (consolidation of the bike
network) is intended to show the potential of our approach, an extension towards the exploration of
new city areas will increase further the real-world applicability of our results. We consider this
extension an interesting line of future research in the challenge of developing optimal data-driven
strategies of transport network growth, potentially informed by theoretical frameworks such as
optimal percolation [50,51]. Besides, the use of other network metrics, such as network efficiency [52],
might unveil new dimensions characterizing the impact of the proposed algorithms on the
development of the bicycle infrastructure.
6. Discussion
Our starting point showed that a common characteristic of cities is the fragmentation of their bicycle
networks. We have proposed the use of data-driven algorithms to consolidate bicycle network
components into connected networks to improve efficiently sustainable transport. We have shown that
connecting the bicycle infrastructure in an algorithmic way rapidly improves the connectedness and
directness of the bicycle layer. These algorithms, when compared with two baselines, highlight the
usefulness of growing the bicycle network on a city-wide scale (considering all areas of the city)
rather than randomly adding local bicycle infrastructure. Improving the connectivity of bicycle lanes
and paths improves not only the network itself, but also promotes the use of bicycles as means of
transportation in a city, improving the health of its inhabitants [53].

Improving bicycle infrastructure one link at the time (by identifying suitable components to connect)
is only the first step towards a systematic framework for realistic bicycle network growth strategies. Our
current approach is not the last word in this development, since it does not yet explicitly optimize for
directness and does not account for transport flow. Further, our proposed approach helps implement
a more connected transport network which can improve the possibilities for multimodal transport.
This could be the starting point for implementing truly multimodal strategies, such as integration
with public transportation, or bicycle parkings in transportation hubs [21].

In our algorithms, each new link works as a bridge between components, potentially having large
betweenness centrality. Such high-betweenness segments could become overused and create
bottlenecks in practice. To improve this situation, it would be necessary to create links in the network
that act as redundant paths. In doing so, directness and coverage would also be improved, along with
the network’s robustness to interruptions. This is an interesting and possibly demanding task that we
leave for future research, as the new links would have to be created in a coherent manner balancing
trade-offs between network structure and mobility dynamics. We anticipate that complementing
OpenStreetMap data with additional information on the use of traffic flow and movement data, like
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trips from bike share systems or origin–destination matrices, possibly from alternative sources such as

municipalities and transportation agencies, might further improve the algorithms by better detecting
underserved and optimal areas in the city where new links should be created. Despite these various
possibilities for qualitative updates to the studied growth strategies, our first models have
demonstrated the capability to generate substantial improvements with minimal effort.

The use of data-driven algorithms to identify crucially missing links in bicycle infrastructure has the
potential to improve the mobility infrastructure of cities efficiently and economically. This approach is
not only useful for planning city structure, but could also be used together with simulating mobility
flows and to provide insights on how the system will behave after new measures are implemented.
Ultimately, planning cultures and processes will also have to be accounted for [54]. We anticipate that
a future stream of work should include longitudinal studies [55] in multiple cities, along with
algorithmic simulations to first model and simulate possible changes to the transport network, and
then to test those models with ground truth data, to compare the evolution of infrastructure and
mobility dynamics between cities with different transport priorities.

Data accessibility. Relevant code for this research work is stored in GitHub: https://github.com/nateraluis/bicycle-
network-growth and have been archived within the Zenodo repository: http://doi.org/10.5281/zenodo.4267871.
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