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Abstract

The modeling of the spreading of communicable diseases has experienced significant

advances in the last two decades or so. This has been possible due to the proliferation of

data and the development of new methods to gather, mine and analyze it. A key role has

also been played by the latest advances in new disciplines like network science. Nonethe-

less, current models still lack a faithful representation of all possible heterogeneities and fea-

tures that can be extracted from data. Here, we bridge a current gap in the mathematical

modeling of infectious diseases and develop a framework that allows to account simulta-

neously for both the connectivity of individuals and the age-structure of the population. We

compare different scenarios, namely, i) the homogeneous mixing setting, ii) one in which

only the social mixing is taken into account, iii) a setting that considers the connectivity of

individuals alone, and finally, iv) a multilayer representation in which both the social mixing

and the number of contacts are included in the model. We analytically show that the thresh-

olds obtained for these four scenarios are different. In addition, we conduct extensive

numerical simulations and conclude that heterogeneities in the contact network are impor-

tant for a proper determination of the epidemic threshold, whereas the age-structure plays a

bigger role beyond the onset of the outbreak. Altogether, when it comes to evaluate inter-

ventions such as vaccination, both sources of individual heterogeneity are important and

should be concurrently considered. Our results also provide an indication of the errors

incurred in situations in which one cannot access all needed information in terms of connec-

tivity and age of the population.

Author summary

Disease modeling has experienced a substantial advance in the last decades. However,

state-of-art models still lack a full representation of all possible levels of heterogeneity.

Here, we compare several frameworks that either use the connectivity, the demography,

or both features. Specifically, we analyze four scenarios: (i) two homogeneous mixings,

considering either social or demographic data and (ii) two network models, one account-

ing only for the connectivity distribution and another that includes both connectivity and
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demography. Our analyses highlight the differences between each approach and the role

of demographic and connectivity distributions; while the contact pattern is crucial for the

determination of the epidemic threshold, the age-structure is fundamental after the out-

break. Notably, regarding vaccination, both types of heterogeneity play a significant role,

suggesting that none of them should be neglected for this purpose. Finally, our results pro-

vide estimates of possible errors when data about sources of heterogeneity is not available.

Introduction

One of the most fundamental concepts in epidemic dynamics is the heterogeneity in the ability

of hosts to transmit the disease. This heterogeneity can be described as a function of three

components: an individual’s infectiousness, the rate at which she contacts susceptible individu-

als, and the duration of the infection [1]. Of these three components, the second one is proba-

bly the hardest to correctly estimate since it depends on several factors not related to the

pathogen itself, such as the demographic structure of the population or its contact patterns.

Hence, the heterogeneity in the mixing patterns between individuals is a key element for the

correct assessment of the impact of epidemic outbreaks [2, 3].

The heterogeneity of the population can be characterized by different degrees of resolution

[4]. The most basic approach, known as homogeneous mixing, considers that a contact

between any two individuals in a population occurs randomly with equal probability [5]. In

the decade of 1980, due to the interest in studying the spreading of sexually transmitted dis-

eases, this assumption had to be modified [6]. The population was then divided into groups

according to some characteristics, such as gender or sexual activity levels, and the interaction

between those groups was encoded in a contact matrix [7]. Even though a homogeneous mix-

ing component was still present inside each group, because all individuals within a group were

indistinguishable, this approach demonstrated that a core group of 20% of the individuals in

the host population could lead to 80% of the transmissions, which called for a complete redefi-

nition of disease control programs [8].

The disproportionate role that highly active individuals had in the spreading dynamics was

mathematically encoded in the fact that the transmission did not depend on the average num-

ber of new partners but on the mean-square divided by the mean [9], being one of the earliest

signs of the crucial role that heterogeneities play in the spreading of diseases. This approach

was also applied to other types of diseases in which groups of hosts could be easily identified,

including vector-borne diseases [10] or age-dependent diseases [11]. The importance of het-

erogeneous mixing patterns was thus acknowledged, and several empirical studies measured

them for sexually transmitted diseases [12, 13]. Yet, data on the mixing patterns of the popula-

tion determinant for the spread of airborne infectious diseases, and in particular, their rela-

tionship with the age of individuals was not collected at large scale until 2008, i.e., 20 years

later [14].

A further step to include more heterogeneities in the system is to consider the complete

contact network of the population, which contains explicitly who can contact who [15, 16].

This approach is of particular importance for airborne infectious diseases since it is not possi-

ble to define a priori groups of highly infectious individuals, such as the core group for sexually

transmitted diseases. Moreover, this approach gives a simple explanation to super-spreading

events, which attracted a lot of attention after the 2003 SARS pandemic [17, 18] and are cur-

rently being scrutinized again in the context of the COVID-19 pandemic [19]. It was observed

that it was common to find hosts who transmitted the disease to many more individuals than
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the average. Within a network perspective, this is just a consequence of the higher number of

contacts, or degree, that some individuals have in the network [17, 18, 20]. This individual het-

erogeneity also signaled that outbreaks could be really large if key individuals become infected

and, at the same time, gave a new target for efficient control strategies such as vaccinating

highly connected individuals [21, 22]. However, despite the many advantages of this approach,

determining the complete contact network of a large population is almost infeasible, especially

for infections transmitted by respiratory droplets or close contacts. Hence, it is common to use

idealized networks built using some empirical data of the population, such as the degree distri-

bution [23].

Lastly, there are high-resolution approaches that rely on lots of statistical data to build

agent-based models in which the behavior of every single individual is taken into account [24–

29]. Note, however, that in agent-based models, individuals are usually assigned to certain

mixing groups (i.e., their household, school, or workplace), and that inside those groups

homogeneous mixing is used, due to the lack of data for all these settings at a country scale

[30]. An important step to create more realistic models in this direction is to collect high-reso-

lution data on individual contacts using wearable sensors [21], that can be used to build time-

varying networks in which not only the information about who contacts who is contained but

also the duration and frequency of contacts [31]. Several settings have been monitored, such as

schools and workplaces [32, 33], or even conferences and museums [34, 35]. Although the

data is still too rare to be used in large scale simulations, it has already been shown that the het-

erogeneity induced by the time-varying networks inside each mixing group produces a differ-

ent outcome than the one obtained assuming homogeneous mixing within each group [30].

Our goal in this paper is to analyze the role of one particular type of heterogeneity in disease

dynamics, namely, the age structure of the population. Originally, age was introduced into the

models to study childhood diseases [5]. The classical approach consists of dividing the popula-

tion into different groups, one for each age bracket under consideration, and establishing an

age-dependent transmission rate. This transmission rate can be arranged in a matrix in which

each element encodes the transmission probability between groups i and j (this matrix is also

known as the Who Acquired Infection from Whom matrix [36, 37]). It is also possible to sepa-

rate the effect of the transmission itself in a common parameter and encode the number of

contacts between each group in the matrix [38]. Note that this procedure falls into the second

category described previously. That is, it takes into account the heterogeneity induced by hav-

ing different classes of individuals but hides the individual variability under a homogeneous

mixing approach within each group, as in models of sexually transmitted diseases with groups

with different activity levels. Nevertheless, this approach is widely used today and has yielded

outstanding results for many diseases such as chickenpox [39], herpes zoster [40], measles

[41–43], pertussis [44] and tuberculosis [45]. In fact, even though the theoretical basis of this

method is relatively old, data on the contact patterns of the general population as a function of

their age have been available only recently.

The first large-scale study on the contact patterns between and within groups in the context

of infections spread by respiratory droplets or close contact took place in 2008 and was focused

in Europe [14]. Since then, a number of studies covering different countries have appeared,

although data on Africa and Asia are still scarce [46]. Various methods have been developed to

infer the contact patterns in the absence of direct data [47–49], and to project them into the

future [50]. And yet, most studies that use this data disregard the whole distribution of con-

tacts and use only the average number of contacts between groups, completely neglecting the

individual heterogeneity (with few exceptions [51]). As a consequence, in these studies, super-

spreading events cannot occur naturally, unless the model is modified, contrary to network

models in which the large connectivity of some individuals can result in the appearance of
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such events. Similarly, the virtual absence of an epidemic threshold for certain types of contact

networks cannot be observed with these simplified contact patterns [52]. To bridge this gap, in

this paper, we focus on analyzing the role that disease-independent heterogeneity in host con-

tact rates plays in the spreading of epidemics in large populations under several scenarios,

both numerically and analytically. Furthermore, in contrast to previous approaches to this

problem [53–56], we use a data-driven approach to highlight not only the role of those hetero-

geneities but also to explore the validity of the conclusions that one can derive when only lim-

ited information about the population is available.

Results

Modeling the contact patterns of the population

There are multiple ways of modeling the contact patterns of the population, depending on the

availability of data and the characteristics of the disease. In this work, we consider that diseases

have the same outcome on all individuals regardless of their condition and that individuals do

not change their behavior as a consequence of the disease. This way, we can focus on the effect

of adding different characteristics to the population contact patterns.

To be more specific, we use the information from the survey that was carried out in Italy

for the POLYMOD project [14]. In this project, over 7,000 participants from eight European

countries were asked to record the characteristics of their contacts with different individuals

during one day, including age, sex, location, etc. Since that pioneering work, the number of

countries where this type of study has been conducted has been increasing steadily, but data

on Africa and Asia are still scarce. Besides, the resolution and amount of information vary

from study to study [46]. As such, we build four different models of interaction, assuming that

only partial information about the population is available, see Fig 1.

The simplest formulation is the homogeneous mixing approach (model H), suitable when

very limited information about the population is available. In this model, all individuals are

able to contact each other with equal probability. The number of such interactions, hki, can be

extracted from contact surveys simply by calculating the average number of contacts per indi-

vidual. Note, however, that this formulation is very simplistic since all individuals are

completely equivalent. A slightly better approximation is to divide the population into age-

groups, given the demographic structure of the population, Fig 1B, and establish a different

number of contacts between and within them (model M), which is the common approach

currently used in the epidemic literature to model age-mixing patterns. In this case, the neces-

sary information includes knowing the age of both individuals participating in each contact,

although this information can be easily summarized in an age-contact matrix, M, where each

entry Mαβ represents the average number of contacts from an individual in age group α to

individuals in age group β. Note that in both models only the average number of contacts is

used, in one case the average over the whole population and in the other over each age-group.

Another possibility is to use the whole contact distribution, Fig 1D, to build the contact net-

work of the population. This formulation is commonly found in the network science literature

since it highlights the role that the disproportionate number of contacts of some individuals

have in the dynamics of the disease. A simple way of creating these networks is to represent

each individual i as a node and extract its degree (number of contacts) from the distribution.

Then, the expected number of edges between nodes i and j is hAiji ¼ kikj=
P

lkl (model C). To

obtain this expression, we can consider that each node i has ki stubs associated. Next, if these

stubs are matched together randomly, the probability that each stub from node i ends up at

one of the kj stubs of node j is kj over the total number of stubs, ∑l kl. This method is known as

the configuration model.
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Lastly, we can combine both ingredients, the mixing patterns, and the contact distribution

of the population in a network representation. To do so, we propose to arrange nodes in a mul-

tilayer network, in which each layer represents an age-group. As such, the first step to create

this network is to extract the age associated to each node from the demographic structure of

the population, Fig 1B, and assign them to their corresponding layer (since we are working

with 15 age-groups, our system is composed by that same amount of layers). Then, the degree

of each node should be extracted from the desired distribution. To incorporate the mixing pat-

terns into the configuration model, we propose the following scheme:

1. Given a node i located in layer α (where the layer represents the age-group associated with i),
the probability that any of its stubs ends up at a node in any layer β (including the same

layer) is pαβ. This probability can be extracted from the mixing matrix as pαβ = Mαβ/∑βMαβ.

2. The stub from node i will match the stub of node j, situated in layer β, with probability

kj/∑l2β kl, where the denominator indicates the addition over the degree of all nodes present

in layer β.

Hence, the expected number of edges between nodes i and j will be given by

hAiji ¼ kipaðiÞ;bðjÞ
kj

P
l2bðjÞkl

: ð1Þ

Yet, note that incorporating the mixing patterns introduces a restriction in the degree dis-

tribution. Indeed, one of the important properties of the mixing patterns matrix is that it has

Fig 1. Modeling the contact patterns of the population. Panel A: Schematic view of the different models considered. If the only information available

is the average number of contacts per individual, homogeneous mixing can be assumed (H). If there is information about the average number of

contacts between individuals with age a and a0, then a classical group-interaction model can be implemented (M). On the other hand, if the full contact

distribution of the population is known, regardless of their age, it is possible to build the contact network of the population (C). Lastly, when both the

contact distribution and the interaction patterns between different age groups are known, the individual heterogeneity and the global mixing patterns

can be combined to create a multilayer network in which each layer represents a different age group (C+M). Panel B: Demographic structure of Italy in

2005 [57]. Panel C: Age-contact patterns in Italy obtained in the POLYMOD study [14]. Panel D: Contact distribution in Italy obtained in the

POLYMOD study [14]. The x axis represents the number of daily contacts and the y axis the fraction of individuals that have reported such amount of

contacts. The distribution is fitted to a right-censored negative binomial distribution since the maximum number of contacts that could be reported was

45.

https://doi.org/10.1371/journal.pcbi.1008035.g001
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to verify reciprocity, i.e.,

MabNa ¼ MbaNb : ð2Þ

That is, the number of contacts going from group α to group β has to be the same as the

ones from β to α (if the populations of each group were equal, this would lead to a symmetric

matrix). It is easy to see that Eq (1) only fulfills this property if
X

l2a

kl ¼
X

b

MabNa : ð3Þ

And, thus,

hki
a
¼
X

b

Mab ; ð4Þ

where hkiα represents the average degree in layer α. Hence, even though the shape of the distri-

bution can be chosen freely, the mixing matrix fixes the average degree of each layer. Eqs (1)

and (4) completely define our last model, the CM model, see Fig 1A.

Susceptible-infected-susceptible dynamics

To determine the consequences of each of the previous assumptions, we first consider a gen-

eral susceptible-infected-susceptible (SIS) Markovian model [58, 59]. In this model, the recov-

ery rate of each infected individual is modeled by a Poisson process with rate δ. In turn, each

successful contact emanating from an infected individual (i.e., a contact that transmits the

disease) is modeled as a Poisson process with rate λ. We denote by Yi the Bernoulli random

variables that are equal to one if individual i is infected or zero otherwise. Complementary,

Yi + Xi = 1 and ∑i Xi + Yi = N. The only ingredient left to be defined is how the contact process

between individuals actually takes place. In general, in its exact formulation, we can do so by

introducing the matrix A, which denotes whether two individuals can contact each other or

not [58, 59]:

dhYii

dt
¼ h� dYi þ lXi

X

j

AijYji: ð5Þ

With this formulation we can already study the spreading of an epidemic on any network,

models C and CM. Indeed, assuming that the states are independent, i.e., hYi Yji = hYiihYji�yi
yj, we get

dyi
dt
¼ � dyi þ lxi

X

j

Aijyj : ð6Þ

Considering that the nodes with the same degree are statistically equivalent, we can obtain

the epidemic threshold using the heterogeneous mean field approximation [60],

t �
l

d
¼
hki
hk2i

: ð7Þ

This well-known result from network science clearly shows the importance of the heteroge-

neity of the contacts, since it depends on the second moment of the distribution. In the case of

Italy, using this expression we obtain a theoretical threshold of τCM = 0.033 and τC = 0.035 for

the CM and C models, respectively.
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For the M model, since individuals are indistinguishable, Eq (6) is rewritten as

dya
dt
¼ � dya þ lxa

X

b

Mabyb ; ð8Þ

where Mαβ is the matrix depicted in Fig 1C, and yα the fraction of infected individuals in layer

α. In this case, using the next generation approach [61, 62], the epidemic threshold is

tM �
l

d
¼

1

rðMÞ
: ð9Þ

Regarding Italy, the spectral radius of M is ρ(M) = 22.51, resulting in an epidemic threshold

of τM = 0.044.

Lastly, the equation governing the H model is

dy
dt
¼ � dyþ lhkixy ; ð10Þ

where the epidemic threshold is

tH �
l

d
¼

1

hki
: ð11Þ

According to Fig 1D, the epidemic threshold in our system is thus τH = 0.052.

Thus, in this case, the following relation holds:

tH > tA > tC > tCM

0:052 > 0:044 > 0:035 > 0:033
ð12Þ

Some observations are in order. First, even though the average number of contacts is the

same in all models, the epidemic threshold is completely different. Besides, increasingly adding

heterogeneity to the model lowers the epidemic threshold. This is especially relevant when

going from classical mixing models to network models. Indeed, when we introduce the whole

contact distribution, we are indirectly adding the possibility of having super-spreading events,

which, as noted before, is missing in the classical approaches. On the other hand, as expected,

the difference between both network models is relatively small (
tCM
tC
¼ 1:06) since the main

driver of the epidemic threshold is the contact distribution. Nonetheless, as we shall see next,

for other scenarios, the multilayer framework will yield quite different results from model C.

To asses the quality of our theoretical analysis, our first step is to obtain the epidemic

threshold for each configuration numerically. To do so, we create an artificial population of

106 individuals and assign them an age according to the demographic structure of the Italian

population [57]. Then, we simulate a stochastic SIS Markov model, with δ = 1 and multiple val-

ues of λ for each of the four contact models under consideration (see Materials and methods).

In Fig 2A, we show the attack rate (total number of cases over the whole population) as a func-

tion of λ. The overall behavior of the four scenarios is qualitatively similar, although large dif-

ferences are observed in the value of the epidemic threshold (see inset), as predicted.

To properly characterize the value of the epidemic threshold and compare it with the theo-

retical expectations, we use the quasistationary state (QS) method [59, 63]. This technique

allows computing the susceptibility of the system, which presents a peak at the epidemic

threshold (see Materials and methods). The caveat is that it is highly dependent on the system

size since the epidemic threshold is only properly defined for infinite systems. Nevertheless, in

Fig 2B we compute the susceptibility, χ for the four configurations with system sizes ranging
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from 104 to 106 individuals and we can see that for the latter the peak of the susceptibility is

already quite close to the predicted value of the epidemic threshold, validating our theoretical

approach.

Next, we focus on studying the impact that the disease has on each age group under the dif-

ferent configurations, Fig 2C. We set the value of λ in each case so that the attack rate is equal

to 0.4, since the four scenarios converge to that value for similar values of λ (see Fig 2A). Using

the homogeneous mixing approximation, we obtain a distribution of infected individuals

across ages proportional to the demographic structure of the population (Fig 1B), as one

would expect given that all individuals are virtually indistinguishable for the dynamics. The

same result is obtained for the C model, in which the age of the nodes is completely indepen-

dent of the network structure. At variance with these results, if we incorporate the heteroge-

neous mixing patterns of the population either in the age-mixing (M) model or in the

multilayer network (CM) setting, the incidence in each age group would be quite different,

see Fig 2C. Note that we have again set λ so that the overall incidence is 0.40 in all cases −this

assures that the total number of infected individuals is the same, only its distribution across

age classes is different. Results show that in both scenarios the prevalence is much higher for

teenagers and smaller for the older cohorts than in the homogeneous mixing model.

Susceptible-infected-removed dynamics

Although the SIS model facilitates the theoretical and numerical analysis of the system, espe-

cially near the epidemic threshold, it is too simplistic to model real diseases such as ILI. Thus,

to highlight the impact of these observations on a more realistic scenario, we slightly modify

the model by incorporating the removed compartment so that the dynamics are governed by a

susceptible-infected-removed (SIR) model, which is better suited for studying ILI [64].

It has been recently shown that using a constant and group-independent basic reproduction

number, R0, might not describe well key features of the disease dynamics in realistic scenarios

[28]. For this reason, we first explore the dependency of this parameter with the age of the indi-

vidual in the two networked scenarios. To do so, we simply count the total number of newly

infected individuals that a single seeded infectious subject would produce in a fully susceptible

population over 108 simulations, with the value of λ set so that the average value of R0 is 1.3

inline with typical values for influenza [65]. Fig 3A shows the value of R0 as a function of the

Fig 2. Dynamics of a SIS model using different contact models. A) The fraction of infected individuals as a function of the infection rate. In the inset,

the area near the epidemic threshold for each configuration is shown enlarged. B) Susceptibility as a function of the infection rate for the four

configurations with populations of size 104, 105 and 106. The larger the size of the population the closer the peak of susceptibility is to the theoretical

epidemic threshold (dashed line). C) Relative difference in the number of infected individuals between the results obtained using the M (purple circles),

C (red squares) or CM (blue triangles) models and the homogeneous mixing setting. Positive values indicate that the number of infected individuals is

larger than in the homogeneous mixing scenario, while negative values represent a lower number of infected individuals.

https://doi.org/10.1371/journal.pcbi.1008035.g002
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age of the seed node in the network in which all nodes have the same degree distribution.

Clearly, the same R0 value is obtained regardless of the age of the nodes, as it should be given

that both their degree and their connections are independent of their age. Conversely, in the

multilayer network where the mixing patterns of the population are incorporated, Fig 3B, the

situation changes completely. The value of R0 is above the average for teenagers and adults but

below the average for the elderly, highlighting the importance of the underlying structure in

the value of R0.

Lastly, we study the effect of vaccinating a fraction of the nodes before the epidemic begins.

This sort of contention measures are among those that can benefit the most from knowledge

about the structure of the population, as they allow devising more efficient vaccination strate-

gies. First, we set the baseline scenario to values compatible with the 2018-2019 ILI epidemic

in Italy. According to the World Health Organization, the total attack rate was 13.3%. Besides,

an important fraction of the population was vaccinated preemptively. In Italy, vaccination is

recommended for several groups of people, such as those with chronic medical conditions,

firefighters, health care workers, or the elderly [66]. Of these groups, the only one that we can

distinguish in our model is the elderly, but it is also the one with the largest vaccination rates.

Unfortunately, the uptake of the vaccine has been decreasing for the past few years, and now is

close to 50% [67]. Even more, the effectiveness of the vaccine is estimated to be around 60%

yielding an effective vaccination rate of 30% in the elderly [68]. Hence, to obtain the baseline

values in our model, we set 30% of the elderly in the recovered state initially and set the value

of λ so that the attack rate is 13.3%, Fig 4A.

Our first observation is that in the C scheme, we trivially obtain a reduction in the attack

rate among the elderly due to their vaccination, but otherwise, the incidence is the same in all

age groups. On the other hand, both in the M and CM models, the attack rate depends highly

on the age of the individual. To gauge the effect of increasing vaccination rates, we vaccinate

1% of the total population (assuming that the effectiveness is 60% for all age-groups). Note

that since the elderly group represents 19% of the population, the initial vaccination rate was

roughly 10% of the total population. If these new vaccines are administered randomly, we can

see that the effect is just a homogeneous reduction of 5-6% in all age groups, independently of

the model, Fig 4B.

Conversely, if that same amount of new vaccinations is targeted, the situation changes

completely. In the M model, we vaccinate individuals belonging to the group with 15-19 years

old since it is the one with the largest number of contacts and the highest attack rates. We can

Fig 3. Basic reproduction number in single layer and multilayer networks. A) Measured value of R0 in the C model,

where both the degree distribution and the connections are completely independent of the age assigned to the nodes.

B) The measured value of R0 in the CM model, where the connection patterns follow the age mixing patterns of the

population. In both cases the average R0 of the total population has been set to 1.3.

https://doi.org/10.1371/journal.pcbi.1008035.g003
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see that the overall reduction is much larger than in the previous case, and especially so in this

particular group, see Fig 4C. In the C and CM models, instead, we apply the vaccines to indi-

viduals with the largest degrees. We can see that the reduction is larger in the C setting than

in the CM one. This result might seem counter-intuitive since the same measure is applied to

both systems. However, note that while in the C model the largest degrees are homogeneously

distributed across the population, in the CM model they are concentrated in specific age

groups, or layers. Furthermore, since nodes in the same layer tend to be connected together,

the previous observation implies that the effect of removing hubs will be lower. To verify this,

we have rewired the connections of the CM model while preserving the age, degree and vacci-

nation status of each node. As we can see, in such case we recover the same value as in the C

model. In other terms, the correlations induced by the age mixing patterns lower the effectivity

of this vaccination strategy. Note also that in both the random and the targeted vaccination

schemes, the number of new vaccines introduced in the system is exactly the same, only who is

vaccinated changes.

Discussion

Models can range from simple homogeneous mixing models to high-resolution approaches.

The latter, even though it might provide better insights, is also much more data demanding.

As a compromise between the two, network models can capture the heterogeneity of the popu-

lation while keeping the amount of data necessary low. Nevertheless, most network approaches

focus only on determining the role that the difference in the number of contacts of the popula-

tion has on the impact of disease dynamics but ignore other types of heterogeneities such as

the age mixing patterns.

We have shown that to determine the epidemic threshold of the population properly, the

heterogeneity in the number of contacts cannot be neglected, making the simple homogeneous

approach and the homogeneous approach with age mixing patterns ill-suited for it. In fact, a

description that ignores the age mixing patterns of the population can capture much better the

value of the epidemic threshold. Furthermore, we observe two different regimes in the attack

rate as a function of the spreading rate. For low values of the spreading rate, individual hetero-

geneity plays a more important role, yielding larger attack rates than the homogeneous coun-

terparts. However, after a certain value, the phenomenology reverses, i.e., larger attack rates

are obtained for the homogeneous approaches rather than for the networked versions. The

reason is that, in homogeneous models, an infected agent can contact everyone in the popula-

tion, and thus it can keep infecting individuals even if the attack rate is high. When the

Fig 4. Effects of different vaccination strategies. A) Attack rate under the standard vaccination adjusted to the values of the 2018-2019 ILI epidemic.

B) Reduction of the attack rate when the vaccination is increased by 1%N but applied randomly. C) Reduction of the attack rate when the fraction of

vaccinated population is increased by 1%N but targeted to highly infective individuals: the group of 15-19 years old in the M model and the nodes with

larger degree in the two networked scenarios.

https://doi.org/10.1371/journal.pcbi.1008035.g004
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network is taken into consideration, it is possible that nodes run out of susceptible individuals

within their vicinity, virtually preventing them from spreading the disease any further.

On the other hand, if we study the distribution of infected individuals across age cohorts,

we can see that the C scheme is no longer valid, yielding the same results as the simple homo-

geneous mixing approach. If the age mixing patterns are added into the model, either in the M

or CM schemes, a larger fraction of young individuals will be infected, while the incidence in

elder cohorts is reduced. Hence, even though the C approach can predict fairly well the value

of the epidemic threshold, it cannot be used to study the spreading of diseases in which taking

into account the age of the individuals is important beyond the epidemic threshold. Con-

versely, the multilayer network of the CM model can describe both the epidemic threshold

and the distribution of the disease across age groups correctly. In other words, it combines

both the importance that individual heterogeneity has with the inherent assortativity present

in human interactions.

Individual heterogeneity also introduces important variations in the measured value of R0.

This observation is quite important since it shows that for the proper evaluation of R0 during

emerging diseases, the sampling of the population has to be done carefully. Biases in the sam-

pled individuals, such as having too many young individuals, could lead to estimations of R0

much larger than its actual value. Even more, this is not limited to the age of the individuals

since we have also seen the importance of individual heterogeneity in the dynamics. Of utmost

relevance, if in the sample, there are individuals with an average number of contacts higher

than the normal population, the estimations of R0 would also be higher.

Lastly, we have also observed the crucial role that heterogeneity plays if we want to devise

efficient vaccination strategies. The role of networks in this regard is known to be important

not only because there are tools that allow identifying the most important individuals, but

because it provides a clear way to study herd immunity. Yet, if we do not take into account the

contact distribution of the population the effectivity of vaccination campaigns will be lower.

Conversely, if we rely simply on the contact distribution of the population and disregard their

mixing patterns, we would overestimate the effect of vaccination.

As the current COVID-19 pandemic has shown, accounting for both the age and the con-

tact heterogeneity of individuals is crucial to control the epidemic. It is yet unknown the exact

role that age plays in this disease, although preliminary results show that children are less sus-

ceptible and that the case fatality rate for older individuals is much higher. Similarly, large

super-spreading events are possible such as the ones detected in South Korea, Boston or Spain

[19, 69]. The latter country is also among the ones most affected by the current epidemic, but

empirical information about the age mixing patterns of the population is not available [46, 69].

Thus, to the inherent problems of forecasting the evolution of an emerging disease [70, 71] we

have to add our ignorance about these factors which, as we have shown in this article, can sub-

stantially modify the predictions. This highlights once again the importance of obtaining pre-

cise information about the behavior of the population, enhancing our preparedness for this

type of event.

To sum up, we have shown the importance that individual heterogeneities have on the

spreading of infectious diseases. Yet, although in general the more details in the model the bet-

ter, it is also important to take into account the inherent limitations about data that currently

exist. Therefore, it is crucial to correctly gauge what can and cannot be done, given the infor-

mation available to us. In particular, we have shown that to predict the epidemic threshold, it

is indispensable to know the degree distribution of the population. Nonetheless, this is not

strictly needed to evaluate the impact of a disease away from the threshold. Yet, adding this

information, even though it does not dramatically change the predicted outcomes of the epi-

demic under normal conditions, could be pivotal to devise efficient vaccination strategies.
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Furthermore, we have seen that the underlying information of the system also has an impact

on quantities that are commonly measured and used in real settings, such as R0, implying that

care must be taken when extrapolating the results from one study to the other.

Materials and methods

Model

In all cases, we consider populations of 106 individuals. In the H model, since individuals are

indistinguishable, the impact of the disease over the age groups is computed by randomly

extracting values from the demographic distribution of Italy in 2005 [57]. In the M model, the

size of each age-group is computed using the same procedure. Besides, the age-mixing matrix

was corrected so that reciprocity is fulfilled, and the average connectivity is exactly 19.40 [50].

In the C model, we randomly extract the degree of each node from a right-censored negative

binomial distribution adjusted to the survey data from POLYMOD [14]. Then, links are sam-

pled performing a Bernoulli trial over each pair of nodes respecting that hAiji ¼ kikj=
P

lkl. A

similar procedure is followed to create the multilayer with age mixing patterns, but in this

case, each layer has its own values for the negative binomial distribution, according to the data

(see Fig 1D), and the probability of establishing a respects hAiji ¼ paðiÞ;bðjÞkikj=
P

l2aðjÞ kl where

pα(i),β(j) is the probability that a link from a node with the same age as node i ends up at a node

with the same age as node j, and α(j) is the layer to which j belongs. We remark that the net-

work is simplified, removing multiple edges.

Epidemic threshold

Close to the critical point, the fluctuations of the system are often high, driving the system to

the absorbing state [59, 63]. To avoid this problem, the quasistationary state (QS) method

stores M active configurations previously visited by the dynamics. At each step, with probabil-

ity pr, the current configuration (as long as is active) replaces one of the M stored ones. Then,

if the system tries to visit an absorbing state, the whole configuration is substituted by one of

the stored ones. The system evolves for a relaxation time, tr, and then the distribution of the

number of infected individuals, pn, is obtained during a sampling time ta. Lastly, the threshold

is estimated by locating the peak of the modified susceptibility χ = N(hρ2i − hρi2)/hρi, where

hρki is the k-th moment of the the distribution of the number of infected individuals, pn (note

that hρki = ∑n nk pn). In our analysis, the number of stored configurations and the probability

of replacing one of them is fixed to M = 100 and pr = 0.01, while the relaxation and sampling

times vary in a range depending on the size of the system, tr = 104 − 106 and ta = 105 − 107.
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21. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. A high-resolution human contact

network for infectious disease transmission. Proc Natl Acad Sci USA. 2010; 107(51):22020–22025.

https://doi.org/10.1073/pnas.1009094108 PMID: 21149721

22. Wang Z, Bauch CT, Bhattacharyya S, d’Onofrio A, Manfredi P, Perc M, et al. Statistical physics of vacci-

nation. Physics Reports. 2016; 664:1–113.

23. Keeling MJ, Eames KTD. Networks and epidemic models. Journal of The Royal Society Interface.

2005; 2(4):295–307. https://doi.org/10.1098/rsif.2005.0051

24. Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for con-

taining an emerging influenza pandemic in Southeast Asia. Nature. 2005; 437(7056):209–214. https://

doi.org/10.1038/nature04017 PMID: 16079797

25. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an

influenza pandemic. Nature. 2006; 442(7101):448–452. https://doi.org/10.1038/nature04795 PMID:

16642006

26. Germann TC, Kadau K, Longini IM, Macken CA. Mitigation strategies for pandemic influenza in the

United States. Proceedings of the National Academy of Sciences. 2006; 103(15):5935–5940. https://

doi.org/10.1073/pnas.0601266103

27. Zhang Q, Sun K, Chinazzi M, y Piontti AP, Dean NE, Rojas DP, et al. Spread of Zika virus in the Ameri-

cas. Proceedings of the National Academy of Sciences. 2017; 114(22):E4334–E4343. https://doi.org/

10.1073/pnas.1620161114

28. Liu QH, Ajelli M, Aleta A, Merler S, Moreno Y, Vespignani A. Measurability of the epidemic reproduction

number in data-driven contact networks. Proceedings of the National Academy of Sciences. 2018; 115

(50):12680–12685. https://doi.org/10.1073/pnas.1811115115

29. Litvinova M, Liu QH, Kulikov ES, Ajelli M. Reactive school closure weakens the network of social inter-

actions and reduces the spread of influenza. Proceedings of the National Academy of Sciences. 2019;

116(27):13174–13181. https://doi.org/10.1073/pnas.1821298116
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